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Abstract: In this study, an effective travel cost (ETC) traffic equilibrium model is proposed for
multi-modal networks with uncertain demands. The multi-modal networks are transformed into
supernetworks and travel demands are assumed to be closed intervals. Passenger flows and travel
costs are also formulated as closed intervals to capture the effects of uncertain demands. The ETC
concept is introduced and regarded as a choice criterion to develop an equilibrium model which
captures travellers’ travel mode and route choice behavior under interval travel costs. The model is
formulated as a variational inequality problem, and the method of successive average algorithm is
adapted to interval mathematics to obtain the results in the form of interval variables. Illustrative
examples are also presented to demonstrate the model’s characteristics and its differences from the
traditional equilibrium model, in which the expected travel cost is regarded as the choice criterion.

Keywords: uncertain demands; multi-modal network; effective travel cost; interval variables;
variational inequality problem

1. Introduction

In recent years, significant advances have been realized in the formulation and analysis
of traffic equilibrium models for multi-modal networks. Fernandez et al. (1994) [1]
developed a mathematical programming formulation for traffic equilibrium models in
bimodal networks. Wu and Lam (2003) [2] investigated travellers’ behaviors under a
multi-modal network with motorized and non-motorized transport modes and formulated
an equilibrium model for a variational inequality problem. Lo, Yip, and Wam (2004) [3],
considering car, bus, and subway as transport modes in the network, proposed a three-level
Negst logit model to describe combined-mode, transfer location, and route choices and
formulated the equilibrium model as a nonlinear complementarity problem. Meng and
Liu (2012) [4] proposed a binary logit model for the mode choice and a multinomial probit
model to capture route choice, and formulated the equilibrium model as a fixed-point
problem. Kitthamkesorn et al. (2016) [5] adopted a nested and a cross-nested logit model to
capture the mode similarity and route overlap, respectively, and formulated the equilibrium
model as a mathematical programming problem. Wang et al. (2018) [6] proposed a
combined multinomial logit modal for mode choice and a paired combinatorial logit model
for route choice and developed the MNL-PCL model as a mathematical programming
problem. Wang et al. (2020) [7] adopted a dogit model to capture travellers’ mode choice
and a path-size logit model to express route overlapping effects and formulated a combined
model as an equivalent entropy-based mathematical programming problem.

However, in these studies, the travel demands were assumed to be perfectly known.
In reality, travel demands fluctuate randomly, which is caused by factors such as time of
day, day of the week, or seasonal effects. These factors are particular cases of travel demand
fluctuations that cause traffic flow to differ significantly from its typical pattern. They
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also directly contribute to the variability of network travel cost (e.g., travel time, crowd
discomfort, and other attributes), which will influence travellers’ choices.

Uncertain demands have been considered in pure-mode network equilibrium frame-
works. The effects of travel time variability on travellers’ route choice have been discussed
in several surveys, where uncertain demands were modelled using random variables. In
travel behavior modelling, a trip can be successfully fulfilled within a given travel time
range, which is referred to as travel time reliability. This gives rise to the concept of the
travel time budget, which is defined as the average travel time plus an extra buffer time
as an acceptable margin, which has been the theme of reliability-based user equilibrium
models (Lo, Luo, and Siu (2006)) [8]. Subsequently, later efforts were devoted to the im-
provement of this model and some applications were discussed (Shao et al. (2006) [9]; Shao,
Lam, and Mei (2006) [10]; Siu and Liu (2008) [11]). The effect of the unreliability aspect
of travel time variability affects the travellers’ route choice decision process when a trip
time longer than expected is considered as ’unreliable’ or ’unacceptable’ (Systematics, and
Texas (2003) [12]). Watling (2003) [13] proposed “late arrival penalised” as the route choice
criterion and measured the penalty cost of delays. Chen and Zhou (2010) [14] proposed a
new model called the α-reliable mean-excess travel time user equilibrium model, which
considered both the reliability and unreliability aspects of travel time variability. Following
a similar approach, Lu, Pu, and Liu (2012) [15] proposed the budget-excess travel time user
equilibrium model under stochastic capacity and demands, which assumed that travel
demands obey a Gamma distribution while the link capacity obeys a uniform distribution.

