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Abstract: Cloud detection in remote sensing images is a crucial preprocessing step that efficiently
identifies and extracts cloud-covered areas within the images, ensuring the precision and reliability
of subsequent analyses and applications. Given the diversity of clouds and the intricacies of the
surface, distinguishing the boundaries between thin clouds and the underlying surface is a major
challenge in cloud detection. To address these challenges, an advanced cloud detection method,
CloudformerV3, is presented in this paper. The proposed method employs a multi-scale adapter to
incorporate dark and bright channel prior information into the model’s backbone, enhancing the
model’s ability to capture prior information and multi-scale details from remote sensing images.
Additionally, multi-level large window attention is utilized, enabling high-resolution feature maps
and low-resolution feature maps to mutually focus and subsequently merge during the resolution
recovery phase. This facilitates the establishment of connections between different levels of feature
maps and offers comprehensive contextual information for the model’s decoder. The experimental
results on the GF1_WHU dataset illustrate that the method proposed in this paper achieves MIoU
of 92.89%, while achieving higher detection accuracy compared to state-of-the-art cloud detection
models. Specifically, in comparison to Cloudformer, our method demonstrates a 1.11% improvement,
while compared to CloudformerV2, there is a 0.37% increase. Furthermore, enhanced detection
performance is achieved along cloud edges and concerning thin clouds, showcasing the efficacy of
the proposed method.

Keywords: transformer; cloud detection; remote sensing images

1. Introduction

Remote sensing technology is assuming an increasingly pivotal role in the realm of
Earth observation. However, according to the International Satellite Cloud Climatology
Project Flux Data (ISCCP-FD) [1], high-altitude clouds blanket 66% of the Earth’s surface,
posing a significant impediment to acquiring substantial surface data. This limitation
curtails the potential of remote sensing technology. Therefore, within the realm of prepro-
cessing remote sensing images, the detection of clouds assumes paramount importance. By
effectively identifying clouds within remote sensing images, surface information can be
more accurately extracted. This enhances the authenticity and availability of remote sensing
images. Such enhancement holds tremendous practical significance, offering invaluable
support for endeavors such as archaeological research [2], the detection of changes in
landscape ecology [3], the identification of water bodies [4], weather forecasting [5], and
geological landscape analysis [6].

In cloud detection tasks, several challenges persist, such as the difficulty in distinguish-
ing between thin clouds and the Earth’s surface, the tendency for bright surfaces like ice
and snow to be mistakenly identified as cloud layers, and the challenges in detecting small
and fragmented clouds. Therefore, addressing the issue of unclear boundaries between
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thin clouds and the Earth’s surface in complex scenarios, this paper continues to delve into
the application of the transformer in the cloud detection task. Based on Cloudformer [7]
and CloudformerV2 [8], this study suggests using CloudformerV3 to recognize clouds in
high-resolution remote sensing image data.

The three important areas covered by CloudformerV3’s principal contributions are
as follows:

1. Multi-Scale Adapter Incorporation in the Encoder: Introducing a multi-scale adapter
within the encoder enhances the synergy between the pretrained natural image-based
backbone and the remote sensing image cloud detection process. This collabora-
tion facilitates multi-level feature extraction, allowing the model to gain a more
profound understanding of image structure and characteristics that are pertinent to
the task. Furthermore, through the use of an adapter, downstream tasks and other
prior information can be integrated into the model. This allows for the adaptation of
multi-channel data information without compromising the use of models pretrained
on a substantial amount of natural images;

2. Multi-Level Large Window Attention Enhanced Decoder Mechanism: In the decoder
stage, a novel approach is adopted involving the interaction of low-resolution feature
maps with high-resolution feature maps through large window attention, which
establishes connections across different levels of feature maps, thereby enabling the
model to enhance contextual understanding. This process encompasses incremental
layer-by-layer upsampling and fusion with higher-level feature maps. As a result,
the decoder comprehensively integrates feature information across multiple levels,
thereby intensifying the ability to detect cloud edges;

3. Integration of Dark and Bright Channel Prior to Information: During the data prepro-
cessing phase, the dark channel and bright channel prior information are computed
and then integrated into the generalized backbone through an adapter. This infusion
equips the model with prior feature information that significantly enhances cloud
detection capabilities. In particular, this enhancement contributes to distinguishing
thin clouds from the ground surface with greater precision.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. Section 3 presents the design details of our proposed network. Section 4 provides
the relevant experiments and setups. Section 5 summarizes our approach, and Section 6
presents the outlook.

