
Citation: Zhou, Z.-W.; Yang, H.-Y.;

Xu, B.-X.; Ting, Y.-H.; Chen, S.-C.;

Jong, W.-R. Prediction of Short-Shot

Defects in Injection Molding by

Transfer Learning. Appl. Sci. 2023, 13,

12868. https://doi.org/10.3390/

app132312868

Academic Editors: Jaskó Szilárd

and Tamás Ruppert

Received: 17 October 2023

Revised: 21 November 2023

Accepted: 23 November 2023

Published: 30 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Prediction of Short-Shot Defects in Injection Molding
by Transfer Learning
Zhe-Wei Zhou 1, Hui-Ya Yang 1, Bei-Xiu Xu 1, Yu-Hung Ting 1,2,3 , Shia-Chung Chen 1,2,3

and Wen-Ren Jong 1,2,3,*

1 Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan;
g10973013@cycu.edu.tw (Z.-W.Z.); huiyayang1228@gmail.com (H.-Y.Y.); a102525761@gmail.com (B.-X.X.);
august@cycu.edu.tw (Y.-H.T.); shiachun@cycu.edu.tw (S.-C.C.)

2 R & D Center for Smart Manufacturing, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
3 R & D Center for Semiconductor Carrier, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
* Correspondence: wenren@cycu.edu.tw

Abstract: For a long time, the traditional injection molding industry has faced challenges in improving
production efficiency and product quality. With advancements in Computer-Aided Engineering
(CAE) technology, many factors that could lead to product defects have been eliminated, reducing
the costs associated with trial runs during the manufacturing process. However, despite the progress
made in CAE simulation results, there still exists a slight deviation from actual conditions. Therefore,
relying solely on CAE simulations cannot entirely prevent product defects, and businesses still need to
implement real-time quality checks during the production process. In this study, we developed a Back
Propagation Neural Network (BPNN) model to predict the occurrence of short-shots defects in the
injection molding process using various process states as inputs. We developed a Back Propagation
Neural Network (BPNN) model that takes injection molding process states as input to predict the
occurrence of short-shot defects during the injection molding process. Additionally, we investigated
the effectiveness of two different transfer learning methods. The first method involved training the
neural network model using CAE simulation data for products with length–thickness ratios (LT) of
60 and then applying transfer learning with real process data. The second method trained the neural
network model using real process data for products with LT60 and then applied transfer learning
with real process data from products with LT100. From the results, we have inferred that transfer
learning, as compared to conventional neural network training methods, can prevent overfitting
with the same amount of training data. The short-shot prediction models trained using transfer
learning achieved accuracies of 90.2% and 94.4% on the validation datasets of products with LT60 and
LT100, respectively. Through integration with the injection molding machine, this enables production
personnel to determine whether a product will experience a short-shot before the mold is opened,
thereby increasing troubleshooting time.

Keywords: BPNN; machine learning; transfer learning; injection molding; short-shots

1. Introduction

In recent years, with the development of Industry 4.0, many traditional industries
have been transitioning towards smart manufacturing. In the injection molding industry,
the challenge of shortening product cycles has emerged. Reducing the number of trial
runs can significantly enhance product development speed and reduce material costs
incurred during testing. Many companies have adopted Computer-Aided Engineering
(CAE) to eliminate most factors that could lead to product defects. However, CAE cannot
entirely eliminate potential issues, especially the variability in actual parameters during
each molding process. Therefore, when problems arise with injection parameters, reliance
on the experience of on-site personnel for parameter adjustments is still necessary, and CAE

Appl. Sci. 2023, 13, 12868. https://doi.org/10.3390/app132312868 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132312868
https://doi.org/10.3390/app132312868
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5133-0494
https://orcid.org/0000-0001-9367-6031
https://doi.org/10.3390/app132312868
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132312868?type=check_update&version=1


Appl. Sci. 2023, 13, 12868 2 of 19

cannot be used for real-time decision-making in the field. Effectively predicting product
quality using informative data is a significant topic in today’s era of smart manufacturing.

In the relevant literature on injection molding, Gotlih et al. [1] mentioned that pro-
cess parameters affect product quality, cycle time, and production costs in the manu-
facturing process. Therefore, finding optimized process parameters is a crucial process.
Mathivanan et al. [2] emphasized the importance of optimizing injection parameters for
product quality, and mentioned that iteratively changing processing parameters to improve
product defects consumes a significant amount of time, material, and manpower. They
proposed using the Taguchi Methods to identify injection parameters that cause shrinkage
defects in products. The results show that this technique effectively reduces shrinkage
defects in products under different injection parameters. Huang et al. [3] discussed the
parameters that cause warping in transmission parts of Flapping-Wing Micro-Aerial Ve-
hicles (FW-MAV), including injection temperature, mold temperature, injection pressure,
and holding time. They used the Taguchi Methods to find the optimal process parameters
and validated the results through CAE system analysis and simulation. The findings
demonstrate that these optimized process parameters minimized warping in the products.
Zhao et al. [4] highlighted how CAE systems can optimize mold structures and modify
problematic injection parameters before production, thus avoiding the cost of repeated
testing in actual production. This technology not only shortens mold development cycles,
but also reduces unnecessary human and material resources, lowering production costs
and enhancing product quality. Hentati et al. [5] discussed how residual stresses can im-
pact the presence of defects in final products. They proposed using the Taguchi Methods
to identify the process parameters that have the most significant effect on shear force
in PC/ABS mixtures. Through CAE simulations and verification, the Taguchi Methods
were able to identify optimized process parameters that resulted in PC/ABS products
with good shear stress characteristics and no defects, effectively enhancing the quality of
injection-molded products.

In the machine learning literature, Kwak et al. [6] used CAE simulation results as
training data to train a neural network model for predicting the porosity generation ratio
and volume deformation of plastic optical lenses based on the injection molding process
parameters. They demonstrated the feasibility of this method through actual experiments.
Shen et al. [7] mentioned that injection molding process parameters have a significant im-
pact on product quality. They proposed a model architecture that combines artificial neural
networks with genetic algorithms. This approach utilizes backpropagation neural networks
to handle the nonlinear relationship between process parameters and product quality. Ad-
ditionally, genetic algorithms are employed for optimizing the model’s process parameters.
The results show that the combination of backpropagation neural networks and genetic
algorithms effectively improved the product’s volume shrinkage. Denni et al. [8] proposed
the use of the Taguchi Methods, Back Propagation Neural Network (BPNN), a hybrid Parti-
cle Swarm Optimization (PSO), and Genetic Algorithm (GA) to identify optimized process
parameters. The results demonstrate that this approach not only enhances the quality of
plastic products, but also effectively reduces process variations. Denni also pointed out
that the Back Propagation Neural Network can face challenges such as overfitting due
to poor initial link values or excessive training iterations, making it difficult to find the
best solution. Therefore, they used Genetic Algorithms to address this issue and increase
prediction accuracy. Bruno et al. [9] mentioned that in order to prevent the delivering of
defective products to customers and incurring unpredictable costs, they proposed the use
of classification models based on Artificial Neural Networks (ANN) and Support Vector
Machines (SVM). The results show that these models accurately classify product quality,
whether it is related to short-shots, incomplete filling, burn marks, warping, or flash, into
different categories. Alberto et al. [10] emphasized the significance of optimizing process
parameters for improving product quality. Even when process parameters are adjusted
to their optimum settings, variations in material properties and machine instability can
still impact product quality. Using machine learning enables the effective monitoring



Appl. Sci. 2023, 13, 12868 3 of 19

of process parameters during product production and allows for rapid adjustments to
improve product quality. Mohammad et al. [11] discussed how to accurately bring the
weight of injection-molded products close to the ideal weight and reduce process time.
Optimizing process parameters is one of the most crucial steps in achieving this. Therefore,
they proposed a model architecture that combines artificial neural networks and genetic
algorithms. The results demonstrate that this technique can accurately identify optimized
process parameters, effectively reducing process time, and bringing the final product weight
closer to the ideal weight. Yin et al. [12] mentioned that mold temperature, melt tempera-
ture, holding pressure, holding time, and cooling time are important parameters affecting
warpage deformation. They proposed a Back Propagation Neural Network architecture
with two hidden layers, each containing 20 neurons, to predict warpage deformation based
on these five parameters. The network was trained using finite element analysis data, and
the results show that this system had a prediction error of within 2%, effectively optimizing
process parameters and reducing warpage deformation. Matthias et al. [13] mentioned that
identifying the optimal machine setting parameters in the injection molding process can be
time-consuming and costly in terms of trial runs. Therefore, they proposed a regression
model based on an artificial neural network for injection molding. The input parameters in-
cluded injection weight, screw position, material properties, and plasticization time, while
the output parameters were screw speed and back pressure. The results show that using
unseen data for prediction yielded an average error of 0.27% with a standard deviation of
0.37%. This approach reduces the time and trial run costs associated with the process stage.
Tsai et al. [14] proposed a model architecture that combines an Artificial Neural Network
(ANN) with Genetic Algorithms (GA). This approach effectively reduced warping in optical
lenses and utilized the Taguchi Methods to identify the optimal injection parameters. They
found that the factors affecting product warping were mold temperature, cooling time,
holding pressure, and holding time. The results show that this method improved the shape
accuracy of the lenses by 13.36%. Yang et al. [15] proposed an optimization approach for
the injection molding process of automobile front frames, utilizing a regression equation,
genetic algorithms, and Back Propagation Neural Networks. Five input parameters, namely,
mold temperature, melt temperature, holding pressure, injection time, and holding time,
were used, and the output parameters were volume shrinkage and warpage. The results
indicate that this method achieved the optimization of volume shrinkage and warpage for
automobile front panels, leading to an improvement in product quality and a reduction in
production costs.

