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Abstract: Titanium grade 9 (Ti-3Al-2.5V) stands out as a preferred material in various industrial
applications because of its suitable properties. Its applications span diverse sectors, including preci-
sion manufacturing, where it is utilized to produce honeycomb structures for advanced aeronautics,
as well as for certain biomedical components. In parallel, micro-milling has gained widespread
utilization across medical, aerospace, and electronic industries due to the increasing demand for
miniature products in these domains. This current research study aims to explore the impact of
various micro-milling process parameters—specifically, feed rate, cutting speed, and depth of cut—on
the surface quality, burr formation, and tool flank wear of titanium grade 9. Research findings reveal
that the feed rate plays a major role in influencing surface roughness (contribution ratio (CR): 62.96%)
and burr formation (CR: 55.20%). Similarly, cutting speed and depth of cut significantly affect surface
roughness, contributing 20.32% and 9.27%, respectively, but are insignificant factors for burr width.
Tool flank wear is primarily influenced by cutting speed (CR: 54.02%), with feed rate contributing
33.18%. Additionally, the feed rate and cutting speed are significant factors in determining the length
of the burr, with contribution ratios of 77.70% and 7.77%, respectively. Confirmatory tests conducted
at optimum parameters selected from the main effects plot validated the experimental results.

Keywords: Ti-3Al-2.5V; titanium alloy (grade-9); micro-milling; analysis of variance; burr formation;
tool flank wear; surface roughness

1. Introduction

Titanium alloys are the optimal choice for aerospace applications, renowned for their
high specific strength, particularly in elevated temperature environments, and outstanding
resistance to corrosion. These attributes also make titanium an attractive candidate for
biomedical purposes, including surgical implants, where its excellent biocompatibility and
resilience to physiological fluids are highly advantageous. Micro-milling, as an essential
manufacturing technology, plays a pivotal role in the production of micro-sized products
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of titanium alloys with intricate features and exceptional surface quality [1]. Although
micro-milling offers numerous advantages, it also presents several challenges in the process
of producing micro-devices [2]. Burr is a common byproduct in subtractive manufacturing
processes like machining. In micro-milling, the burr size is significantly smaller than in
macro-scale machining, making burr removal a more difficult task in this domain [3,4].
Micro-machining, in contrast to other micro-level techniques for producing micro products,
provides greater flexibility in the production process. With no limitations on shape cutting,
it can create intricate structures, including arbitrary curvatures, three-dimensional cavities,
and high-aspect-ratio features like long shafts and micro-channels [5]. Micromachining
techniques offer a competitive advantage due to their cost-effective setups and high material
removal rates compared to nontraditional micro-machining processes. This makes them a
viable option for producing customized items or small batches. However, micromachining
is limited by the choice of suitable workpiece materials. Achieving fine surface finishes,
particularly in finishing processes, is crucial for high-precision components. In the realm
of surface roughness research, the primary focus has been on modeling and selecting
appropriate parameters. The micro-level milling process presents various challenges, with
the most significant being the characterization, reduction, and evaluation of burrs. Tool
life is determined by tool flank wear, which results from the direct interaction between
the tool face and the workpiece. This interaction also affects surface quality. In the micro
domain, the stringent requirement for surface finish amplifies the importance of preventing
tool failure [6]. Titanium alloys are known for their poor machinability due to low thermal
conductivity. In micro-scale machining like micro-milling, cutting tools in titanium alloys
quickly wear out [7]. Researchers conducted a study on optimizing machining processes
to achieve sustainability, productivity, and efficiency simultaneously. They analyzed the
effects of machining parameters and conditions, with a focus on specific cutting energy,
tool wear, surface roughness, and material removal rate. The findings highlighted the
significance of feed rate and cutting conditions, leading to a 30% reduction in tool wear, a
22% improvement in surface roughness, and a 4% decrease in specific cutting energy under
the proposed optimal parameters [8].

In recent years, various empirical studies have explored metal micro-machining.
Predominant techniques include EDM machining, laser micro-machining, ultrasonic micro-
machining, and mechanical micro-machining. Mechanical machining, particularly micro-
milling, has gained significant attention from researchers due to its flexibility and produc-
tivity in micro-level machining. From 2000 to 2020, research in micro-milling has primarily
focused on size effects, cutting forces, vibrations, tool wear, burr formation, surface rough-
ness, and process optimization. Akhtar et al. [9] conducted a study on process parameter
optimization in turning aluminum alloy 7075. Using the Taguchi method with an L27
array, they investigated how cutting speed, feed rate, and depth of cut influenced material
removal rate (MRR), surface roughness, and cutting force. Their findings revealed that
a depth of cut of 2 mm, a cutting speed of 1600 rpm, and a feed rate of 0.25 mm/min
resulted in optimal conditions for achieving high MRR while reducing cutting force and
surface roughness. Wang et al. [10] conducted an experimental study on surface roughness
during slot end milling of AL2014-T6. Their research aimed to investigate how surface
roughness was affected by the cutting environment and tool geometry when milling slots
in AL2014-T6. Input parameters included cutting-edge concavity, feed rate, depth of cut,
and axial relief angles of the end mill. Surface roughness models were developed using
experimental data and the response surface methodology (RSM) under both dry cutting
and coolant conditions. Sooraj et al. [11] investigated the impact of machining parameters
on force and surface quality during micro end milling of brass. They identified feed/tooth
as a significant factor in micro-machining performance. A study was conducted on milling
processes to investigate the impact of machining parameters on surface roughness, burr
width, and energy consumption. Cutting speed significantly influenced specific cutting
energy and burr width during down-milling, with contributions of 55% and 47.98%, respec-
tively. Conversely, the number of inserts had a notable impact on surface roughness and
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burr width during up-milling, contributing 68.74% and 35%, respectively. Confirmation
tests validated the findings [12]. Researchers conducted a study on machining titanium
alloy Ti-6Al-4V using cryogenic cooling. They developed an energy consumption map,
finding that cutting speed had a greater impact on energy consumption. This cryogenic
energy map reduced energy consumption by up to 16% and increased productivity by
up to 156% by optimizing machining parameters, thereby promoting sustainability and
cleaner production [13].