2. Related Work

The traditional cloud detection method is based on spectral thresholds, which utilize
the unique physical characteristics of clouds to construct multiple spectral thresholds.
Among them, Automated Cloud Cover Assessment [9,10] (ACCA) and Function of Mask
(Fmask) [11] are the most representative methods. However, methods based on spectral
thresholds typically require remote sensing images to possess rich spectral information.
Therefore, these methods are often applied to imagery from the Landsat series or Sentinel-2
satellites, which provide extensive spectral data. For remote sensing images with a limited
number of spectral bands or those consisting primarily of visible light, such algorithms may
face challenges in effective operation. Moreover, methods based on spectral thresholds often
exhibit poor generalization capabilities, with limited robustness, particularly in diverse
and complex scenes [12,13]. Modern cloud detection technology is usually based on classic
machine learning methods, using algorithms such as Support Vector Machine (SVM) [14]
and Random Forest (RF) [15] to identify the cloud. The prediction time complexity for SVM
is generally O(d), where d is the number of features. And the prediction time complexity for
each tree is typically O(log(n)), where n is the number of nodes in the tree. These methods
make better use of spatial information from remotely sensed images and also reduce the
high dependence of remotely sensed image data on spectral range. However, due to the fact
that classical machine learning models typically require manual design of image features,
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this method is difficult to effectively extract higher-level semantic information and has poor
robustness to complex scenes [13].

In recent years, deep neural networks have shown good performance in segmentation
tasks due to their powerful feature extraction capabilities. This method has also been
applied to remote sensing image cloud detection and achieved good results. Inspired by
convolutional neural networks for semantic segmentation such as FCN [16], SegNet [17],
UNet [18], and DeepLabV3+ [19], Francis et al. proposed CloudFCN [20], a method of
cloud detection in combination with Inception module, while Jeppesen et al. proposed
RSNet (Remote Sensing Network) [21] for remote sensing images in RGB. As researchers
delve deeper into the realm of cloud detection tasks, they have recognized that devising
effective methods tailored to the distinct characteristics and challenges of cloud detection
tasks stands as a pivotal technology for enhancing algorithm precision. Yang and colleagues
introduced CDNet [22], a solution designed for low-resolution remote sensing thumbnail
images. This innovation bolsters the accuracy of detecting clouds in low-resolution images
through edge refinement and the integration of a feature pyramid structure. Li et al. focused
their efforts on high-resolution remote sensing images and devised MSCFF [23], which
employs a multi-scale feature fusion approach. Guo and his team proposed CDNetV2 [24],
a model that attains high-precision cloud detection, even in scenarios where clouds and
snow coexist. In 2022, He et al. proposed a lightweight network, DABNet [25], which
creates not only a lower false-alarm rate but also a clearer boundary. In the same year, to
effectively detect thin clouds, Li et al. proposed a novel robust cloud detection approach,
GCDB-UNet [26], which embeds GCDB (global context dense block) to UNet. The time
complexity of convolutional neural network models generally depends on the structure of
the model. When the number of input pixels is n, the time complexity of one convolutional
operation is usually O (n × K2 × C), where K is the size of the convolutional kernel and C
is the number of output channels. Typically, convolutional neural networks have higher
time complexity compared to traditional models.