In the literature on transfer learning, Hasan et al. [16] proposed a neural network
model using six parameters as input values—injection time, holding pressure, holding time,
mold temperature, cooling time, and melt temperature—to predict product weight. They
used simulated data for training and then employed transfer learning to retrain the neural
network model with real data. The results show that transfer learning accelerated the net-
work’s learning process compared to training from scratch. It also improved the accuracy of
the model’s predictions while overcoming the challenges of limited real experimental data
and high trial run costs. Chai et al. [17] introduced a deep probabilistic transfer regression
framework designed to address the issue of missing data in data-driven soft sensors. This
framework transfers source domain conditions to the target domain. After validation
through various models, the results demonstrated the effectiveness of this approach in
handling missing data issues in the target domain and improving the performance of soft
sensors. Zhou et al. [18] introduced a Long Short-Term Memory Car-Following (LSTM
CF) model for Adaptive Cruise Control (ACC) constructed through transfer learning. This
model transfers knowledge from the source domain of Human-Driving Vehicles (HV) to
the target domain of ACC. They also mentioned that a small amount of ACC data can be
used to build highly accurate models. The results indicate that transfer learning is not only
an effective approach for modeling with limited data, but also enhances model accuracy.
Muneeb et al. [19] mentioned that transfer learning enhances model accuracy. They utilized
a large population’s genetic data to understand Single-Nucleotide Polymorphisms (SNPs)



Appl. Sci. 2023, 13, 12868 4 of 19

causing diseases and then transferred this knowledge to predict genotypes and phenotypes
in smaller populations. The results show an improvement in model prediction accuracy
ranging from 2% to 14.2%. Huang et al. [20] mentioned that while CAE analysis helps
address some issues affecting injection-molded products, on-site adjustments of param-
eters still rely on human expertise. Therefore, they proposed a Back Propagation Neural
Network (BPNN) network model and used CAE simulation data as the training data. The
inputs included melt temperature, mold temperature, injection speed, holding pressure,
and holding time, while the outputs included EOF pressure, maximum cooling time, Z-axis
warpage, X-axis shrinkage, and Y-axis shrinkage. They then retrained the model using real
machine data through transfer learning. The results showed higher accuracy compared to
conventional network models.

2. Background Knowledge
2.1. Computer Aided Engineering (CAE)

With the advancement of computer technology, Computer-Aided Engineering (CAE)
has become a valuable technique in many engineering industries for addressing practical
problems. It involves using computers to simulate and analyze the product manufacturing
process, enabling the identification of design flaws before actual production, and assessing
the feasibility of product designs. As illustrated in Figure 1, in the injection molding indus-
try, before conducting CAE simulations of the product manufacturing process, in addition
to providing the three-dimensional model of the product, it is necessary to configure a
series of prerequisites. These prerequisites primarily fall into three categories: material
parameters, process parameters, and analysis sequence.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 20 
 

 

model accuracy. They utilized a large population’s genetic data to understand Single-Nu-

cleotide Polymorphisms (SNPs) causing diseases and then transferred this knowledge to 

predict genotypes and phenotypes in smaller populations. The results show an improve-

ment in model prediction accuracy ranging from 2% to 14.2%. Huang et al. [20] mentioned 

that while CAE analysis helps address some issues affecting injection-molded products, 

on-site adjustments of parameters still rely on human expertise. Therefore, they proposed 

a Back Propagation Neural Network (BPNN) network model and used CAE simulation 

data as the training data. The inputs included melt temperature, mold temperature, injec-

tion speed, holding pressure, and holding time, while the outputs included EOF pressure, 

maximum cooling time, Z-axis warpage, X-axis shrinkage, and Y-axis shrinkage. They 

then retrained the model using real machine data through transfer learning. The results 

showed higher accuracy compared to conventional network models. 

2. Background Knowledge 

2.1. Computer Aided Engineering (CAE) 

With the advancement of computer technology, Computer-Aided Engineering (CAE) 

has become a valuable technique in many engineering industries for addressing practical 

problems. It involves using computers to simulate and analyze the product manufactur-

ing process, enabling the identification of design flaws before actual production, and as-

sessing the feasibility of product designs. As illustrated in Figure 1, in the injection mold-

ing industry, before conducting CAE simulations of the product manufacturing process, 

in addition to providing the three-dimensional model of the product, it is necessary to 

configure a series of prerequisites. These prerequisites primarily fall into three categories: 

material parameters, process parameters, and analysis sequence. 

 

Figure 1. CAE analysis process. 

In configuring material parameters, determining material properties such as viscos-

ity, PVT (pressure–volume–temperature) relationships, specific heat, and thermal conduc-

tivity is crucial. As for configuring process parameters, this involves setting up molding 

conditions, including injection speed, injection position, injection pressure, holding pres-

sure, cooling time, and more. In the context of analysis sequence, settings include mold 

gate position, water channel location, and simulation grid size. By configuring these pa-

rameters, simulation results can closely approximate real-world scenarios, thereby en-

hancing the accuracy and reliability of the simulation. 

Figure 1. CAE analysis process.

In configuring material parameters, determining material properties such as viscosity,
PVT (pressure–volume–temperature) relationships, specific heat, and thermal conductivity
is crucial. As for configuring process parameters, this involves setting up molding con-
ditions, including injection speed, injection position, injection pressure, holding pressure,
cooling time, and more. In the context of analysis sequence, settings include mold gate
position, water channel location, and simulation grid size. By configuring these parameters,
simulation results can closely approximate real-world scenarios, thereby enhancing the
accuracy and reliability of the simulation.

Utilizing Computer-Aided Engineering to simulate and rectify defects before produc-
tion significantly reduces product development cycles, material, and labor costs associated
with trial runs, while simultaneously improving overall production efficiency.



Appl. Sci. 2023, 13, 12868 5 of 19

2.2. Back Propagation Neuron Network (BPNN)

Back Propagation Neural Network (BPNN), also known as Multilayer Perceptron, is a
type of feedforward neural network belonging to supervised learning. It operates on the
concept of gradient descent and adjusts the weights and biases of each node through back-
ward propagation until the output values closely match the desired values, as illustrated in
Figure 2. The structure of the Back Propagation Neural Network primarily consists of three
layers, as described below:

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 20 
 

 

Utilizing Computer-Aided Engineering to simulate and rectify defects before pro-

duction significantly reduces product development cycles, material, and labor costs asso-

ciated with trial runs, while simultaneously improving overall production efficiency. 

2.2. Back Propagation Neuron Network (BPNN) 

Back Propagation Neural Network (BPNN), also known as Multilayer Perceptron, is 

a type of feedforward neural network belonging to supervised learning. It operates on the 

concept of gradient descent and adjusts the weights and biases of each node through back-

ward propagation until the output values closely match the desired values, as illustrated 

in Figure 2. The structure of the Back Propagation Neural Network primarily consists of 

three layers, as described below: 

 

Figure 2. Back Propagation Neural Network training process diagram. 

• Input Layer 

The input data are received through this layer and serve as input to the neural net-

work. The nodes in this layer do not perform computations; typically, the received data 

are preprocessed here before being forwarded to the next layer. 

• Hidden Layer 

A neural network can have more than one hidden layer, and the number of hidden 

layers and the number of neurons in each layer are set based on the specific problem re-

quirements. When there are more hidden layers, the network’s computational complexity 

and time consumption increase. There is no one-size-fits-all standard for the number of 

hidden layers and neurons, and typically, a trial-and-error process is used to adjust and 

find the optimal configuration, often guided by learning and validation curves. 

• Output Layer 

This layer receives the output computed by the hidden layers, and the form of the 

output in the output layer depends on the model’s task. In binary classification problems, 

the output layer typically contains one neuron, while in multi-class classification prob-

lems, the output layer usually contains several neurons, with each neuron corresponding 

to a category. The output in the output layer is often processed using an activation func-

tion to obtain the final prediction of the model. Common activation functions include Soft-

max, ReLU, Tanh, and Sigmoid functions. 

2.3. Data Preprocessing 

Prior to training the neural network, the preprocessing of the training data is a crucial 

step. Handling missing values, eliminating irrelevant variables, and standardizing data 

are essential in order to improve the learning of the model. Among the various parameters 

Figure 2. Back Propagation Neural Network training process diagram.

• Input Layer

The input data are received through this layer and serve as input to the neural network.
The nodes in this layer do not perform computations; typically, the received data are
preprocessed here before being forwarded to the next layer.

• Hidden Layer

A neural network can have more than one hidden layer, and the number of hidden
layers and the number of neurons in each layer are set based on the specific problem
requirements. When there are more hidden layers, the network’s computational complexity
and time consumption increase. There is no one-size-fits-all standard for the number of
hidden layers and neurons, and typically, a trial-and-error process is used to adjust and
find the optimal configuration, often guided by learning and validation curves.

• Output Layer

This layer receives the output computed by the hidden layers, and the form of the
output in the output layer depends on the model’s task. In binary classification problems,
the output layer typically contains one neuron, while in multi-class classification problems,
the output layer usually contains several neurons, with each neuron corresponding to a
category. The output in the output layer is often processed using an activation function to
obtain the final prediction of the model. Common activation functions include Softmax,
ReLU, Tanh, and Sigmoid functions.