Aslantas et al. [14] investigated the impact of cutting parameters on surface quality
and burr width in micro-milling of Ti-6Al-4V alloy. Spindle speed, feed per tooth, and
depth of cut were controlled factors. Taguchi-based gray relational analysis optimized
these parameters for minimal burr width and surface roughness (Ra). ANOVA determined
the contribution percentages of these factors. The results showed that a feed rate of
0.25 µm/tooth achieved the best surface quality, whereas an ap value of 0.1 mm and an n
value of 10,000 rev/min minimized surface roughness (Ra). Zheng et al. [15] conducted
an empirical study on burr formation during vibration-assisted micro-milling of titanium
grade 5 (Ti-6Al-4V). Their findings indicated that burr size could be effectively reduced by
optimizing the vibration parameters during the micro-milling process. Gupta et al. [16]
conducted a study on hybrid cooling-assisted turning of titanium grade 9 (Ti-4Al-2.5V).
They investigated tool wear under three different machining conditions: minimum quantity
lubrication (MQL), hybrid (liquid nitrogen–MQL), and dry machining. Their research
revealed that the hybrid cooling approach outperformed both dry machining and MQL
conditions in terms of minimizing tool wear. In their study on titanium grade 5 (Ti-6Al-4V),
Jaffery et al. [17] conducted a thorough investigation and employed ANOVA for statistical
analysis. Their research focused on evaluating process outcomes such as surface roughness,
top burr width, and tool flank wear. They systematically examined the impact of process
input parameters, including feed rate, cutting speed, and depth of cut, on these process
outcomes. Their experimental design involved two levels for each parameter. The results
emphasized that feed rate played a crucial role as a major influencing factor for surface
roughness. Additionally, they noted that machining below the edge radius led to improved
surface quality, particularly concerning surface roughness.

Muhammad et al. [18] studied the effects of tool coating and cutting process parameters
when micro-machining Inconel 718. Their research focused on surface roughness and burr
formation. Statistical analysis revealed that cutting velocity had a significant influence
on surface roughness, while cutting depth had the greatest impact on burr formation.
Additionally, the study found that feed rate and depth of cut influenced the types of
burrs formed. Furthermore, in another study on Inconel 718, Lu et al. [19] found that
cutting parameters, tool condition, machine vibrations, and built-up edge (BUE) formation
influenced surface roughness. They observed an initial decrease in surface roughness,
followed by a gradual increase with cutting length. Researchers conducted a study on
improving the sustainability of machining hard materials by investigating the influence of
cooling conditions, including cryogenic cooling, on tool wear, specific cutting energy, and
surface roughness. The findings showed that cryogenic cooling had a significant positive
impact, improving tool wear by 33%, specific cutting energy by 10%, and surface roughness
by 9% under optimized machining conditions [20]. Ahsan et al. [21] discussed two methods
for determining tool life: (a) measuring the dimensional accuracy of machined parts and
(b) measuring the tool flank wear. Cutting temperature is a critical factor when working
with metals, as it significantly affects tool wear. Research has highlighted that cutting
speed is the primary variable influencing tool wear in machining processes. Higher cutting
speeds generate more heat, leading to accelerated tool wear [22]. Tool wear is the leading
cause of accuracy problems and can manifest in various forms, such as increased cutting
force, dimensional changes, or the necessity for a replacement tool. Numerous empirical
studies have investigated tool wear in various materials, including titanium grade 5 and
Ti555.3. Arrazola et al. [23] conducted a study on these materials, examining the influence
of process parameters on tool wear, cutting forces, and chip geometry. Their research
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identified tool failure mechanisms related to diffusion and adhesion. Another study
investigated the machinability of Ti-6Al-4V aerospace alloy using cryogenic conditions,
addressing its challenging properties. By creating a tool wear map based on cutting speed
and feed rate, the research identified distinct wear regions, including an avoidance zone.
Cryogenic machining improved tool life by up to 100% and increased material removal
rates (MRRs) by 36%, offering valuable insights for optimizing Ti-6Al-4V machining. In
another study on titanium alloy, researchers focused on machining titanium alloy Ti-6Al-
4V at high speeds and compared dry and cryogenic conditions. Cryogenic machining
significantly extended tool life by up to 170% while also promoting a more consistent and
slower tool wear rate. Additionally, cryogenic methods reduced energy consumption and
improved wear characteristics, highlighting their sustainability advantages for titanium
alloy machining [24]. Researchers conducted another study on micro-milling Inconel 600
super alloy, commonly used in aerospace and high-temperature applications. They found
that cryogenic cooling yielded the best surface roughness and extended tool life, making
it a valuable cooling method for machining super alloys [25]. Researchers conducted a
study on milling Inconel 718 at conventional speeds, comparing uncoated and coated tools.
Uncoated and AlTiN-coated tools had lower tool wear, while TiSiN-coated tools resulted
in higher surface roughness and burr formation. The optimal conditions reduced surface
roughness and tool wear by 18% and 20%, respectively, using an AlTiN-coated tool at
specific machining parameters [26].