On the other hand, in some studies, uncertain demands are assumed to belong to a
specific set (Zhang, Chen, and Sumalee (2011) [16]; Xu, Cheng, and Wang (2011) [17]; Wei,
Chen, and Wu (2021) [18]). Xu, Cheng, and Wang (2011) [17] introduce the strong Wardrop
equilibrium in a new model which allowed flexible demand and supply uncertainties.
Later, Zhang, Chen, and Sumalee (2011) [16] proposed a robust Wardrop’s user equilib-
rium assignment by following the expected residual approach, which is a deterministic
formulation of the stochastic complementarity problem. Recently, Wei, Chen, and Wu
(2021) [18] proposed a vector network equilibrium model where the demands belong to a
closed interval.

However, few works focus on the multi-modal network equilibrium problem with
uncertain demands. In this paper, an effective travel cost (ETC)-based traffic equilibrium
model is presented for multi-modal networks under uncertain demand. By applying
supernetwork theory, multi-modal networks are transformed into super networks, in
which the probable transfer rules are automatically captured and combined-mode trips
and pure-mode trips are presented completely. Travel demands are expressed as a closed
interval whose upper and lower bounds are determined using historical data. Passenger
flows and travel costs are also formulated as closed intervals to capture the effects of
demand uncertainty. Then, the ETC concept is analyzed, which explicitly considers both
reliability and unreliability aspects of interval travel cost for different travel modes and
the travel route choice decision process. ETC is proposed as a mode and route choice
criterion in a traffic equilibrium framework and an equilibrium model is presented to
better understand travel mode and route choices under interval travel costs. The model
is formulated as a variational inequality problem and solved using an interval-based
MSA algorithm. Illustrative examples are also presented to demonstrate the model’s
characteristics and its differences compared to traditional equilibrium models, in which the
expected travel cost is regarded as a choice criterion.

2. Notations and Network Representation
2.1. Notation

• G multi-modal transport network: G = (N, A);
• N set of physical nodes: N = {n};
• A set of physical links: A = {a};
• I set of transport modes;
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• i individual transport mode, i ∈ I : 1(bike), 2(bus), 3(subway), 4(car);
• J set of bus lines of transport mode bus;
• j individual bus line: j ∈ J;
• M set of travel modes;
• m individual travel modes: m ∈ M;
• Pw set of routes between the origin and destination (OD) node pair w: p ∈ Pw;
• Pm

w set of routes in travel mode m between OD pair w: Pw = ∑
m

Pm
w ;

• qw travel demands between OD pair w;
• qm

w the proportion of passengers for travel mode m in OD pair w: qw = ∑
m

qm
w ;

• G′ super network: G′ = (V, L);
• V set of nodes: V = {v};
• L set of links: L = {l};
• vl passenger flow on link l;
• vi

l passenger flow of transport mode i on physical link l;
• f p

w passenger flow of route p between OD pair w;
• cl travel cost of link l;
• cp

w travel cost of route p between OD pair w;
• σlp incidence relationship between link and route; if link is on route, σlp = 1, and

otherwise it is 0;
• tl travel time of link l;
• ti

l travel time of transport mode i on physical link l;
• th

l travel time on transfer link l;
• ts

l travel time on network access link l;
• tx

l travel time on network departure link l;
• ul crowd discomfort of link l;
• ui

l crowd discomfort of transport mode i on physical link l;
• uh

l crowd discomfort on transfer link l;
• us

l crowd discomfort on network access link l;
• ux

l crowd discomfort on network departure link l;
• ml travel fare of link l;
• mi

l travel fare of transport mode i on physical link l;
• mh

l travel fare on transfer link l;
• ms

l travel fare on network access link l;
• mx

l travel fare on network departure link l;
• λt coefficient for travel time;
• λu coefficient for crowd discomfort;
• λm coefficient for travel fare;
• ti0