2.3. Data Preprocessing

Prior to training the neural network, the preprocessing of the training data is a crucial
step. Handling missing values, eliminating irrelevant variables, and standardizing data are
essential in order to improve the learning of the model. Among the various parameters
used as inputs for training the model, the values of injection pressure and injection velocity
are presented in an in array format. Transforming these two sets of data into hundreds
of inputs would overly complicate the model, extend training time, and require a vast
amount of training data. In this study, injection pressure and injection velocity arrays were
divided into three sub-arrays each, and the low and high values within each sub-array



Appl. Sci. 2023, 13, 12868 6 of 19

were selected as new input parameters. This reduced the original 71 input points to just 6
input points, as illustrated in Figure 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 20 
 

 

used as inputs for training the model, the values of injection pressure and injection veloc-

ity are presented in an in array format. Transforming these two sets of data into hundreds 

of inputs would overly complicate the model, extend training time, and require a vast 

amount of training data. In this study, injection pressure and injection velocity arrays were 

divided into three sub-arrays each, and the low and high values within each sub-array 

were selected as new input parameters. This reduced the original 71 input points to just 6 

input points, as illustrated in Figure 3. 

 

Figure 3. Injection velocity array processing workflow. 

2.4. Correlation Analysis 

In many machine learning applications in injection molding research, models’ inputs 

are typically determined empirically. This involves using individual experiences to assess 

which features are more correlated with data label and selecting them as inputs for the 

model. However, this approach may result in a decrease in the model’s accuracy, as it 

could overlook other relevant features or mistakenly include features with lower correla-

tion as the model’s inputs. Therefore, in the training process of machine learning, it is 

crucial to analyze the correlation between each feature and data label in a scientific man-

ner to identify suitable combinations of input features. This method can simplify and ex-

pedite the training process of machine learning, ultimately enhancing the accuracy of the 

neural network model. 

In this study, we will calculate the Pearson correlation coefficient between each fea-

ture (X) and the data label (Y) as a criterion to assess the correlation between them. The 

calculation method is as shown in function (1). The Pearson correlation coefficient is pri-

marily used to measure the linear correlation between two sets of data. A higher absolute 

value of the Pearson correlation coefficient indicates a stronger correlation between the 

two sets. Table 1 shows the Pearson correlation coefficient between each feature and data 

label. In the selection of model inputs, we will set a correlation coefficient threshold to 

Figure 3. Injection velocity array processing workflow.

2.4. Correlation Analysis

In many machine learning applications in injection molding research, models’ inputs
are typically determined empirically. This involves using individual experiences to assess
which features are more correlated with data label and selecting them as inputs for the
model. However, this approach may result in a decrease in the model’s accuracy, as it could
overlook other relevant features or mistakenly include features with lower correlation as
the model’s inputs. Therefore, in the training process of machine learning, it is crucial
to analyze the correlation between each feature and data label in a scientific manner to
identify suitable combinations of input features. This method can simplify and expedite
the training process of machine learning, ultimately enhancing the accuracy of the neural
network model.

In this study, we will calculate the Pearson correlation coefficient between each feature
(X) and the data label (Y) as a criterion to assess the correlation between them. The
calculation method is as shown in function (1). The Pearson correlation coefficient is
primarily used to measure the linear correlation between two sets of data. A higher absolute
value of the Pearson correlation coefficient indicates a stronger correlation between the
two sets. Table 1 shows the Pearson correlation coefficient between each feature and data
label. In the selection of model inputs, we will set a correlation coefficient threshold to
filter model inputs. If the Pearson correlation coefficient between a particular feature and
data label is higher than the threshold, it will be chosen as a model input. In Figure 4, to
determine a suitable threshold, we have established an initial model, and selected model
inputs based on different threshold values. The CAE data were split into a training set and
a validation set with an 8:2 ratio. Finally, we compared the performance of trained models



Appl. Sci. 2023, 13, 12868 7 of 19

with different threshold values on the validation set to guide our selection. Ultimately, this
study chose a threshold of 0.04 for filtering model inputs.

Pearson correlation coefficient = ∑(Xi − X̄)(Yi − Ȳ)√
∑(Xi − X̄)

2
(Yi − Ȳ)2

(1)

Table 1. The absolute values of correlation coefficients for each input parameter.

Parameter
Absolute

Correlation
Coefficients

Parameter
Absolute

Correlation
Coefficients

injection_end_position 0.495 holding_time1 0.104
VP 0.315 real_injection_pressure_2max 0.092

filling_time 0.215 holding_time3 0.088

real_injection_pressure_1_max 0.203 real_injection_speed_3
max 0.087

real_injection_speed_2_max 0.201 realmaterialtemp_4_avg 0.079
real_injection_speed_2_min 0.194 holding_time2 0.078
real_injection_speed_1_max 0.190 real_injection_pressure_1_min 0.069

VP_pressure 0.186 real_injection_pressure_3_min 0.066
realmaterialtemp_2_avg 0.127 real_injection_pressure_2_min 0.064
realmaterialtemp_3_avg 0.125 injection_position_3 0.058

real_injection_speed_1_min 0.122 real_injection_speed_3_min 0.054
injection_speed_set4 0.121 real_injection_pressure_3_max 0.045
injection_speed_set5 0.121 injection_position_5 0.042
injection_speed_set3 0.120 holding_pressure3 0.037
injection_speed_set2 0.120 fillingtimelimt 0.028

realmaterialtemp_1_avg 0.119 cooling_time 0.014
injection_speed_set1 0.117 injection_position_2 0.007
injection_position_4 0.116 holding_pressure2 0.001

injection_pressure_set 0.115 holding_pressure3 0.001

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 20 
 

 

filter model inputs. If the Pearson correlation coefficient between a particular feature and 

data label is higher than the threshold, it will be chosen as a model input. In Figure 4, to 

determine a suitable threshold, we have established an initial model, and selected model 

inputs based on different threshold values. The CAE data were split into a training set and 

a validation set with an 8:2 ratio. Finally, we compared the performance of trained models 

with different threshold values on the validation set to guide our selection. Ultimately, 

this study chose a threshold of 0.04 for filtering model inputs. 

Pearson correlation coefficient =
∑(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

√∑(𝑋𝑖 − 𝑋̅)2(𝑌𝑖 − 𝑌̅)2
 (1) 

Table 1. The absolute values of correlation coefficients for each input parameter. 

Parameter 

Absolute 

Correlation 

Coefficients 

Parameter 

Absolute 

Correlation 

Coefficients 

injection_end_position 0.495 holding_time1 0.104 

VP 0.315 real_injection_pressure_2max 0.092 

filling_time 0.215 holding_time3 0.088 

real_injection_pressure_1_

max 
0.203 

real_injection_speed_3 

max 
0.087 

real_injection_speed_2_max 0.201 realmaterialtemp_4_avg 0.079 

real_injection_speed_2_min 0.194 holding_time2 0.078 

real_injection_speed_1_max 0.190 real_injection_pressure_1_min 0.069 

VP_pressure 0.186 real_injection_pressure_3_min 0.066 

realmaterialtemp_2_avg 0.127 real_injection_pressure_2_min 0.064 

realmaterialtemp_3_avg 0.125 injection_position_3 0.058 

real_injection_speed_1_min 0.122 real_injection_speed_3_min 0.054 

injection_speed_set4 0.121 real_injection_pressure_3_max 0.045 

injection_speed_set5 0.121 injection_position_5 0.042 

injection_speed_set3 0.120 holding_pressure3 0.037 

injection_speed_set2 0.120 fillingtimelimt 0.028 

realmaterialtemp_1_avg 0.119 cooling_time 0.014 

injection_speed_set1 0.117 injection_position_2 0.007 

injection_position_4 0.116 holding_pressure2 0.001 

injection_pressure_set 0.115 holding_pressure3 0.001 

 

Figure 4. Pearson product–moment correlation coefficient threshold validation. Figure 4. Pearson product–moment correlation coefficient threshold validation.

2.5. Transfer Learning

In this study, through layer transfer, when loading a pre-trained model, the pre-trained
weights are loaded without loading the original model’s input and output layers. During
training, all pre-trained layers can be set as non-trainable and their weights are frozen,
or one can only select specific layers to be set as non-trainable, and freeze their weights.
The code is shown in Figure 5, and the process is illustrated in Figure 6. The purpose



Appl. Sci. 2023, 13, 12868 8 of 19

is to prevent the originally trained weights from being updated and to ensure that the
pre-trained weights are not disrupted during the training of the new model. Next, new
hidden layers and output layers are added to create a new prediction model, and the
training parameters for the new model are compiled. Finally, new training data are loaded
for secondary training.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 20 
 

 

2.5. Transfer Learning 

In this study, through layer transfer, when loading a pre-trained model, the pre-

trained weights are loaded without loading the original model’s input and output layers. 

During training, all pre-trained layers can be set as non-trainable and their weights are 

frozen, or one can only select specific layers to be set as non-trainable, and freeze their 

weights. The code is shown in Figure 5, and the process is illustrated in Figure 6. The 

purpose is to prevent the originally trained weights from being updated and to ensure 

that the pre-trained weights are not disrupted during the training of the new model. Next, 

new hidden layers and output layers are added to create a new prediction model, and the 

training parameters for the new model are compiled. Finally, new training data are loaded 

for secondary training. 

 

Figure 5. Code for Freezing Pre-trained Hidden Layers. 

 

Figure 6. Transfer learning process diagram. 