Recently, many studies have been carried out in the micro-milling domain. The study
by Tian et al. [27] examined how microstructural anisotropy in Ti-6Al-4V alloy produced
through selective laser melting (SLM) affects micro-milling. Orthogonal milling tests
were performed on different surfaces of SLMed specimens, and various parameters were
evaluated. The research revealed the influence of grain orientation on cutting forces, surface
quality, and chip formation, highlighting the importance of selecting appropriate machining
methods for precision processing. In another study, researchers explored micro-milling
of tough cemented carbides with a focus on enhancing surface quality and dimensional
accuracy. Their investigation delved into surface and chip formation, assessing the impact
of cutting parameters and tool selection. The results unveiled various surface damage
mechanisms and confirmed a ductile cutting regime for these hard materials, offering
valuable insights for precise micro-milling [28]. In one study, researchers explore the micro-
milling of FeCo-2V soft magnetic alloys to improve their magnetic properties and geometric
finish. They optimize the process by varying machining parameters, and additionally
describe a complementary electro polishing process to eliminate burrs and milling residuals.
This work showcases the potential of micro-milling for fabricating precise micro-assemblies
in MEMS, with a focus on improving surface quality and deburring [29]. In a related
study, researchers aimed to improve tool wear measurement in micro-milling, especially in
the presence of challenging burrs in Inconel 718. By employing abrasive deburring, they
reduced burr heights by around 99%, leading to more accurate tool wear assessments based
on slot geometry, which is a valuable alternative to direct measurements. This method
enhances the precision of micromachining processes [30].

This research aims to target research goals of enhanced productivity and higher sus-
tainability achieved by the improved machinability of titanium grade 9, which would
benefit precision manufacturing, especially in aerospace, biomedical engineering, and
electronics applications. Initially, the output responses are analyzed by drawing the main
effects plots, which highlights the effects of input variables. Then, the significance and in-
fluence of each input is determined in terms of its p-value and contribution ratio. Validation
of the work is conducted by confirmatory experiments at best and worst-state conditions,
as identified from the main effects plots. The envisioned output of the current work is
closely aligned with the United Nations’ Sustainable Development Goals (SDGs) [31,32].
Productivity is improved through optimizing vital indices, including surface roughness
and burr formation, which represents product quality. Similarly, tool wear is minimized,
which in turn improves process economy, thereby promoting sustainability. It is foreseen
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that the adoption of such practices will add to the optimization of manufacturing output
while serving the globally applicable UN SDGs.

2. Materials and Methods
2.1. Experimental Setup and Material

In this study, micro slot milling was carried out using a CNC machining center
(CNCMV-1060). The maximum spindle speed of the machining center was 8000 rpm,
and the process parameters were configured to achieve a maximum machining speed of
48,000 rpm. To reach this high speed, an ultra-precision high-speed spindle (HES810-BT40)
was employed that allowed for a maximum speed of 80,000 rpm. The spindle had a runout
accuracy of 0.1 µm. The tool used in this experimental study was a two-flute tungsten
carbide end mill (2F-�0.5 × �4 × 50–60◦). The cutting-edge radius and the diameter of the
tool were measured at 4 µm and 500 µm, respectively, using an Olympus digital microscope
(DSX1000; Olympus Corporation, Tokyo, Japan).

A titanium grade 9 workpiece was selected for the experiments. The workpiece was
wire-cut from a 12 mm-thick disc, leading to dimensions of 168 × 12 × 12 (length × width
× height). Grade 9 titanium, commonly referred to as Ti-3Al-2.5V, is classified as a nearly
two-phase alloy containing both α and (α + β) phases. This alloy is specifically engineered
for application in the hydraulic and fuel systems of aircraft. Grade 9 titanium demonstrates
intermediate mechanical and corrosion resistance performance when juxtaposed with
titanium grade 5 (Ti-6Al-4V) [33,34]. For more detailed information regarding its chemical
composition and properties, please refer to Tables 1 and 2. The workpiece’s chemical
composition was determined using a metal analyzer (SPECTROMAXX LMX10, Spectro
Analytical Instruments GmbH, Kleve, Germany).

Table 1. Chemical composition of the Ti-3Al-2.5V workpiece.

Titanium
(Ti)

Aluminum
(Al)

Vanadium
(V)

Iron
(Fe)

Silicon
(Si) Other

93.76 3.7 2.18 0.048 0.040 Balance

Table 2. Properties of titanium grade 9 (Ti-3Al-2.5V) [35].