Since 2018, the transformer [27] has achieved great success in the field of natural lan-
guage processing and has gradually been applied to image segmentation. The transformer
has powerful feature extraction capabilities, which can simultaneously model both global
and local features of an image. These abilities enable it to perform well in semantic seg-
mentation, and many high-precision semantic segmentation models have emerged, such as
SETR [28], SegFormer [29], MaskFormer [30], Mask2Former [31], Lawin Transformer [32],
ViT Adapter [33], and Mask DINO [34]. The time complexity of the transformer model
mainly considers the self-attention and feedforward neural networks. When the number of
input pixels is n, the actual complexity of the self-attention is usually O (n × L), where L is
the length of the input sequence. For feedforward neural networks, the time complexity
is usually proportional to the size of the input and the number of weight parameters.
Transformers have higher time complexity compared to convolutional neural networks in
general. However, when used for segmentation tasks, these models are usually easier to
achieve higher accuracy than convolutional neural network models. When directly apply-
ing the aforementioned models to the task of cloud detection in remote sensing images,
certain challenges persist. These include difficulties in distinguishing between thin clouds
and surfaces, the intricacy of detecting minute cloud formations, and the potential for
misidentifying bright surfaces or icebergs as clouds. To address these issues, it becomes
imperative to enhance or reconfigure models tailored to natural image data, enabling
their effective application to remote sensing image cloud detection tasks. A cloud detec-
tion method CloudViT [35] for a lightweight vision transformer was proposed by Zhang
et al. in 2023, which improves the vision transformer and improves model accuracy while
maintaining a small computational and parameter size. Our previous iterations such as
Cloudformer [7] and CloudformerV2 [8] have effectively tackled the challenge of detecting
small clouds, resulting in improved cloud detection accuracy and faster training inference.

The overarching framework of related work is shown in Figure 1.
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Figure 1. The overarching framework of related work, delineated into two categories: traditional
approaches and modern approaches. Traditional approaches comprise spectral threshold-based meth-
ods and machine learning methods. On the other hand, modern approaches encompass convolutional
neural networks, transformers, and specific remote sensing cloud detection models.

3. Materials and Methods
3.1. Overall Structure of CloudformerV3

The structure of CloudformerV3 is composed of two main components: the encoder
and the decoder, as depicted in Figure 2. Within the encoder, the backbone incorporates the
Mix Transformer [29], optimizing the extraction of image features and striking a balance
between accuracy and efficiency. During the fine-tuning process with cloud datasets, a
multi-scale adapter is introduced to work in conjunction with the backbone for downsam-
pling operations. Concurrently, the prior information from both dark and bright channels
is combined and infused into the backbone through the adapter, fostering comprehensive
interaction between the prior information and the input image. The encoder obtains the
multi-level feature layer and channels it to the decoder. This enables distinct feature layers
at varying levels to mutually focus on one another through a multi-level large window
attention. Subsequently, during the resolution recovery phase, the decoder progressively
upsamples and integrates the multi-level feature layer with higher-level feature layers. This
culminates in the generation of the segmentation result.
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Figure 2. The overall structure of CloudformerV3 consists of three main components: Green dashed
outline represents the input image and prior information, bule dashed outline represents the encoder
and purple dashed outline represents the decoder.

3.2. Multi-Scale Adapter

The traditional adapter [33] comprises three components: Spatial Prior Module, In-
jector, and Extractor. Spatial Prior Module is used to extract spatial information from the
image, while Injector and Extractor modules facilitate interaction with the backbone. When
applied to cloud detection, due to the substantial disparities between natural images and re-
mote sensing images, using the backbone trained on natural images directly for fine-tuning
yields unsatisfactory outcomes. In contrast, the adapter can infuse prior information from
remote sensing images into the backbone trained on natural images, rendering the model
better suited for cloud detection. This adaptation enhances the model’s effectiveness in
cloud detection tasks.

However, the traditional adapter cannot be applied to the hierarchical backbone struc-
ture, which makes the multi-scale feature extraction suffer. To solve this problem, this
paper proposes a novel multi-scale adapter that inserts DownSample Layer between each
Extractor and Injector, as shown in Figure 3. After the ith Extractor, it can obtain the output
feature Fi

sp ∈ R(HW/(2i)2+HW/(4i)2+HW/(8i)2)×Di . In the DownSample Layer, it is first split
and reshaped to obtain three feature maps Fi

sp1 ∈ RH/(2i)×W/(2i)×Di , with different resolu-
tions. Then the feature map is reduced to one-half of its original length and width by the
Patch Merging layer [36] to obtain F̂i

sp1 ∈ RH/(4i)×W/(4i)×Di+1 , F̂i
sp2 ∈ RH/(8i)×W/(8i)×Di+1 ,

and F̂i
sp3 ∈ RH/(16i)×W/(16i)×Di+1 . Finally, F̂i

sp1, F̂i
sp2, and F̂i

sp3 are flattened and concatenated

to obtain F̂i
sp ∈ R(HW/(4i)2+HW/(8i)2+HW/(16i)2)×Di+1 , which is injected into the next Injector.