3. Methodology 

As shown in Figure 7, this study collected and verified molding data using two types 

of long flat plate molds, with LT60 (length 120 mm, width 15 mm, thickness 2 mm) and 

LT100 (length 200 mm, width 15 mm, thickness 2 mm), respectively. ABS POLYLAC® PA-

756 was selected as the material for the products. Mold filling simulations were performed 

using the CAE analysis software Moldex3D (version 2023 R2) under different injection 

parameter settings for the LT60 long flat plate mold. These simulated data were then used 

as training data, with the product’s short-shot condition as the label, to train the model. 

Figure 5. Code for Freezing Pre-trained Hidden Layers.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 20 
 

 

2.5. Transfer Learning 

In this study, through layer transfer, when loading a pre-trained model, the pre-

trained weights are loaded without loading the original model’s input and output layers. 

During training, all pre-trained layers can be set as non-trainable and their weights are 

frozen, or one can only select specific layers to be set as non-trainable, and freeze their 

weights. The code is shown in Figure 5, and the process is illustrated in Figure 6. The 

purpose is to prevent the originally trained weights from being updated and to ensure 

that the pre-trained weights are not disrupted during the training of the new model. Next, 

new hidden layers and output layers are added to create a new prediction model, and the 

training parameters for the new model are compiled. Finally, new training data are loaded 

for secondary training. 

 

Figure 5. Code for Freezing Pre-trained Hidden Layers. 

 

Figure 6. Transfer learning process diagram. 

3. Methodology 

As shown in Figure 7, this study collected and verified molding data using two types 

of long flat plate molds, with LT60 (length 120 mm, width 15 mm, thickness 2 mm) and 

LT100 (length 200 mm, width 15 mm, thickness 2 mm), respectively. ABS POLYLAC® PA-

756 was selected as the material for the products. Mold filling simulations were performed 

using the CAE analysis software Moldex3D (version 2023 R2) under different injection 

parameter settings for the LT60 long flat plate mold. These simulated data were then used 

as training data, with the product’s short-shot condition as the label, to train the model. 

Figure 6. Transfer learning process diagram.

3. Methodology

As shown in Figure 7, this study collected and verified molding data using two types
of long flat plate molds, with LT60 (length 120 mm, width 15 mm, thickness 2 mm) and
LT100 (length 200 mm, width 15 mm, thickness 2 mm), respectively. ABS POLYLAC® PA-
756 was selected as the material for the products. Mold filling simulations were performed
using the CAE analysis software Moldex3D (version 2023 R2) under different injection
parameter settings for the LT60 long flat plate mold. These simulated data were then used
as training data, with the product’s short-shot condition as the label, to train the model.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 20 
 

 

 

Figure 7. The dimensions of the long flat plate. 

After obtaining the pre-trained model, we used the SM-120T Horizontal Injection 

Molding Machine from Hundred Plastics to perform actual molding of the LT60 long flat 

plate mold to acquire real filling data. This dataset was used for transfer learning with the 

pre-trained model. Additionally, we used the actual filling data of the LT60 long flat plate 

mold to obtain the pre-trained model, and then performed transfer learning using the ac-

tual filling data of the LT100 long flat plate mold. Finally, we will evaluate the effectiveness 

of these two transfer learning approaches. 

3.1. Transfer Learning of CAE Pre-trained Model 

This study employs a transfer approach involving both virtual analysis and real-

world molding. Initially, a neural network model is trained using CAE simulation data 

for the LT60 long flat plate model. Subsequently, transfer learning of the network model 

is conducted using data obtained from actual injection molding experiments. This ensures 

that the transferred neural network model is suitable for real-world machine predictions. 

During the transfer learning process, because the same model is used for secondary train-

ing, the data from actual injection molding experiments should closely resemble or match 

the simulated data. A significant disparity in data may result in suboptimal transfer learn-

ing outcomes and potentially impact the accuracy of the final predictive model applied to 

actual scenarios. The process flow is illustrated in Figure 8. 

 

Figure 8. Process flowchart for transfer learning of the CAE pretrained model. 

In the analysis software Moldex3D’s simulation data, the main varying parameters 

are injection speed, holding pressure, holding time, material temperature, and mold tem-

perature. When adjusting the parameters, the default values provided by Moldex3D are 

primarily used as reference. Analyzing different parameter combinations, a total of 3366 

simulation data points were generated, with a ratio of 4:6 between short-shots and non-

short-shots. After data preprocessing and correlation analysis, the input for the pre-

trained model consisted of 20 feature parameters, and the output was used to indicate 

whether a short-shot occurred. The data were split into 80% training data and 20% testing 

Figure 7. The dimensions of the long flat plate.



Appl. Sci. 2023, 13, 12868 9 of 19

After obtaining the pre-trained model, we used the SM-120T Horizontal Injection
Molding Machine from Hundred Plastics to perform actual molding of the LT60 long flat
plate mold to acquire real filling data. This dataset was used for transfer learning with the
pre-trained model. Additionally, we used the actual filling data of the LT60 long flat plate
mold to obtain the pre-trained model, and then performed transfer learning using the actual
filling data of the LT100 long flat plate mold. Finally, we will evaluate the effectiveness of
these two transfer learning approaches.

3.1. Transfer Learning of CAE Pre-trained Model

This study employs a transfer approach involving both virtual analysis and real-world
molding. Initially, a neural network model is trained using CAE simulation data for
the LT60 long flat plate model. Subsequently, transfer learning of the network model is
conducted using data obtained from actual injection molding experiments. This ensures
that the transferred neural network model is suitable for real-world machine predictions.
During the transfer learning process, because the same model is used for secondary training,
the data from actual injection molding experiments should closely resemble or match the
simulated data. A significant disparity in data may result in suboptimal transfer learning
outcomes and potentially impact the accuracy of the final predictive model applied to
actual scenarios. The process flow is illustrated in Figure 8.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 20 
 

 

 

Figure 7. The dimensions of the long flat plate. 

After obtaining the pre-trained model, we used the SM-120T Horizontal Injection 

Molding Machine from Hundred Plastics to perform actual molding of the LT60 long flat 

plate mold to acquire real filling data. This dataset was used for transfer learning with the 

pre-trained model. Additionally, we used the actual filling data of the LT60 long flat plate 

mold to obtain the pre-trained model, and then performed transfer learning using the ac-

tual filling data of the LT100 long flat plate mold. Finally, we will evaluate the effectiveness 

of these two transfer learning approaches. 

3.1. Transfer Learning of CAE Pre-trained Model 

This study employs a transfer approach involving both virtual analysis and real-

world molding. Initially, a neural network model is trained using CAE simulation data 

for the LT60 long flat plate model. Subsequently, transfer learning of the network model 

is conducted using data obtained from actual injection molding experiments. This ensures 

that the transferred neural network model is suitable for real-world machine predictions. 

During the transfer learning process, because the same model is used for secondary train-

ing, the data from actual injection molding experiments should closely resemble or match 

the simulated data. A significant disparity in data may result in suboptimal transfer learn-

ing outcomes and potentially impact the accuracy of the final predictive model applied to 

actual scenarios. The process flow is illustrated in Figure 8. 

 

Figure 8. Process flowchart for transfer learning of the CAE pretrained model. 

In the analysis software Moldex3D’s simulation data, the main varying parameters 

are injection speed, holding pressure, holding time, material temperature, and mold tem-

perature. When adjusting the parameters, the default values provided by Moldex3D are 

primarily used as reference. Analyzing different parameter combinations, a total of 3366 

simulation data points were generated, with a ratio of 4:6 between short-shots and non-

short-shots. After data preprocessing and correlation analysis, the input for the pre-

trained model consisted of 20 feature parameters, and the output was used to indicate 

whether a short-shot occurred. The data were split into 80% training data and 20% testing 

Figure 8. Process flowchart for transfer learning of the CAE pretrained model.

In the analysis software Moldex3D’s simulation data, the main varying parameters
are injection speed, holding pressure, holding time, material temperature, and mold tem-
perature. When adjusting the parameters, the default values provided by Moldex3D are
primarily used as reference. Analyzing different parameter combinations, a total of 3366
simulation data points were generated, with a ratio of 4:6 between short-shots and non-
short-shots. After data preprocessing and correlation analysis, the input for the pre-trained
model consisted of 20 feature parameters, and the output was used to indicate whether
a short-shot occurred. The data were split into 80% training data and 20% testing data,
with an additional 20% taken from the training data for validation. The model architecture
consisted of 2 hidden layers, with 36 neurons in the first layer and 20 neurons in the second
layer. To prevent overfitting during model training, dropout regularization was applied
after both hidden layers, with a dropout rate of 0.2 for each layer. The model architecture
is illustrated in Figure 9. Regarding hyperparameter settings, the learning rate was set to
0.002, ReLU and Sigmoid activation functions were used for respective layers, the optimizer
was Adam, the batch size was set to 33, and the number of epochs was set to 340. The
hyperparameter settings are summarized in Table 2.



Appl. Sci. 2023, 13, 12868 10 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 20 
 

 

data, with an additional 20% taken from the training data for validation. The model archi-

tecture consisted of 2 hidden layers, with 36 neurons in the first layer and 20 neurons in 

the second layer. To prevent overfitting during model training, dropout regularization 

was applied after both hidden layers, with a dropout rate of 0.2 for each layer. The model 

architecture is illustrated in Figure 9. Regarding hyperparameter settings, the learning rate 

was set to 0.002, ReLU and Sigmoid activation functions were used for respective layers, 

the optimizer was Adam, the batch size was set to 33, and the number of epochs was set 

to 340. The hyperparameter settings are summarized in Table 2. 

 

Figure 9. CAE training model architecture. 

Table 2. CAE model hyperparameter configuration. 