Mechanical Properties

Tensile Strength
(MPa)

Yield Strength
(MPa)

Elastic Modulus
(GPa)

Shear Modulus
(GPa) Poison’s Ratio Hardness Brinell

(HB) Max

620 530 100 44 0.3 256

Physical Properties

Density
(g/cm3)

Melting Point
(◦C)

Specific Heat
Capacity (J/g ◦C)

Thermal
Conductivity(W/m K)

Thermal Coefficient
20.0–540 ◦C, µm/m ◦C

4.48 ≤1700 0.525 8.30 9.97

2.2. Design of Experiment

Table 3 provides a comprehensive overview of the experimental parameters employed
in the machining operations. The study utilized Taguchi’s robust design of experiments,
specifically the L9 array, as detailed in Table 4. To ensure results consistency, two sepa-
rate runs with new tools were conducted, and in cases where significant variations were
observed, the tests were repeated up to five times. Positioning was carried out to ensure
tool setting accuracy. The positioning reference between the workpiece surface and the
tool was conducted by utilizing a BMD Messwell 410V tool pre-setter. Prior research by
Jaffery et al. [16] suggests that maintaining feed rates below the tool’s edge radius can lead
to reduced surface roughness. Therefore, this study adopted feed rates below this radius
in contrast to titanium alloy Ti-6Al-4V, for which literature reports cutting speeds ranging
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from 10,000 rpm to 90,000 rpm [6,17,36,37], no previous investigations have been conducted
on cutting speeds specific to titanium grade 9. Consequently, this study selected three
cutting speed levels (25, 50, and 75 m/min) based on Jaffery et al. [16]’s work, where 25
and 50 Vc were chosen. Additionally, the recommended depth of cut guidelines provided
by Niagra Tool [38] were considered. For tool diameters of 1/8” and smaller, the formula
ap = Dx (minimum 0.25, maximum 0.05) suggests recommended depths of cut ranging
from 25 to 125 µm. Accordingly, this study explored three levels of 30, 60, and 90 µm. The
spindle speed (n) and feed velocity (Vf) were calculated using the following equations:

n = Vc/(π·D) (1)

V f = f.n.z (2)

Table 3. Experimental conditions.

Condition Specification

Workpiece Ti-3Al-2.5V
Cutting fluid Dry cutting
Milling type Full immersion
Cutting tool Micro end mill

Number of flutes 2
Tool diameter 500 µm

Cutting edge radius 4 µm (measured)
Tool material Tungsten carbide
Length of cut 12 mm

Table 4. Levels of parameters used in the experiments.

No. of Exp. Feed Below Edge Radius
(fz (µm tooth−1))

Cutting Speed
VC (m min−1)

Depth of Cut
ap (µm)

1 0.25 25 30
2 0.25 50 60
3 0.25 75 90
4 0.45 50 90
5 0.45 75 30
6 0.45 25 60
7 0.65 75 60
8 0.65 25 90
9 0.65 50 30

2.3. Response Measurement

In the current work, titanium grade 9 was machined using the micro-milling process.
The process outcome was assessed by measuring the surface roughness, burr size, and
tool flank wear using an Olympus digital microscope (DSX1000; Olympus Corporation,
Tokyo, Japan) with a repeatability of 1 µm. Slots were machined, as shown in Figure 1.
The surface roughness was measured by taking multiple readings in the machined slot, as
indicated by the yellow square. The black outgrowth visible on both sides of the machined
slot, known as burr, is an unwanted and undesirable phenomenon. Burr is a sharp edge
or ridge of material that forms along the edge of the workpiece. In the current research,
the burr height and burr width were determined using microscopy images. Since the burr
length could not be measured accurately owing to the curve of the burr, it was calculated
using the Pythagorean theorem, incorporating the burr height and width, as illustrated
in Figure 2. Although some previous researchers have used chip thickness and/or chip
area calculations using imaging software for burr area measurements, the current study
focused on directly measuring the burr height and burr width using an Olympus 3D digital
microscope, which was then used to determine the novel burr length.
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Figure 2. Burr measurement (not to scale).

With regards to tool wear in micro-milling, ISO 8688 standards were followed, which
encompass different forms of tool wear, including flank wear, chipping, face wear, out-
side edge wear, and catastrophic failure [39]. Flank wear is particularly significant, as it
directly impacts product quality by increasing surface roughness. Consequently, this study
concentrated on the analysis of flank wear, as depicted in Figure 3.
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3. Results

After the experimentation phase, the outcomes were measured with precision and
accuracy. The investigation evaluated parameters such as the surface roughness, the flank
wear of the cutting tool, and the dimensions of burrs in down milling. A summary of
these results is presented in Table 5. Burr width was selected as the primary measurement
for quantifying burrs due to its ease of microscopic measurement, as depicted in Figure 4.
Notably, the profile measurement inherently encompassed the burr’s height. Therefore, to
determine the burr’s length, a calculation method based on the Pythagorean theorem was
applied. It is worth noting that the literature has investigated three types of burrs: entry,
exit, and top burrs [36]. This study focused solely on the top burr, using the worst-case
scenario for all measured burr parameters. The DSX software employs line characteristics to
identify the top burr width, with the blue segment on the red line indicating the measured
burr width, as illustrated in Figure 4. Surface roughness was evaluated at the slot’s center,
with three values recorded for each slot and their average utilized for analysis. The tool’s
condition was assessed both before and after experimentation to ensure precise analysis of
the tool flank wear. All of the results are presented in Table 5.

Table 5. Experimental results.