The process can be formulated as:

Fi
sp1, Fi

sp2, Fi
sp3 = Reshape

(
Split(Fsp

i)
)

(1)

F̂i
spj = PatchMerging(Fspj), j ∈ {1, 2, 3} (2)

F̂i
sp = Flatten

(
Concat(F̂i

sp1, F̂i
sp2, F̂i

sp3)
)

(3)
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The utilization of a multi-scale adapter accomplishes more than just enhancing the
model’s suitability for the cloud detection task and introducing prior information. It also
empowers the backbone to acquire precise prior information across all scales, enabling
a more comprehensive grasp of the image’s structure and features. This facilitates im-
proved differentiation between regions containing clouds and those without, particularly
in intricate scenarios.

3.3. Multi-Level Large Window Attention and Decoder

Detecting thin clouds in remote sensing images is frequently intricately linked to the
surrounding context. The employment of multi-level feature maps extends a broader array
of contextual insights, equipping the model with an enhanced capacity to comprehend the
intricate interplay between thin clouds and their neighboring features. Consequently, this
advanced comprehension facilitates a more precise identification of thin clouds. Based on
the above reasons, this paper designs a novel decoder in conjunction with the multi-level
large window attention, so that the high-level feature maps and the low-level feature maps
can pay attention to each other and merge with each other.

Inspired by the concept of large window attention proposed in the Lawin Trans-
former [32], this paper introduces a multi-level large window attention. In the context
of the large window attention, a feature graph is divided into uniformly sized windows,
allowing each window denoted as Q to query a larger region represented by C. However,
within the framework of the multi-level large window attention, the low-resolution feature
map is segmented into n × n windows to replace the query window Q, while the high-
resolution feature map undergoes a similar partitioning into n × n windows to substitute
the queried region C. This transforms the operation of focusing on a single feature map
into the interaction between feature maps at different levels, as illustrated in Figure 4. As
the window slides across the low-resolution feature map, the current segment is permitted
to query the corresponding region within the high-resolution map, encompassing more
pixel information. This capability enables the decoder to establish connections between
feature maps at varying levels, thereby furnishing the model with a more extensive and
intricate contextual understanding.
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In the decoder, the multi-level feature maps of 1/4, 1/8, 1/16, and 1/32 of the
input image size in length and width obtained after passing through the encoder are
passed through the multilayer perceptron, respectively, to obtain F1/4 ∈ RH/4×W/4×D1 ,
F1/8 ∈ RH/8×W/8×D2 , F1/16 ∈ RH/16×W/16×D3 , and F1/32 ∈ RH/32×W/32×D4 . In this paper,
five parallel branches are designed in conjunction with multi-level large window atten-
tion, including a skip connection, a branch pooling F1/32 to obtain F̂pool ∈ RH/32×W/32×D4 ,
and the three branches will be F1/16, F1/8, and F1/4, respectively, with F1/32 in multi-level
large window attention to obtain F̂1/4 ∈ RH/32×W/32×D4 , F̂1/8 ∈ RH/32×W/32×D4 , and
F̂1/16 ∈ RH/32×W/32×D4 . All the obtained features are stitched together to obtain a feature
map with multi-level information. The process can be formulated as:

F̂pool = Pooling(F1/32) (4)

F̂i = LawinAtten(Fi, F1/32), i ∈ {1/4, 1/8, 1/16} (5)

C1/32 = Concat(F̂1/4, F̂1/8, F̂1/16, F̂pool , F1/32) (6)

C1/32 is upsampled layer by layer through the three feature fusion modules and in the
process fused with the high-level feature maps F1/16, F1/8, and F1/4, respectively, spliced
to recover the image resolution to obtain C1/4. Finally, the result is output after passing
through the multilayer perceptron and upsample layer.