Parameters Value Parameters Value 

Learning Rate 0.002 Epochs 340 

Hidden Layer 1 36 Activation Function 1 ReLU 

Hidden Layer 2 20 Activation Function 2 Sigmoid 

Optimizer Adam Batch Size 33 

In the selection of hidden layers for the transfer learning model, five different transfer 

methods were employed to train the transfer learning model, and the results of each 

method were compared. The methods were as follows: 

• Transfer and freeze the two hidden layers of the pre-trained model, training only the 

third hidden layer of the new model; 

• Transfer the two hidden layers of the pre-trained model, and freeze the weight values 

of the first hidden layer, training only the second and third hidden layers of the new 

model; 

• Transfer the two hidden layers of the pre-trained model and freeze the weight values 

of the second hidden layer, training only the first and third hidden layers of the new 

model; 

• Transfer and freeze the first hidden layer of the pre-trained model, training only the 

second and third hidden layers of the new model; 

• Transfer and freeze the second hidden layer of the pre-trained model, training only 

the first and third hidden layers of the new model. 

As shown in Figure 10, during the training process of the first, second, third, and 

fourth transfer learning methods, the model’s loss exhibited a clear decreasing trend in 

the training set (blue line). However, there was a simultaneous increase in the validation 

Figure 9. CAE training model architecture.

Table 2. CAE model hyperparameter configuration.

Parameters Value Parameters Value

Learning Rate 0.002 Epochs 340
Hidden Layer 1 36 Activation Function 1 ReLU
Hidden Layer 2 20 Activation Function 2 Sigmoid

Optimizer Adam Batch Size 33

In the selection of hidden layers for the transfer learning model, five different transfer
methods were employed to train the transfer learning model, and the results of each method
were compared. The methods were as follows:

• Transfer and freeze the two hidden layers of the pre-trained model, training only the
third hidden layer of the new model;

• Transfer the two hidden layers of the pre-trained model, and freeze the weight values
of the first hidden layer, training only the second and third hidden layers of the
new model;

• Transfer the two hidden layers of the pre-trained model and freeze the weight values
of the second hidden layer, training only the first and third hidden layers of the
new model;

• Transfer and freeze the first hidden layer of the pre-trained model, training only the
second and third hidden layers of the new model;

• Transfer and freeze the second hidden layer of the pre-trained model, training only
the first and third hidden layers of the new model.

As shown in Figure 10, during the training process of the first, second, third, and
fourth transfer learning methods, the model’s loss exhibited a clear decreasing trend in the
training set (blue line). However, there was a simultaneous increase in the validation set
(green line), indicating the occurrence of overfitting during the training process. In contrast,
for the fifth transfer learning method, the model’s loss showed a noticeable decrease in both
the training and the validation set, with minimal differences between them. This suggests
that the model possessed good generalization capabilities. Therefore, this study employed
the fifth method for transfer learning.

After the above validation, we selected the fifth hidden layer transfer method to
build the transfer learning model. The architecture consisted of 3 hidden layers, with
the first hidden layer having 36 neurons, the second hidden layer using the transferred



Appl. Sci. 2023, 13, 12868 11 of 19

hidden layer from the pre-trained model, and the third hidden layer having 25 neurons.
Dropout regularization was applied to all hidden layers with a dropout rate of 0.3 to
prevent overfitting. The weights of the transferred second hidden layer were frozen to
preserve the pre-trained weights. The model architecture is shown in Figure 11. In terms of
hyperparameter settings, the learning rate was set to 0.001. The activation functions for the
layers awerere as follows: the first layer used Tanh, while the second and third layers used
Sigmoid. The optimizer used was Adam for hyperparameter optimization. The batch size
was set to 33, and the number of training iterations was set to 800. The hyperparameter
settings for the model are summarized in Table 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 20 
 

 

set (green line), indicating the occurrence of overfitting during the training process. In 

contrast, for the fifth transfer learning method, the model’s loss showed a noticeable de-

crease in both the training and the validation set, with minimal differences between them. 

This suggests that the model possessed good generalization capabilities. Therefore, this 

study employed the fifth method for transfer learning. 

 

Figure 10. Training results of LT60 model with different hidden layer transfers. 

After the above validation, we selected the fifth hidden layer transfer method to build 

the transfer learning model. The architecture consisted of 3 hidden layers, with the first 

hidden layer having 36 neurons, the second hidden layer using the transferred hidden 

layer from the pre-trained model, and the third hidden layer having 25 neurons. Dropout 

regularization was applied to all hidden layers with a dropout rate of 0.3 to prevent over-

fitting. The weights of the transferred second hidden layer were frozen to preserve the 

pre-trained weights. The model architecture is shown in Figure 11. In terms of hyperpa-

rameter settings, the learning rate was set to 0.001. The activation functions for the layers 

awerere as follows: the first layer used Tanh, while the second and third layers used Sig-

moid. The optimizer used was Adam for hyperparameter optimization. The batch size 

was set to 33, and the number of training iterations was set to 800. The hyperparameter 

settings for the model are summarized in Table 3. 

Figure 10. Training results of LT60 model with different hidden layer transfers.

In the actual injection molding model training, 1358 data points obtained from experi-
ments were used. After data preprocessing, the data were divided into 1100 training data
points, 122 validation data points, and 136 test data points. The accuracy of the trained
model applied to the training set was 93.5%, and when applied to the validation set, it was
90.2%, as shown in Figure 12. If these data were to be directly used for model training,
the model architecture would be the same as the original model’s architecture. However,
during the model training process, overfitting would occur, as shown in Figure 13. There-
fore, more training data would be needed to enable the model to converge effectively and
achieve an accuracy of over 90%.



Appl. Sci. 2023, 13, 12868 12 of 19
Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 20 
 

 

 

Figure 11. LT60 transfer learning model architecture. 

Table 3. LT60 transfer learning model hyperparameter settings. 

Parameters Value Parameters Value 

Learning Rate 0.001 Epochs 800 

Hidden Layer 1 36 Activation Function 1 Tanh 

Hidden Layer 2 Transfer Activation Function 2 Transfer 

Hidden Layer 3 25 Activation Function 3 Sigmoid 

Optimizer Adam Batch Size 33 

In the actual injection molding model training, 1358 data points obtained from exper-

iments were used. After data preprocessing, the data were divided into 1100 training data 

points, 122 validation data points, and 136 test data points. The accuracy of the trained 

model applied to the training set was 93.5%, and when applied to the validation set, it was 

90.2%, as shown in Figure 12. If these data were to be directly used for model training, the 

model architecture would be the same as the original model’s architecture. However, dur-

ing the model training process, overfitting would occur, as shown in Figure 13. Therefore, 

more training data would be needed to enable the model to converge effectively and 

achieve an accuracy of over 90%. 

 

Figure 12. Training and validation results of the LT60 transfer learning model. 

Figure 11. LT60 transfer learning model architecture.

Table 3. LT60 transfer learning model hyperparameter settings.

Parameters Value Parameters Value

Learning Rate 0.001 Epochs 800
Hidden Layer 1 36 Activation Function 1 Tanh
Hidden Layer 2 Transfer Activation Function 2 Transfer
Hidden Layer 3 25 Activation Function 3 Sigmoid

Optimizer Adam Batch Size 33

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 20 
 

 

 

Figure 11. LT60 transfer learning model architecture. 

Table 3. LT60 transfer learning model hyperparameter settings. 

Parameters Value Parameters Value 

Learning Rate 0.001 Epochs 800 

Hidden Layer 1 36 Activation Function 1 Tanh 

Hidden Layer 2 Transfer Activation Function 2 Transfer 

Hidden Layer 3 25 Activation Function 3 Sigmoid 

Optimizer Adam Batch Size 33 

In the actual injection molding model training, 1358 data points obtained from exper-

iments were used. After data preprocessing, the data were divided into 1100 training data 

points, 122 validation data points, and 136 test data points. The accuracy of the trained 

model applied to the training set was 93.5%, and when applied to the validation set, it was 

90.2%, as shown in Figure 12. If these data were to be directly used for model training, the 

model architecture would be the same as the original model’s architecture. However, dur-

ing the model training process, overfitting would occur, as shown in Figure 13. Therefore, 

more training data would be needed to enable the model to converge effectively and 

achieve an accuracy of over 90%. 

 

Figure 12. Training and validation results of the LT60 transfer learning model. Figure 12. Training and validation results of the LT60 transfer learning model.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 13. Training and validation results of the LT60 model (without transfer learning). 

3.2. Transfer Learning of LT60 Pre-trained Model 

Training a backpropagation neural network requires a large amount of data, and ob-

taining a substantial volume of actual injection molding data can be challenging. There-

fore, in this study, we leveraged a pre-trained LT60 network prediction model, trained 

with actual injection molding data, to conduct secondary training using a small amount 

of the LT100 data obtained. This approach effectively reduces the training time and the 

time required to acquire training data. The process is illustrated in Figure 14. 

 

Figure 14. LT60 pretrained model transfer learning process diagram. 

We used 2050 points of actual injection data of the LT60 long plate model to train the 

pre-trained model. In the dataset, the ratio of short-shots to non-short-shots was 4:6. After 

data preprocessing and correlation analysis, the input for the pre-trained model consisted 

of 31 feature parameters, and the output was used to indicate whether a short-shot oc-

curred. The data were split into 80% training data and 20% testing data, with an additional 

20% taken from the training data for validation. The model architecture consisted of 3 

hidden layers: the first layer had 18 neurons, the second layer had 10 neurons, and the 

third hidden layer had 12 neurons. Dropout regularization was applied after each hidden 

layer with a dropout rate of 0.3. The model’s structure is depicted in Figure 15. Regarding 

hyperparameter settings, the learning rate was set to 0.001. The activation functions for 

each layer were as follows: the first layer used Tanh, while the second and third layers 

used Sigmoid. Adam optimizer was employed for hyperparameter optimization. The 

batch size for training was set to 32, and the model was trained for 1000 epochs. The hy-

perparameter settings for the model are outlined in Table 4. 