Factors Surface Roughness Burr Width Burr Length Tool Flank Wear

fz (µm/tooth) Vc (m/min) ap (µm) (nm) (µm) (µm) (µm)

0.25 25 30
39.12 479.702 580.750 15.20
38.65 455.000 572.549 16.63

0.25 50 60
47.34 342.574 527.52 18.57
45.32 327.43 582.097 18.71

0.25 75 90
41.63 246.588 501.04 21.25
43.72 440.96 504.984 24.00

0.45 50 90
39.03 358.00 483.260 15.32
37.55 289.015 393.00 18.31

0.45 75 30
65.09 173.19 259.487 15.00
63.75 165.13 324.352 16.42

0.45 25 60
37.61 159.807 405.37 9.20
35.12 183.971 375.00 8.20

0.65 75 60
72.06 165.00 198.456 18.65
73.11 182.31 323.168 19.32

0.65 25 90
61.08 310.373 367.00 8.65
59.34 220.603 332.00 10.00

0.65 50 30
66.92 195.00 199.242 12.62
69.02 205.00 215.474 13.40
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4. Discussion

The results were compiled, and statistical analysis, specifically ANOVA, was applied
to calculate the contribution of each factor. Basic equations from reference [20] were used
to determine the sum of squares and contribution ratios for each process parameter. These
equations represent the fundamental principles behind ANOVA calculations, forming the
basis for more advanced algorithms in statistical software. Although sophisticated methods
are employed by the software, these basic equations underpin the accurate computation of
ANOVA results.

SS =
n

∑
i=1

(yi − Y’ ) (3)

CR(%) =
MSS − SSres

SStotal
× 100 (4)

where SS: sum of squares, yi: observed values, Y’: overall mean, CR: contribution ratio,
MSS: mean sum of squares, SSres: sum of squares of residuals, and SStotal : total sum
of squares.

F-values in the analysis show the influence of the process parameter on the outcome
and the p-value indicates the relationship with the outcome. Minitab® (https://www.
minitab.com/en-us/) software was used for analysis and the generation of the main
effects plot.

4.1. Surface Roughness

Ti-3Al-2.5V finds widespread application in the biomedical and aerospace fields, where
stringent surface finish standards are imperative. Particularly in biomedical engineering,

https://www.minitab.com/en-us/
https://www.minitab.com/en-us/
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attaining minimal surface roughness in the micro-milling of titanium grade 9 is crucial. This
not only diminishes the necessity for extensive post-milling procedures but also improves
biocompatibility. Additionally, it extends the lifespan of devices by reducing friction and
wear. Table 6 presents the results of the analysis of variance (ANOVA) for the surface
roughness, evaluating the contributions and significance of different machining parameters.
The contributions of three key parameters, namely, the feed rate (F) in µm/tooth, cutting
speed (Vc) in m/min, and depth of cut (ap) in µm, are highlighted. These parameters had
a substantial impact on the machining process. The feed rate parameter contributed the
most, at 62.96%, followed by Vc at 20.32% and ap at 9.27%. The statistical significance
is indicated by the associated p-values, where lower values suggest higher significance.
All three parameters were considered significant, as their p-values were less than 0.05,
signifying their influence on the machining outcomes.

Table 6. ANOVA table for surface finish.

Source Contribution F-Value p-Value Significance

F (µm/tooth) 62.96% 46.54 0.000 Significant
Vc (m/min) 20.32% 15.02 0.001 Significant

ap (µm) 9.27% 6.85 0.012 Significant
Error 7.44%

Total 100.00%

Previous research in the field has identified key process variables crucial for achiev-
ing the desired surface finish in the micro-milling of titanium, which encompass tool
coatings, cutting speed, tool edge radius, depth of cut, and feed rates [40,41]. Current
research, as detailed in Table 6, corroborates the significance of these factors in influencing
surface roughness. Among these variables, feed rate exerts the most substantial impact,
contributing 62% to the overall outcome, and cutting speed and depth of cut also play sig-
nificant roles. Notably, the feed rate’s influence is twice as pronounced as that of the other
two factors. These factors demonstrated significance in the micro-milling of other titanium
grades as well. These results emphasize the consistent importance of these parameters in
optimizing surface quality in the micro-milling of titanium.

Figure 5 presents the main effects plot for surface roughness, highlighting the major
influencing factors. The plot clearly illustrates that surface roughness tends to increase with
higher feed rates and cutting velocities. This increase in surface roughness linked to higher
feed rates can be attributed to increased heat generation due to a higher rate of material
removal, resulting in a rougher surface. Conversely, an increase in the depth of cut tends to
reduce surface roughness. Additionally, higher feed rates can lead to a larger contact area
between the tool and the workpiece, resulting in greater cutting forces and, subsequently,
an increase in surface roughness. Surface roughness is also influenced by cutting speed.
However, as cutting speed rises, the temperature also increases, potentially promoting the
formation of a built-up edge (BUE). BUE formation becomes more likely with materials
that have higher ductility due to increased friction and interference with continuous chip
formation, ultimately leading to a less favorable surface finish. In the current research,
a decreasing trend in surface roughness was observed for titanium grade 9 as the depth
of cut increased. A plausible reason for this trend can be found in the literature, which
suggests that deeper cuts may yield a better surface finish due to the work hardening
of the surface layer. Additionally, cutting forces tend to decrease with an increase in
specific cutting energy and cutting forces, while specific cutting forces decrease as the
depth of cut increases. These reduced cutting forces result in less elastoplastic deformation
and ultimately lead to improved surface roughness. The standard deviation for surface
roughness is displayed in Figure 6.
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4.2. Burr Width (Down Milling)