3.4. Dark and Bright Channel Prior Information

Because of the visual resemblance between thin clouds and haze, cloud detection tasks
exhibit similarities with tasks involving the dehazing of remote sensing images [37]. In
the realm of image dehazing, the dark channel prior [38] and the bright channel prior [39]
hold substantial importance. During the preprocessing phase of this research, alongside
utilizing image information from the three RGB channels, both the dark channel and the
bright channel priors are integrated to aid the detection model. For a given image, the dark
channel is defined as:

Idark(x) = min
c∈{r,g,b}

(
min

y∈Ω(x)
(Ic(y))

)
(7)

while the bright channel is defined as:

Ibright(x) = max
c∈{r,g,b}

(
max

y∈Ω(x)
(Ic(y))

)
(8)

where Ic represents the RGB color mode of the image I, Ω(x) denotes a local region centered
at x, and y represents a pixel point in the image I. When extracting the dark channel and
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the bright channel, to retain as much original information as possible, the size of Ω(x) is
chosen as 1 × 1. This is because image segmentation is an end-to-end task.

Figure 5 provides an illustration of the dark channel and the bright channel for the
same scene. In remote sensing images containing cloud layers, both thin and thick clouds
have pixel points x with values of Ibright(x)→ 255 , resulting in a more complete image
structure at the edges of clouds in the bright channel compared to the dark channel. In the
dark channel, the value of Idark(x) in cloud-obscured regions is notably distinct from that
in non-cloud regions, indicating that the dark channel enhances the brightness contrast
between the cloud-obscured and non-cloud areas, facilitating a clearer differentiation
between clouds and background information. Therefore, this study concatenates the dark
channel and the bright channel for input into the model, allowing them to complement each
other’s strengths and weaknesses, thereby providing a more comprehensive and enriched
set of image information.
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4. Results
4.1. Dataset

High-resolution remote sensing image data possess characteristics such as high spa-
tial resolution and detailed terrain features, often making them sensitive to cloud and
fog presence. Hence, for the experimental dataset, this study selected the GF1_WHU
dataset [40]. Acquired from May 2013 to August 2016, the dataset comprises 108 scenes of
GF-1 Wide Field of View (WFV) 2A-level images along with their corresponding reference
masks. These reference masks are manually drawn through visual inspection, resulting in
more precise delineation of cloud and cloud shadow boundaries, which facilitates better
model fitting. Example graph of the dataset is shown in Figure 6. To reduce computational
complexity, this study employed RGB channel image thumbnails. Given the focus on cloud
detection, the dataset was further processed to remove cloud shadow annotations. Ulti-
mately, it was resized to 777 images of dimensions 512×512 for both training and testing.
Among them, 538 images were allocated for training, while an additional 239 images were
set aside for testing.
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4.2. Experimental Environment

The experimental computations were conducted using the powerful Nvidia GeForce
RTX 2080 Ti graphics processing unit (GPU). The GPU was integrated into a system running
Linux, and the experiments were conducted using PyTorch 1.8.1 framework.

4.3. Training and Testing Process

We employed the cross-entropy loss function and the AdamW optimizer, coupled
with a polynomial learning rate adjustment strategy and linear warm-up at the beginning,
which aids in effectively smoothing the convergence and stabilizing the model during the
initial training phases. Throughout the training process, we closely monitored the loss
function values to assess the model’s convergence. When the model’s performance became
stable, and the loss values exhibited no significant fluctuations, training was concluded.
In the testing stage, we conducted a thorough evaluation using comprehensive metrics,
including mean intersection over union (MIoU) [41], mean accuracy (MAcc) [42], and pixel
accuracy (PAcc) [43], to assess the model’s overall performance on the test dataset. These
metrics offered profound insights into the model’s applicability and effectiveness. These
formulas define the evaluation metrics:

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(9)

MAcc =
1

k + 1

k

∑
i=0

TP
FP + TP

(10)

PAcc =
TP + TN

TP + TN + FP + TN
(11)

where k represents the number of categories. Due to cloud detection being a binary
classification problem, k = 1 during the computation process. TP (True Positive) signifies
the count of pixels correctly predicted as clouds by the model, TN (True Negative) represents
the count of pixels correctly predicted as background, FP (False Positive) stands for the
count of misclassified pixels predicted as clouds, and FN (False Negative) denotes the count
of missed pixels predicted as background.