Table 4. LT60 pre-trained model hyperparameter settings. 

Parameters Value Parameters Value 

Learning Rate 0.001 Epochs 1000 

Hidden Layer 1 18 Activation Function 1 Tanh 

Hidden Layer 2 10 Activation Function 2 Sigmoid 

Figure 13. Training and validation results of the LT60 model (without transfer learning).



Appl. Sci. 2023, 13, 12868 13 of 19

3.2. Transfer Learning of LT60 Pre-trained Model

Training a backpropagation neural network requires a large amount of data, and ob-
taining a substantial volume of actual injection molding data can be challenging. Therefore,
in this study, we leveraged a pre-trained LT60 network prediction model, trained with
actual injection molding data, to conduct secondary training using a small amount of the
LT100 data obtained. This approach effectively reduces the training time and the time
required to acquire training data. The process is illustrated in Figure 14.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 13. Training and validation results of the LT60 model (without transfer learning). 

3.2. Transfer Learning of LT60 Pre-trained Model 

Training a backpropagation neural network requires a large amount of data, and ob-

taining a substantial volume of actual injection molding data can be challenging. There-

fore, in this study, we leveraged a pre-trained LT60 network prediction model, trained 

with actual injection molding data, to conduct secondary training using a small amount 

of the LT100 data obtained. This approach effectively reduces the training time and the 

time required to acquire training data. The process is illustrated in Figure 14. 

 

Figure 14. LT60 pretrained model transfer learning process diagram. 

We used 2050 points of actual injection data of the LT60 long plate model to train the 

pre-trained model. In the dataset, the ratio of short-shots to non-short-shots was 4:6. After 

data preprocessing and correlation analysis, the input for the pre-trained model consisted 

of 31 feature parameters, and the output was used to indicate whether a short-shot oc-

curred. The data were split into 80% training data and 20% testing data, with an additional 

20% taken from the training data for validation. The model architecture consisted of 3 

hidden layers: the first layer had 18 neurons, the second layer had 10 neurons, and the 

third hidden layer had 12 neurons. Dropout regularization was applied after each hidden 

layer with a dropout rate of 0.3. The model’s structure is depicted in Figure 15. Regarding 

hyperparameter settings, the learning rate was set to 0.001. The activation functions for 

each layer were as follows: the first layer used Tanh, while the second and third layers 

used Sigmoid. Adam optimizer was employed for hyperparameter optimization. The 

batch size for training was set to 32, and the model was trained for 1000 epochs. The hy-

perparameter settings for the model are outlined in Table 4. 

Table 4. LT60 pre-trained model hyperparameter settings. 

Parameters Value Parameters Value 

Learning Rate 0.001 Epochs 1000 

Hidden Layer 1 18 Activation Function 1 Tanh 

Hidden Layer 2 10 Activation Function 2 Sigmoid 

Figure 14. LT60 pretrained model transfer learning process diagram.

We used 2050 points of actual injection data of the LT60 long plate model to train the
pre-trained model. In the dataset, the ratio of short-shots to non-short-shots was 4:6. After
data preprocessing and correlation analysis, the input for the pre-trained model consisted
of 31 feature parameters, and the output was used to indicate whether a short-shot occurred.
The data were split into 80% training data and 20% testing data, with an additional 20%
taken from the training data for validation. The model architecture consisted of 3 hidden
layers: the first layer had 18 neurons, the second layer had 10 neurons, and the third
hidden layer had 12 neurons. Dropout regularization was applied after each hidden layer
with a dropout rate of 0.3. The model’s structure is depicted in Figure 15. Regarding
hyperparameter settings, the learning rate was set to 0.001. The activation functions for
each layer were as follows: the first layer used Tanh, while the second and third layers used
Sigmoid. Adam optimizer was employed for hyperparameter optimization. The batch size
for training was set to 32, and the model was trained for 1000 epochs. The hyperparameter
settings for the model are outlined in Table 4.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 

Hidden Layer 3 12 Activation Function 3 Sigmoid 

Optimizer Adam Batch Size 32 

 

Figure 15. LT60 pre-trained model architecture. 

In the selection of hidden layers for the LT100 transfer learning model, ten different 

methods were employed to train the transfer learning model, and the results of each 

method were compared. The methods were as follows: 

• Transfer and freeze all three hidden layers of the pre-trained model; 

• Transfer the three hidden layers of the pre-trained model, and freeze the weights of 

the first hidden layer, then only train the second and third hidden layers of the new 

model; 

• Transfer the three hidden layers of the pre-trained model, and freeze the weights of 

the second hidden layer, then only train the first and third hidden layers of the new 

model; 

• Transfer the three hidden layers of the pre-trained model, and freeze the weights of 

the third hidden layer, then only train the first and second hidden layers of the new 

model; 

• Transfer the three hidden layers of the pre-trained model, and freeze the weights of 

the first and second hidden layers, then only train the third hidden layer of the new 

model; 

• Transfer the three hidden layers of the pre-trained model, and freeze the weights of 

the first and third hidden layers, then only train the second hidden layer of the new 

model; 

• Transfer the three hidden layers of the pre-trained model, and freeze the weights of 

the second and third hidden layers, then only train the first hidden layer of the new 

model; 

• Transfer and freeze the first hidden layer of the pre-trained model, and only train the 

second and third hidden layers of the new model; 

• Transfer and freeze the second hidden layer of the pre-trained model, then only train 

the first and third hidden layers of the new model; 

• Transfer and freeze the third hidden layer of the pre-trained model, then only train 

the first and second hidden layers of the new model. 

As shown in Figure 16, from the training results, it can be observed that when using 

the first, fifth, and sixth transfer learning methods, the model’s loss in the training set (blue 

line) and validation set (green line) exhibited a gradual decreasing trend. However, there 

remained a significant gap between the two, and this gap did not show a tendency to 

Figure 15. LT60 pre-trained model architecture.



Appl. Sci. 2023, 13, 12868 14 of 19

Table 4. LT60 pre-trained model hyperparameter settings.

Parameters Value Parameters Value

Learning Rate 0.001 Epochs 1000
Hidden Layer 1 18 Activation Function 1 Tanh
Hidden Layer 2 10 Activation Function 2 Sigmoid
Hidden Layer 3 12 Activation Function 3 Sigmoid

Optimizer Adam Batch Size 32

In the selection of hidden layers for the LT100 transfer learning model, ten different
methods were employed to train the transfer learning model, and the results of each method
were compared. The methods were as follows:

• Transfer and freeze all three hidden layers of the pre-trained model;
• Transfer the three hidden layers of the pre-trained model, and freeze the weights

of the first hidden layer, then only train the second and third hidden layers of the
new model;

• Transfer the three hidden layers of the pre-trained model, and freeze the weights
of the second hidden layer, then only train the first and third hidden layers of the
new model;

• Transfer the three hidden layers of the pre-trained model, and freeze the weights
of the third hidden layer, then only train the first and second hidden layers of the
new model;

• Transfer the three hidden layers of the pre-trained model, and freeze the weights
of the first and second hidden layers, then only train the third hidden layer of the
new model;

• Transfer the three hidden layers of the pre-trained model, and freeze the weights
of the first and third hidden layers, then only train the second hidden layer of the
new model;

• Transfer the three hidden layers of the pre-trained model, and freeze the weights
of the second and third hidden layers, then only train the first hidden layer of the
new model;

• Transfer and freeze the first hidden layer of the pre-trained model, and only train the
second and third hidden layers of the new model;

• Transfer and freeze the second hidden layer of the pre-trained model, then only train
the first and third hidden layers of the new model;

• Transfer and freeze the third hidden layer of the pre-trained model, then only train the
first and second hidden layers of the new model.

As shown in Figure 16, from the training results, it can be observed that when using
the first, fifth, and sixth transfer learning methods, the model’s loss in the training set
(blue line) and validation set (green line) exhibited a gradual decreasing trend. However,
there remained a significant gap between the two, and this gap did not show a tendency to
diminish with increasing training iterations. This indicates that the model was likely to
experience overfitting as the number of training iterations increased. In the cases of the
second, third, fourth, seventh, eighth, and tenth methods, although the model’s loss in the
training set decreased noticeably, the model’s loss in the validation set increased, indicating
the occurrence of overfitting in the training process. The training process of the ninth
transfer learning method revealed a noticeable decrease in both training and validation
set losses, with a simultaneous reduction in the gap between them. This indicates that the
model exhibited excellent generalization capabilities. Therefore, we have selected the ninth
method for transfer learning in this study.

Following the above validation, we selected the ninth hidden layer transfer method to
build the transfer learning model. Its architecture consisted of 3 hidden layers. The first
layer had 18 neurons, the second hidden layer used the second hidden layer of the LT60
pre-trained model, and the third hidden layer had 12 neurons. We applied regularization



Appl. Sci. 2023, 13, 12868 15 of 19

dropout to each hidden layer, with a dropout rate of 0.3, and froze the weights of the
transferred second hidden layer to prevent the trained weights from being disrupted. The
model architecture is illustrated in Figure 17. In terms of hyperparameter settings, the
learning rate was set to 0.001. The activation functions for the first and third layers were
Tanh and Sigmoid, respectively. Adam was employed as the optimizer for hyperparameter
optimization. The batch size was set to 32, and the model was trained for 2000 epochs. The
hyperparameter settings for the model are detailed in Table 5.