In the context of micro-milling titanium alloys, achieving a minimized burr width bears
profound implications for the biomedical and aerospace sectors, which formed a focal point
in this research investigation. This reduction holds the promise of streamlining production
processes by diminishing the necessity for intricate post-processing steps such as deburring
and polishing. Beyond mere efficiency gains, the impact of low burr width extends to
crucial domains, particularly in biomedical applications, where enhanced precision directly
correlates with heightened biocompatibility. Similarly, within aerospace, the resulting
smoother surfaces contribute to increased component reliability. The amalgamation of
these outcomes underscores the direct and multifaceted contributions of low burr width,
advancing not only manufacturing efficiency but also safety and performance within these
critical industries. This research underscores the pivotal role of burr width optimization
in enhancing the overall efficacy and reliability of micro-milled titanium components in
biomedical and aerospace applications. Table 7 presents the ANOVA results for burr width
in the context of down milling in micro-machining. The primary factor exerting a notable
influence on the variability of burr width was identified as the feed rate (F µm/tooth), which
contributed significantly with a substantial 55.20%. This was supported by a high F-value
of 12.19 and a low p-value of 0.002, marking its statistical significance. This underscores
the pivotal role of the feed rate in determining the width of burrs during down milling. In
contrast, cutting speed (Vc m/min) exhibited a non-significant impact, contributing 8.94%,
with an F-value of 1.97 and a p-value of 0.185. Similarly, the axial depth of cut (ap µm)
was deemed non-significant, contributing 10.96%, with an F-value of 2.42 and a p-value of
0.135. The error term accounted for 24.91% of the variability, and the absence of a p-value
indicated its contribution to be non-significant.

Table 7. ANOVA table for burr width (down milling).

Source Contribution F-Value p-Value Significance

F (µm/tooth) 55.20% 12.19 0.002 Significant
Vc (m/min) 8.94% 1.97 0.185 Non-Significant

ap (µm) 10.96% 2.42 0.135 Non-Significant
Error 24.91%

Total 100.00%

Figure 7 presents the main effects plot detailing the relationship between down milling
burr width and chip load. Notably, a discernible inverse correlation was observed between
burr width and the feed per tooth. As the feed per tooth increased, there was a concurrent
decrease in burr width, reaching a minimum at a feed rate of 0.65 m/tooth. The trend of
decreasing burr width with higher feed rates can be attributed to the influence of different
material removal mechanisms. When feed rates were increased, the shearing mechanism
became dominant, involving a cutting action that efficiently removed material and led
to minimized burr formation. The cutting edges worked more effectively at higher feed
rates, resulting in a cleaner cut and less plastic deformation, which is a key factor in burr
formation. Conversely, lower feed rates favored the ploughing mechanism, where material
is pushed aside rather than cleanly cut. This tended to induce more plastic deformation,
contributing to the development of larger burrs. The interaction between the tool and
the material became less effective at lower feed rates, promoting the formation of burrs.
This observed trend aligns with previous studies, including high-speed micro-milling
investigations, where an increase in feed rate led to a notable reduction in burr width. For
instance, Bajpai et al. [2] reported a 4–35% decrease in burr width with an augmented feed
rate. These trends align with research conducted on other titanium grades [42]. Cutting
speed and depth of cut were insignificant factors for burr width. The standard deviation
for burr width is displayed in Figure 8.
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4.3. Burr Length (Down Milling)

Table 8 provides the ANOVA results for burr length in the context of micro-milling.
The foremost contributor to the variability in burr length was identified as the feed rate
(F µm/tooth), contributing significantly with a substantial 77.70%. This was substantiated
by a high F-value of 46.43 and an exceptionally low p-value of 0.000, underscoring its
statistical significance. This emphasizes the crucial role of the feed rate in determining the
length of burrs during micro-milling. Additionally, cutting speed (Vc m/min) was found
to be a significant factor, contributing 7.77%, with an F-value of 4.64 and a p-value of 0.035.
This suggests that variations in cutting speed have a discernible impact on burr length. In
contrast, the axial depth of cut (ap µm) was deemed non-significant, contributing 5.33%
and with a p-value of 0.081. The error term accounted for 9.20% of the variability.

Table 8. ANOVA table for burr length.

Source Contribution F-Value p-Value Significance

F (µm/tooth) 77.70% 46.43 0.000 Significant
Vc (m/min) 7.77% 4.64 0.035 Significant

ap (µm) 5.33% 3.18 0.081 Non-significant
Error 9.20%

Total 100.00%

Figure 9 illustrates the main effects plot for burr length. It is evident that burr length
was inversely related to feed rate; as feed rate increased, burr length decreased. This
phenomenon is explained by the dominance of the ploughing mechanism at lower feed
rates, causing plastic deformation and resulting in larger burr size. Conversely, at higher
feed rates, the shearing mechanism predominated, leading to smaller burr lengths due to
burr chipping. It is also evident from Figure 8 that burr length decreased with increasing
cutting speed. Higher cutting speeds generally resulted in reduced material deformation.
As the cutting tool moved through the material at a faster rate, there was less time for
the material to deform plastically. This reduction in plastic deformation contributed to
a decrease in the formation of burrs. Moreover, higher cutting speeds promoted more
efficient chip formation, which in turn optimized the burr length. The increased speed
allowed the tool to cut through the material with a cleaner shearing action, resulting in
well-defined chips instead of material being pushed or dragged, which is associated with
burr formation. The standard deviation for burr length is displayed in Figure 10.
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4.4. Tool Wear