4.4. Ablation Experiment
4.4.1. Performance Verification of the Multi-Scale Adapter

To explore the impact of the multi-scale adapter for the model, a quantitative analysis
was conducted by comparing the performance of models without the adapter and those
with the multi-scale adapter. And to avoid the influence of prior information on dark and
bright channels, the input image information only includes RGB channels. The results are
presented in Table 1. It can be observed that the model with the introduced multi-scale
adapter exhibits stronger adaptability in terms of network structure. This enables better
integration of prior information from remote sensing images, resulting in superior perfor-
mance in cloud detection tasks. Consequently, the model’s accuracy in cloud detection is
effectively enhanced.

Table 1. Performance comparison of models before and after adding the multi-scale adapter.

Encoder MIoU (%) MAcc (%) PAcc (%)

Mix transformer 91.63 94.97 96.44
+Multi-Scale Adapter 92.43 95.62 96.95

Furthermore, a comparative analysis of images processed by models without the
adapter and models with the multi-scale adapter was conducted, as shown in Figure 7.
Through this analysis, it becomes evident that images processed with the adapter exhibit
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notably improved detection performance at cloud edges. The differentiation between thin
clouds and the background aligns more closely with the true label values. This observation
suggests that the model’s perceptual capabilities are enhanced, consequently improving its
accuracy and robustness in practical applications. This further validates the effectiveness
of the multi-scale adapter in cloud detection tasks.
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4.4.2. Performance Validation of Multi-Level Large Window Attention

To validate the performance of the decoder using the multi-level large window atten-
tion, this study replaced the large window attention for both low-resolution feature layers
and high-resolution feature layers with attention solely driven by high-resolution feature
layers. Furthermore, in order to ensure consistent feature map sizes, bilinear interpola-
tion was employed to downsample the high-resolution feature layers used by the latter
approach. The results obtained from the experiment are presented in Table 2. These results
indicate that using the multi-level large window attention with integration of both low-level
semantic information and high-level semantic information yields higher model accuracy.

Table 2. Performance comparison between single-level layer large window attention and multi-level
large window attention.

Decoder MIoU (%) MAcc (%) PAcc (%)

Single feature layer 92.26 95.54 96.83
Multi-feature layer 92.89 96.04 97.12

The segmentation results of the two models were also compared in this study, as
illustrated in Figure 8. It can be observed that, compared to employing the large window
attention on a single feature map, conducting the large window attention operation between
low-level and high-level feature maps leads to a significant enhancement in detecting cloud
edges. This observation highlights the effectiveness of the multi-feature layer large window
attention in considering information from different levels, resulting in improved cloud
detection performance by the model.
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4.4.3. Performance Validation of Dark Channel and Bright Channel Prior information

To validate the effectiveness of the dark channel and bright channel prior information
in remote sensing image cloud detection, this study introduced various combinations of
different channels into the input of the adapter and conducted corresponding experiments
and analyses. While retaining the RGB channel image as the input to the backbone, seven
different image data input methods were introduced in the adapter: RGB channels, dark
channel, bright channel, concatenation of dark channel and RGB channels, concatenation
of bright channel and RGB channels, concatenation of dark channel and bright channel,
and concatenation of dark channel, bright channel, and RGB channels. The experimental
results are presented in Table 3.

Table 3. Comparison of effects from different channels input image data.

Input Channel MIoU (%) MAcc (%) PAcc (%)

RGB 92.43 95.62 96.95
Dark 92.71 95.77 97.09

Bright 92.68 95.83 97.05
Dark + RGB 92.33 95.48 96.91

Bright + RGB 92.14 95.51 96.84
Dark + Bright 92.89 96.04 97.12

Dark + Bright + RGB 92.03 95.45 96.78

From the experimental results, the following trends can be observed: When combining
the dark channel and bright channel prior information and inputting them into the adapter,
the model achieves the highest detection accuracy. This indicates that the fusion of these two
types of prior information in remote sensing image cloud detection tasks provides the model
with more comprehensive and accurate information, leading to superior performance.
Furthermore, the experimental results for separately inputting the dark channel or bright
channel prior information follow, with both demonstrating better performance compared
to solely inputting RGB channels. This result emphasizes the role of the dark channel and
bright channel prior information in enhancing model performance. However, a decline
in accuracy is observed when attempting to concatenate the RGB channels with the prior
information and inputting them into the adapter. This could be attributed to conflicting
information or increased model complexity, leading to poorer interaction between channels,
consequently affecting the effectiveness of the prior information.
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4.5. Comparison with State-of-the-Art Methods

The experiments conducted on the GF1_WHU dataset reveal that CloudformerV3
surpasses existing advanced methods in terms of accuracy. Meanwhile, we compared
the speed at which different models can infer an image with a resolution of 512 × 512,
as illustrated in Table 4. This underscores CloudformerV3’s remarkable advantage in
terms of segmentation precision. Furthermore, in real-world detection scenarios, Cloud-
formerV3 demonstrates significant enhancement in segmentation performance, as depicted
in Figure 9.