Table 5. LT100 transfer learning model hyperparameter settings.

Parameters Value Parameters Value

Learning Rate 0.001 Epochs 2000
Hidden Layer 1 18 Activation Function 1 Tanh
Hidden Layer 2 Transfer Activation Function 2 Transfer
Hidden Layer 3 12 Activation Function 3 Sigmoid

Optimizer Adam Batch Size 32

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 20 
 

 

diminish with increasing training iterations. This indicates that the model was likely to 

experience overfitting as the number of training iterations increased. In the cases of the 

second, third, fourth, seventh, eighth, and tenth methods, although the model’s loss in the 

training set decreased noticeably, the model’s loss in the validation set increased, indicat-

ing the occurrence of overfitting in the training process. The training process of the ninth 

transfer learning method revealed a noticeable decrease in both training and validation 

set losses, with a simultaneous reduction in the gap between them. This indicates that the 

model exhibited excellent generalization capabilities. Therefore, we have selected the 

ninth method for transfer learning in this study. 

 

(a) Training results of transfer learning methods 1 to 6 

Figure 16. Cont.



Appl. Sci. 2023, 13, 12868 16 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20 
 

 

 

(b) Training results of transfer learning methods 7 to 10 

Figure 16. Training results of LT100 model with different hidden layer transfers. (a) Training re-

sults of transfer learning methods 1 to 6; (b) Training results of transfer learning methods 7 to 10. 

Following the above validation, we selected the ninth hidden layer transfer method 

to build the transfer learning model. Its architecture consisted of 3 hidden layers. The first 

layer had 18 neurons, the second hidden layer used the second hidden layer of the LT60 

pre-trained model, and the third hidden layer had 12 neurons. We applied regularization 

dropout to each hidden layer, with a dropout rate of 0.3, and froze the weights of the 

transferred second hidden layer to prevent the trained weights from being disrupted. The 

model architecture is illustrated in Figure 17. In terms of hyperparameter settings, the 

learning rate was set to 0.001. The activation functions for the first and third layers were 

Tanh and Sigmoid, respectively. Adam was employed as the optimizer for hyperparame-

ter optimization. The batch size was set to 32, and the model was trained for 2000 epochs. 

The hyperparameter settings for the model are detailed in Table 5. 

Table 5. LT100 transfer learning model hyperparameter settings. 

Parameters Value Parameters Value 

Learning Rate 0.001 Epochs 2000 

Hidden Layer 1 18 Activation Function 1 Tanh 

Hidden Layer 2 Transfer Activation Function 2 Transfer 

Hidden Layer 3 12 Activation Function 3 Sigmoid 

Optimizer Adam Batch Size 32 

Figure 16. Training results of LT100 model with different hidden layer transfers. (a) Training results
of transfer learning methods 1 to 6; (b) Training results of transfer learning methods 7 to 10.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure 17. LT100 transfer learning model architecture. 

In the training of the LT100 transfer learning model, we used 900 data points obtained 

from experiments. After preprocessing the data, they were divided into 576 training sam-

ples, 144 validation samples, and 180 test samples. The trained model achieved a training 

accuracy of 96.2% and a validation accuracy of 94.4%, as shown in Figure 18. If we were 

to directly train a model with the same architecture using only these 900 data points, over-

fitting would occur due to the limited dataset, as depicted in Figure 19. Therefore, acquir-

ing more training data is necessary to ensure effective convergence and achieve an ade-

quate level of accuracy in the model. 

 

Figure 18. Training and validation results of the LT100 transfer learning model. 

Figure 17. LT100 transfer learning model architecture.

In the training of the LT100 transfer learning model, we used 900 data points obtained
from experiments. After preprocessing the data, they were divided into 576 training
samples, 144 validation samples, and 180 test samples. The trained model achieved a
training accuracy of 96.2% and a validation accuracy of 94.4%, as shown in Figure 18. If we



Appl. Sci. 2023, 13, 12868 17 of 19

were to directly train a model with the same architecture using only these 900 data points,
overfitting would occur due to the limited dataset, as depicted in Figure 19. Therefore,
acquiring more training data is necessary to ensure effective convergence and achieve an
adequate level of accuracy in the model.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure 17. LT100 transfer learning model architecture. 

In the training of the LT100 transfer learning model, we used 900 data points obtained 

from experiments. After preprocessing the data, they were divided into 576 training sam-

ples, 144 validation samples, and 180 test samples. The trained model achieved a training 

accuracy of 96.2% and a validation accuracy of 94.4%, as shown in Figure 18. If we were 

to directly train a model with the same architecture using only these 900 data points, over-

fitting would occur due to the limited dataset, as depicted in Figure 19. Therefore, acquir-

ing more training data is necessary to ensure effective convergence and achieve an ade-

quate level of accuracy in the model. 

 

Figure 18. Training and validation results of the LT100 transfer learning model. Figure 18. Training and validation results of the LT100 transfer learning model.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 20 
 

 

 

Figure 19. Training and validation results of the LT100 model (without transfer learning). 

3.3. Model’s Performance Comparative 

Table 6 presents the comparative results of model performance, indicating that in 

both LT60 and LT100 short-shot prediction tasks, the performance of the transfer learning 

models surpassed that of the models without transfer learning. This suggests that utilizing 

transfer learning enhances the model’s performance in short-shot prediction tasks. The 

results underscore the potential use of transfer learning in improving model generaliza-

tion and efficiency in the context of short-shot prediction tasks. 

Table 6. Comparison of the models’ performance. 

Model 
Number of 

Training Data 

Number of 

Validation Data 

Validation Set 

Accuracy 

LT 60 without transfer laerning 1100 122 0.885 

LT 60 with transfer learning 1100 122 0.902 

LT 100 without transfer learning 576 144 0.910 

LT 100 with transfer learning 576 144 0.944 

3.4. Verification 

In the final stage, this study integrated the trained LT100 transfer learning model with 

the injection molding machine to establish a real-time short-shot prediction system; the 

overall architecture is illustrated in Figure 20. In each production process, the system col-

lected real-time process data, and during the cooling stage of the product, utilized these 

data as the model’s input to predict whether the product will experience short-shot. The 

total duration of the LT100 product’s overall process was 16 s, with 1 s allocated to the 

product filling time, and the remaining 15 s dedicated to product cooling. In contrast to 

traditional quality inspection methods such as AOI (Automated Optical Inspection), 

which requires inspection after the product has cooled and been removed from the mold, 

the integrated application of the model proposed in this study with the injection molding 

machine enabled the detection of short shots at only 6.25% of the overall process execu-

tion. This allows personnel to initiate the defect troubleshooting process earlier, thereby 

enhancing production efficiency. 

 

Figure 20. Real-time short-shot prediction system operation process. 

Figure 19. Training and validation results of the LT100 model (without transfer learning).

3.3. Model’s Performance Comparative

Table 6 presents the comparative results of model performance, indicating that in
both LT60 and LT100 short-shot prediction tasks, the performance of the transfer learning
models surpassed that of the models without transfer learning. This suggests that utilizing
transfer learning enhances the model’s performance in short-shot prediction tasks. The
results underscore the potential use of transfer learning in improving model generalization
and efficiency in the context of short-shot prediction tasks.

3.4. Verification

In the final stage, this study integrated the trained LT100 transfer learning model
with the injection molding machine to establish a real-time short-shot prediction system;
the overall architecture is illustrated in Figure 20. In each production process, the system
collected real-time process data, and during the cooling stage of the product, utilized these
data as the model’s input to predict whether the product will experience short-shot. The
total duration of the LT100 product’s overall process was 16 s, with 1 s allocated to the
product filling time, and the remaining 15 s dedicated to product cooling. In contrast to
traditional quality inspection methods such as AOI (Automated Optical Inspection), which



Appl. Sci. 2023, 13, 12868 18 of 19

requires inspection after the product has cooled and been removed from the mold, the inte-
grated application of the model proposed in this study with the injection molding machine
enabled the detection of short shots at only 6.25% of the overall process execution. This
allows personnel to initiate the defect troubleshooting process earlier, thereby enhancing
production efficiency.

Table 6. Comparison of the models’ performance.

Model Number of Training Data Number of Validation Data Validation Set Accuracy

LT 60 without transfer laerning 1100 122 0.885
LT 60 with transfer learning 1100 122 0.902

LT 100 without transfer learning 576 144 0.910
LT 100 with transfer learning 576 144 0.944

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 20 
 

 

 

Figure 19. Training and validation results of the LT100 model (without transfer learning). 

3.3. Model’s Performance Comparative 

Table 6 presents the comparative results of model performance, indicating that in 

both LT60 and LT100 short-shot prediction tasks, the performance of the transfer learning 

models surpassed that of the models without transfer learning. This suggests that utilizing 

transfer learning enhances the model’s performance in short-shot prediction tasks. The 

results underscore the potential use of transfer learning in improving model generaliza-

tion and efficiency in the context of short-shot prediction tasks. 

Table 6. Comparison of the models’ performance. 