Table 9 provides the results of the analysis of variance (ANOVA) for tool wear, which
assessed the contributions and significance of specific machining parameters on tool wear.
The table outlines the contributions of three key parameters: feed rate (F) in µm/tooth,
cutting speed (Vc) in m/min, and depth of cut (ap) in µm. Among these parameters,
both feed rate (F) and cutting speed (Vc) made substantial contributions, at 33.18% and
54.02%, respectively, indicating their significant impact on tool wear. This significance was
further supported by the low p-values of 0.001 and 0.000 (both less than 0.05) for feed rate
(F) and cutting speed (Vc), respectively, demonstrating their importance in influencing
tool wear. In contrast, the depth of cut (ap) was considered non-significant, as its p-value
was relatively high, at 0.466, suggesting that it had a limited effect on tool wear in the
conducted experiments. This ANOVA analysis helps identify the primary parameters
influencing tool wear, providing valuable insights into the research findings. Tool wear
in the milling of titanium alloys typically initiates rapidly, which is primarily attributed
to the elevated temperatures encountered and the strong adhesion of the material to the
cutting tools, as outlined in previous research [43]. The main effects plots presented in
Figure 11 visually illustrate the primary influences on tool flank wear. Notably, a clear
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and direct correlation emerged between the cutting velocity and the magnitude of tool
wear. As cutting velocity increased, there was a simultaneous increase in tool flank wear.
This observed phenomenon is attributed to the generation and accumulation of thermal
energy during the cutting process, ultimately leading to elevated cutting temperatures. The
direct relationship depicted in the main effects plots underscores the significance of cutting
velocity as a determining factor in the extent of tool wear during the milling of titanium
alloys. The standard deviation for tool wear is displayed in Figure 12.

Table 9. ANOVA for tool wear.

Source Contribution F-Value p-Value Significance

F (µm/tooth) 33.18% 16.39 0.001 Significant
Vc (m/min) 54.02% 26.68 0.000 Significant

ap (µm) 1.66% 0.82 0.466 Non-significant
Error 11.14%

Total 100.00%
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Elevated cutting temperatures represent a significant contributing factor to the swift
onset of tool wear when machining titanium alloys [44]. In addition, previous research
has indicated that higher cutting speeds result in a rapid rubbing action between the
cutting tool and the workpiece, which generates heat that softens the tool’s flank face,
consequently leading to increased abrasive wear [45]. Moreover, the increase in cutting
speed during milling operations not only amplifies the frequency of tool edge entry into
the workpiece but also intensifies the energy of the impact between the cutting edge and
the workpiece, underscoring the pivotal role of cutting speed, particularly as the tool nears
the end of its operational life [46]. The main effects plot further demonstrates that tool wear
decreased with an increase in feed rate. Lower feed rates tended to be dominated by the
ploughing mechanism, resulting in elevated tool wear. This phenomenon is closely related
to the cutting-edge radius and its impact on shear and ploughing forces, as elucidated
in other studies. Below the minimum chip thickness, both ploughing force and specific
cutting force exhibited significant increases, culminating in heightened forces during micro-
milling. It is also worth noting that tool wear declined when the feed rate transitioned from
0.45 µm/tooth to 0.90 µm/tooth.

4.5. Parameter Interaction Analysis

In the next step, interaction plots were drawn among the input variables to analyze
their interactional effect, contrary to their individual effects, as discussed for the main
effects plot in Sections 4.1–4.4. Figure 13 shows the graphical results in terms of output
responses of the interacting terms, i.e., fz, Vc, and ap. The non-parallel lines representing
input variables demonstrate the interaction between different combinations, including
fz*Vc, fz*ap, and Vc*ap. The intensity of influence of each combination was different, as
represented by their p-values, given in Table 10. The results of the interaction plot lead
toward the goal of the optimization of process responses using the preferred combination
of input variables, as covered in the next section.
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Table 10. F-value and p-value for fz*Vc, fz*ap, and Vc*ap interaction factors.

Source
Surface Roughness (nm) Burr Width (µm) Burr Length (µm) Tool Wear (µm)

F-Value p-Value σ F-Value p-Value σ F-Value p-Value σ F-Value p-Value σ

fz*Vc 4.16 0.064 2.13 0.94 0.354 18.44 0.02 0.903 19.98 0.10 0.752 0.72
fz*ap 3.83 0.052 2.20 0.94 0.354 18.23 1.90 0.195 19.70 1.54 0.240 0.84
Vc*ap 1.39 0.263 2.75 4.73 0.052 21.39 0.56 0.471 26.73 4.31 0.057 0.77
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4.6. Confirmatory Tests