Table 4. Comparison of performance with state-of-the-art methods. Indicators with ↑ prefer higher
values, while those with ↓ favor lower values.

Method
Evaluation Metrics Inference Time

(ms) ↓MIoU (%) ↑ MAcc (%) ↑ PAcc (%) ↑
SwinTransformer-UperNet 90.47 93.37 94.12 12.07

Mask2former 90.89 94.69 94.89 13.84
Segformer 90.65 94.92 95.61 8.40

Lawin transformer 90.73 94.55 95.67 10.92
GCDB-UNet 89.45 93.62 94.08 7.83

ViT Adapter-UperNet 91.85 95.20 96.11 18.87
Cloudformer 91.78 94.49 95.07 11.20

CloudformerV2 92.52 95.66 96.75 14.29
CloudformerV3 92.89 96.04 97.12 15.54

Figure 9. Versus different methods using the GF1_WHU dataset. (a) Image. (b) CloudformerV3.
(c) CloudformerV2. (d) Cloudformer. (e) Lawin transformer. (f) Segformer.

This model adeptly captures cloud textures, shapes, and contextual information,
leading to more precise and refined segmentation of delicate cloud segments. These
outcomes underscore the exceptional performance of CloudformerV3 in cloud detection
within high-resolution remote sensing images, offering a dependable solution for cloud
detection tasks within the domain of remote sensing imagery applications.

5. Conclusions

This paper addresses the challenge of distinguishing between thin clouds and the
unclear boundaries of surfaces in complex scenes, proposing an effective cloud detection
method named CloudformerV3 tailored for high-resolution remote sensing image data. By
introducing a multi-scale adapter into the backbone, this method accomplishes dual objec-
tives: injecting prior information from remote sensing images into the backbone to enhance
its suitability for remote sensing image cloud detection tasks, and enabling multi-scale
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feature extraction in collaboration with the backbone to capture richer image informa-
tion. Additionally, the decoder employs multi-level large window attention, facilitating
the establishment of connections between feature maps from different levels. In the data
preprocessing stage, dark channel and bright channel prior information is incorporated,
enabling the model to acquire more comprehensive prior knowledge. This approach offers
a strategy to integrate multi-channel remote sensing image prior information into a model
pretrained on natural images. Compared to existing advanced models, CloudformerV3
exhibits superior performance on the GF1_WHU dataset, boasting higher accuracy and
effectively enhancing its ability to detect thin clouds and cloud edges. These findings
validate for effective cloud detection of CloudformerV3 in optical remote sensing image.

6. Future Perspectives

While CloudformerV3 has showcased impressive performance on the GF1_WHU
dataset, it is imperative to acknowledge its inherent limitations. The integration of so-
phisticated elements like the multi-scale adapter and multi-level large window attention
introduces potential challenges in terms of computational expenses. Additionally, de-
spite its outstanding performance on high-resolution imagery, there is a need for further
validation regarding its generalization capabilities across diverse datasets and varied geo-
graphical settings.

Potential Directions for Future Research:

1. Enhancing Computational Efficiency: In order to mitigate computational costs, future
research endeavors can focus on refining the computational efficiency of Cloud-
formerV3. This may involve exploring more lightweight network architectures or
optimizing algorithms;

2. Investigating Generalization Performance: Further studies should delve into the gen-
eralization performance of CloudformerV3 across different datasets and geographical
environments, ensuring its robustness and reliability in practical applications;

3. Integration of Multi-Source Data: Considering the integration of diverse remote
sensing data sources, such as infrared or radar data, into CloudformerV3 could
enhance its adaptability to multi-modal data, broadening its applicability.
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