l free-flow travel time for transport mode i on physical link l;
• tbi

l walking time for transfer to transport mode i on transfer link l;
• tdi

l waiting time for transfer to transport mode i on transfer link l;
• ui0 crowd discomfort of transport mode i per time unit;
• uh0

crowd discomfort for transfer per time unit;
• mi0 travel fare of mode i per distance unit;
• mh0

travel fare for transfer;
• hl length of link l;
• Bl road capacity for transport mode 1 (non-motor vehicles) on physical link l;
• Cl road capacity for transport modes 2 and 4 (motor vehicles) on physical link l;
• α, β modal parameters of travel time function;
• α′, β′ modal parameters of crowd discomfort function;
• γ crowd discomfort-time conversion coefficient;
• π travel fare-time conversion coefficient;
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• f passenger equivalents for transport mode 2 (bus);
• g passenger equivalents for transport mode 4 (car);
• Sj number of seats of bus j;
• Aj passenger capacity of bus j;
• ĉp

w effective travel cost (ETC);
• c̃w travel cost budget (TCB);
• ςm

w expected free-flow travel cost of routes in travel mode m for OD pair w;
• ω deviation value;
• µm

w ETC of minimum route in travel mode m for OD pair w;
• θ parameter of on travel utility perception variation.

2.2. Multi-Modal Transport Network

Consider a multi-modal transportation network, G = (N, A), where N, A, respectively,
are the sets of physical nodes and physical links. As shown in Figure 1, the network includes
two OD pairs and four transport modes. The origin is set as Node 1, and the destinations
as Node 9 and Node 12, respectively. The transport modes in the multi-modal network are,
respectively, bicycle (transport mode 1), bus (mode 2), subway (mode 3), and auto (mode 4).
Specifically, there are three lines of transport mode buses with corresponding operating
frequencies and bus vehicles with a specific number of seats and capacity. The physical
node in the network is also a transfer node; that is, travellers can complete a probable
transfer on any physical node. In this multi-modal transportation network, travellers can
choose one or more modes of transportation.There will be these travel modes: bicycle, bus,
subway, car, bicycle+bus , bicycle+subway, bus+subway. In practice, if the traveller chooses
car (mode 4), it is impossible for transfer behavior to occur most of the time. Therefore, the
combination of cars and other modes of transportation is not considered.
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Figure 1. Multi-modal transportation network.

Traffic assignment in a multi-modal network is more complicated than the assignment
of pure vehicular or bus trips. In multi-modal networks, it involves pure-mode trips versus
combined-mode trips. Compared to a pure-mode trip, in a combined-mode trip, travellers
choose not only the routes, but also the transport modes and the kinds and locations
of transfers.

To flexibly present combined- and pure-mode trips, the supernetwork concept is
adopted, in which the probable transfer rules are automatically captured completely. This
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is accomplished by constructing the sub-network layer for each transport mode and con-
necting the origin to the sub-network of each transport mode by the access link, which
represent online travel behavior and off-road behavior. And nodes of the sub-network
of each transport mode are connected to the corresponding (same-named) nodes of other
single-transport-mode networks by transfer links, connecting the destinations to the sub-
network of each transport mode, which represent the transfer behavior in the physical
node. According to the actual travel behavior of most travellers and the convenience of
research, we assume that a traveller cannot transfer more than two times, and the car mode
does not involve any transfers.

In Figure 2, the super network G′ = (V, L) is illustrated, where V, L, respectively, are
the sets of nodes and links. It is constructed so that each single-transport-mode network
is represented individually on separate layers interconnected using transfer links. The
links can be divided into transfer links, physical links, network access links, and network
departure links. The nodes can be divided into the origin, the destination, and physical
nodes (which are also transfer nodes).

Figure 2. Supernetwork.