Confirmatory tests were carried out on the Taguchi design of experimentation to vali-
date the authenticity of the achieved results. In this research, tool wear, surface roughness,
and burr size were analyzed using a “smaller is better” model. The desired values of these
input parameters, as determined from the input parameters in the main effects plot in
Section 4, are presented in Table 11. Subsequently, validation experiments were conducted
under these conditions, as presented in Table 12. It can be seen that an experiment was
already carried out on one out of the eight machining parameter combinations during the
initial design of the experiment (L9 orthogonal array). The rest of the conditions were
run three times each. It was observed that all best and worst output response conditions
yielded corroborative results. Figure 14 depicts the burr width value obtained from the
optimal confirmatory test conditions, specifically at a feed rate of 0.65, a cutting velocity
of 75 m/min, and an axial depth of cut set at 30 µm. The burr width was measured at
154.47 µm, which happened to be the lowest (optimized) burr width value, as expected.
In comparison with the previous lowest value obtained during initial experimentation
(at 0.45 fz, 25 Vc, 60 ap), 3.4% improvement was recorded. In Figure 15, the depicted
data illustrate that a surface roughness of 32 µm was acquired under specific machining
conditions of a feed rate of 0.25, a cutting velocity of 25 m/min, and an axial depth of cut
set at 90 µm, which was 8.5% less than the initial best surface roughness value obtained at
0.45 fz, 25 Vc, and 60 ap.

Table 11. Best and worst condition for input parameters.

Responses Condition
Input Parameters

Vc (m/min) fz (µm/tooth) ap (µm)

Surface roughness (µm) Best 0.25 25 90
Worst 0.65 75 30

Burr width (µm) Best 0.65 75 30
Worst 0.25 25 90

Burr length (µm) Best 0.65 75 60
Worst 0.25 50 30

Tool wear (µm) Best 0.45 25 30
Worst 0.25 75 90

Table 12. Confirmatory test results.

Responses Condition Validation Test Initial Run Difference

Surface roughness (µm)
Best 32 35.12

(0.45 fz, 25 Vc, 60 ap) 8.5%

Worst 96.5 73.11
(0.65 fz, 75 Vc, 60 ap) 24.2%

Burr width (µm)
Best 154.47 159.81

(0.45 fz, 25 Vc, 60 ap) 3.4%

Worst 680.51 580.75
(0.25 fz, 25 Vc, 30 ap) 14.6%

Burr length (µm)
Best 102.7 198.45

(0.75 fz, 65 Vc, 60 ap) 48.24%

Worst 696.55 582.09
(0.25 fz, 50 Vc, 60 ap) 16.3%

Tool wear (µm)
Best 7.95 8.20

(0.45 fz, 25 Vc, 60 ap) 4%

Worst Already examined 24.00
(0.25 fz, 75 Vc, 90 ap) -*

* no change.
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5. Conclusions

Identifying key process variables (KPVs) plays a crucial role in reducing production
costs and enhancing product quality. The current work focused on investigating three pri-
mary process parameters in the context of micro-milling titanium grade 9. Although there
is an abundance of literature on the application and investigation of titanium grade 5, there
is a notable gap in the research regarding the optimization of micro-machining parameters
for titanium grade 9. Given that titanium grade 9 exhibits advantages over grade 5 in
certain applications, this research aimed to uncover the critical process parameters specific
to this grade. Titanium grade 9 exhibited improved surface finish below the tool edge
radius. The following are the conclusions based on the research findings.

• The surface integrity, which describes the product quality, was found to be dependent
on all of the selected machining variables as identified in the analysis of variance. The
feed rate was recognized to be the most significant member, with a contribution ratio
of 62.69%.

• Burr width and burr length were determined to be mainly dependent on the feed
rate, with contribution ratios of 55.20% and 77.70%, respectively. The reason for
this occurrence was the shift of cutting mechanism from ploughing to shearing as
the feed rate was increased, efficiently removing material and leading to minimized
burr formation.

• The collective contribution of cutting speed and feed rate, in the case of tool wear,
was determined to be 87.20%, proving their relevance. Cutting speed determines the
cutting zone temperature and thereby dictates the tool wear mechanisms, whereas
feed rate controls the rate of heat dissipation, which is another vital aspect concerning
tool wear.

• In comparison with initial experimentation (at 0.45 µm/tooth fz, 25 m/min Vc,
60 µm ap), a 3.4% improvement in burr width was recorded while machining at
0.65 µm/tooth fz, 75 m/min Vc, and 30 µm ap, as underlined in confirmatory tests.

• Similarly, a surface roughness of 32 µm was acquired under specific machining con-
ditions under the best confirmatory conditions of a feed rate of 0.25 µm/tooth, a
cutting velocity of 25 m/min, and an axial depth of cut set at 90 µm, which was
8.5% less than initial best surface roughness value obtained at 0.45 µm/tooth fz,
25 m/min m/min Vc, and 60 µm ap.

6. Future Research Direction

The current research was planned as part of the overall machinability analysis of
aerospace alloy Ti-3Al-2.5V (titanium grade 9). Keeping in view the hard-to-cut status
of such alloys plus the growing emphasis on green and clean manufacturing, an effort
was made for economical manufacturing production through careful selection of optimum
machining parameters. The results are encouraging and motivating for further attempts to
ensure greater productivity while maintaining sustainability. In future works, transitional
and high-speed machining ranges may be explored for hard-to-cut titanium and nickel
alloys using MQL and cryogenic cooling conditions. In addition, the benefits of dry
machining, working at conventional machining speeds, can be investigated in depth using
the tool wear and energy consumption maps approach.
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