Model 
Number of 

Training Data 

Number of 

Validation Data 

Validation Set 

Accuracy 

LT 60 without transfer laerning 1100 122 0.885 

LT 60 with transfer learning 1100 122 0.902 

LT 100 without transfer learning 576 144 0.910 

LT 100 with transfer learning 576 144 0.944 

3.4. Verification 

In the final stage, this study integrated the trained LT100 transfer learning model with 

the injection molding machine to establish a real-time short-shot prediction system; the 

overall architecture is illustrated in Figure 20. In each production process, the system col-

lected real-time process data, and during the cooling stage of the product, utilized these 

data as the model’s input to predict whether the product will experience short-shot. The 

total duration of the LT100 product’s overall process was 16 s, with 1 s allocated to the 

product filling time, and the remaining 15 s dedicated to product cooling. In contrast to 

traditional quality inspection methods such as AOI (Automated Optical Inspection), 

which requires inspection after the product has cooled and been removed from the mold, 

the integrated application of the model proposed in this study with the injection molding 

machine enabled the detection of short shots at only 6.25% of the overall process execu-

tion. This allows personnel to initiate the defect troubleshooting process earlier, thereby 

enhancing production efficiency. 

 

Figure 20. Real-time short-shot prediction system operation process. Figure 20. Real-time short-shot prediction system operation process.

4. Discussion

This study utilized transfer learning to perform secondary training on pre-trained
neural network models using a limited amount of data, resulting in new neural network
prediction models. The use of transfer learning significantly improved prediction accuracy
compared to models that did not employ transfer learning. The original LT60 and LT100
models had validation accuracies of 88.5% and 91%, and overfitting occurred during train-
ing. However, the LT60 and LT100 transfer models with limited data achieved validation
accuracies of 90.2% and 94.4%, respectively. This approach not only reduces the time and
material costs of acquiring training data, but also enhances the predictive accuracy of the
products. The results of this experiment demonstrate the potential of transfer learning to
reduce model training costs in the field of injection molding. By leveraging pre-trained
neural network models, effective secondary training can be conducted with limited data,
leading to significant savings in time and resources while substantially enhancing the
predictive performance of the model. In addition, through the integrated application of
the model with an injection molding machine, personnel can instantly determine whether
short-shots have occurred in the product as soon as the filling process is completed. There
is no need to wait until the product has cooled down to perform the inspection, allow-
ing the defect troubleshooting process to be initiated earlier, thereby enhancing overall
production efficiency.

In the future, further explorations can be done to investigate the effectiveness of
transferring the model trained for predicting short-shots to predicting models for other
types of product defects, expanding the application scope of transfer learning.

Author Contributions: Conceptualization, Z.-W.Z., H.-Y.Y. and Y.-H.T.; methodology, Z.-W.Z., H.-Y.Y.
and B.-X.X.; software, Z.-W.Z., H.-Y.Y. and B.-X.X.; validation, B.-X.X., Y.-H.T., S.-C.C. and W.-R.J.;
investigation, Y.-H.T., S.-C.C. and W.-R.J.; data curation, Z.-W.Z. and H.-Y.Y.; writing—original draft
preparation, H.-Y.Y.; writing—review and editing, Z.-W.Z.; visualization, Z.-W.Z., H.-Y.Y. and B.-X.X.;
supervision, Y.-H.T., S.-C.C. and W.-R.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are not publicly available due to subsequent research needs.



Appl. Sci. 2023, 13, 12868 19 of 19

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gotlih, J.; Brezocnik, M.; Pal, S.; Drstvensek, I.; Karner, T.; Brajlih, T. A Holistic Approach to Cooling System Selection and

Injection Molding Process Optimization Based on Non-Dominated Sorting. Polymers 2022, 14, 4842. [CrossRef] [PubMed]
2. Mathivanan, D.; Nouby, M.; Vidhya, R. Minimization of sink mark defects in injection molding process—Taguchi approach. Int. J.

Eng. Sci. Technol. 2010, 2, 13–22. [CrossRef]
3. Huang, H.Y.; Fan, F.Y.; Lin, W.C.; Huang, C.F.; Shen, Y.K.; Lin, Y.; Ruslin, M. Optimal Processing Parameters of Transmission Parts

of a Flapping-Wing Micro-Aerial Vehicle Using Precision Injection Molding. Polymers 2022, 14, 1467. [CrossRef] [PubMed]
4. Zhao, Z.; He, X.; Liu, M.; Liu, B. Injection Mold Design and Optimization of Automotive panel. In Proceedings of the 2010 Third

International Conference on Information and Computing, Wuxi, China, 4–6 June 2010; pp. 119–122.
5. Hentati, F.; Hadriche, I.; Masmoudi, N.; Bradai, C. Optimization of the injection molding process for the PC/ABS parts by

integrating Taguchi approach and CAE simulation. Int. J. Adv. Manuf. Technol. 2019, 104, 4353–4363. [CrossRef]
6. Kwak, T.S.; Suzuki, T.; Bae, W.B.; Uehara, Y.; Ohmori, H. Application of Neural Network and Computer Simulation to Improve

Surface Profile of Injection Molding Optic Lens. J. Mater. Process. Technol. 2005, 70, 24–31. [CrossRef]
7. Shen, C.; Wang, L.; Li, Q. Optimization of Injection Molding Process Parameters Using Combination of Artificial Neural Network

and Genetic Algorithm Method. J. Mater. Process. Technol. 2007, 183, 412–418. [CrossRef]
8. Denni, K. An Integrated Optimization System for Plastic Injection Molding Using Taguchi Method, BPNN, GA, and Hybrid

PSO-GA. Ph.D. Thesis, Chung Hua University, Taiwan, China, 2004.
9. Bruno, S.; Joao, S.; Guillem, A. Machine Learning Methods for Quality Prediction in Thermoplastics Injection Molding.

In Proceedings of the 2021 International Conference on Electrical, Computer and Energy Technologies, Cape, South Africa,
16–17 November 2023; pp. 1–6.

10. Alberto, T.; Ramón, A. Machine Learning algorithms for quality control in Plastic Molding Industry. In Proceedings of the 2013
IEEE 18th Conference on Emerging Technologies & Factory Automation, Cagliari, Italy, 10–13 September 2013; pp. 1–4.

11. Mohammad, S.M.; Abbas, V.; Fatemeh, S. Optimization of Plastic Injection Molding Process by Combination of Artificial Neural
Network and Genetic Algorithm. J. Optim. Ind. Eng. 2013, 13, 49–54.

12. Yin, F.; Mao, H.; Hua, L.; Guo, W.; Shu, M. Back Propagation neural network modeling for warpage prediction and optimization
of plastic products during injection molding. Mater. Des. 2011, 32, 1844–1850. [CrossRef]

13. Matthias, S.; Dominik, A.; Georg, S. A Simulation-Data-Based Machine Learning Model for Predicting Basic Parameter Settings of
the Plasticizing Process in Injection Molding. Polymers 2021, 13, 2652.

14. Tsai, K.M.; Luo, H.J. An inverse model for injection molding of optical lens using artificial neural network coupled with genetic
algorithm. J. Intell. Manuf. 2017, 28, 473–487. [CrossRef]

15. Yang, K.; Tang, L.; Wu, P. Research on Optimization of Injection Molding Process Parameters of Automobile Plastic Front-End
Frame. Adv. Mater. Sci. Eng. 2022, 2022, 5955725. [CrossRef]

16. Hasan, T.; Alexandro, G.; Julian, H.; Thomas, T.; Christian, H.; Tobias, M. Transfer-Learning Bridging the Gap between Real and
Simulation Data for Machine Learning in Injection Molding. Procedia Cirp 2018, 72, 185–190.

17. Chai, Z.; Zhao, C.; Huang, B.; Chen, H. A Deep Probabilistic Transfer Learning Framework for Soft Sensor Modeling With Missing
Data. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 7598–7609. [CrossRef] [PubMed]

18. Zhou, J.; Wan, J.; Zhu, F. Transfer Learning Based Long Short-Term Memory Car-Following Model for Adaptive Cruise Control.
IEEE Trans. Intell. Transp. Syst. 2022, 23, 21345–21359. [CrossRef]

19. Muneeb, M.; Feng, S.; Henschel, A. Transfer learning for genotype–phenotype prediction using deep learning models. BMC
Bioinformatics 2022, 23, 511. [CrossRef] [PubMed]

20. Huang, Y.M.; Jong, W.R.; Chen, S.C. Transfer Learning Applied to Characteristic Prediction of Injection Molded Products. Polymers
2021, 13, 3874. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/polym14224842
https://www.ncbi.nlm.nih.gov/pubmed/36432969
https://doi.org/10.4314/ijest.v2i2.59133
https://doi.org/10.3390/polym14071467
https://www.ncbi.nlm.nih.gov/pubmed/35406340
https://doi.org/10.1007/s00170-019-04283-z
https://doi.org/10.1016/j.jmatprotec.2005.04.099
https://doi.org/10.1016/j.jmatprotec.2006.10.036
https://doi.org/10.1016/j.matdes.2010.12.022
https://doi.org/10.1007/s10845-014-0999-z
https://doi.org/10.1155/2022/5955725
https://doi.org/10.1109/TNNLS.2021.3085869
https://www.ncbi.nlm.nih.gov/pubmed/34129507
https://doi.org/10.1109/TITS.2022.3184290
https://doi.org/10.1186/s12859-022-05036-8
https://www.ncbi.nlm.nih.gov/pubmed/36447153
https://doi.org/10.3390/polym13223874
https://www.ncbi.nlm.nih.gov/pubmed/34833173

	Introduction 
	Background Knowledge 
	Computer Aided Engineering (CAE) 
	Back Propagation Neuron Network (BPNN) 
	Data Preprocessing 
	Correlation Analysis 
	Transfer Learning 

	Methodology 
	Transfer Learning of CAE Pre-trained Model 
	Transfer Learning of LT60 Pre-trained Model 
	Model’s Performance Comparative 
	Verification 

	Discussion 
	References