After a multi-modal network has been transformed into a supernetwork, it can be
considered as a simple network without the need to consider transfer feasibility and related
issues. On the other hand, a route in the supernetwork automatically combines the mode
transfer choices, which can be decoded for the specific modes used and transfer locations
selected. Then, the travellers’ choices in the supernetwork can be broadly categorized into
two groups: travel mode choice, which involves the selection of a pure or a combined
transport mode, and travel route choice. In addition, care must be exercised in defining the
maximum number of transfers and formulating the set of probable transfers so as to strike
a balance between capturing realistic transfer behaviors and the proliferation of nodes in
the supernetwork. In this study, it is assumed that a traveller cannot transfer more than
two times, and the car mode does not involve any transfers. Based on the above, a viable
hyper-path in a supernetwork is defined as a hyper-path composed of paths that do not
include more than two modes. That is, in viable hyper-paths, transfer links are not used
more than once.
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3. Generalized Travel Cost Function

In this paper, the equation for the generalized travel cost for physical, transfer, network
access, and network departure links is derived. The generalized travel cost function is
regarded as a weighted sum of travel time, crowd discomfort, and travel fare:

cl = λttl + λuul + λmml (1)

where tl (min) is the travel time of link l; ul (min) is the crowd discomfort of link l; ml (min)
is the fare of link l; λt, λu, and λm, respectively, are the weights of the travel time, crowd
discomfort and fare, dimensionless unit, with values of 0.5, 0.3, and 0.2.

Under the assumption that link travel costs are mutually independent, the travel cost
for each route can be calculated analytically as follows:

cp
w = ∑

l
clσ

lp
w , l ∈ L (2)

where σlp is incidence relationship between link and route. If the link is on the route,
σlp = 1, and otherwise it is 0.

3.1. Physical Links
3.1.1. Transport Mode 1 (Bicycle)

The travel time t1
l considering congestion on road traffic can be modelled using the

widely used Bureau of Public Road function as (Sheffi (1985) [19])

t1
l = t10

l

1 + α

(
v1

l
Bl

)β
 (3)

where t10

l (min) is the free-flow travel time of mode 1 on physical link l; v1
l (passengers ·

(h−1)) is the traffic volume of mode 1 on physical link l; Bl(pcu · (h−1)) is the road capacity
for mode 1; and α, β are model parameters with dimensionless units, usually with values
of 0.15 and 4.

In many cases, crowd discomfort is considered to be associated with many factors,
such as travel time, passenger volume of physical links, capacity of the vehicle, and so
on. For simplicity, in this study, crowd discomfort is assumed to be a linear function of
travel time:

u1
l = γu10

t1
l (4)

where γ is the crowd discomfort-time conversion coefficient, a dimensionless unit, with a
usual value of 0.5, and u10

(min−1) is the crowd discomfort per time unit.
In this study, the travel fares of the bicycles are considered to be directly proportional

to the travel distance:
m1

l = πm10
hl (5)

where π is the travel fare-time conversion coefficient, a dimensionless unit, with a usual
value of 0.5; m10

(km−1) is the travel fare of mode 1 per distance unit; and hl(km) is the
length of link l.

Combining the above, the travel cost function of mode 1 on link l can be written
as follows:

c1
l =

(
λt + λuu10

)
t10

l

[
1 + α

(
vl
Bl

)β
]
+ λmπm10

hl (6)

3.1.2. Transport Mode 2 (Bus)

The routes of buses are fixed, but traffic volumes depend on the network congestion.
In the physical network, transport mode 2 shares the congestion effect with mode 4 (car).
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Therefore, the travel time t2
l considering congestion in road traffic can be formulated

as follows:

t2
l = t20

l

1 + α

(
f v2

l + gv4
l

Cl

)β
 (7)

where t20

l (min) is the free-flow travel time of mode 2 on link l; v2
l and v4

l , respectively, are
the passenger flow of modes 2 and 4 on link l; Cl(pcu · h−1)) is the road capacity of the
physical link for mode 2 and mode 4; α, β are modal parameters; f , g are, respectively, the
passenger equivalents for modes 2 and 4, and passenger equivalents for transport mode
2 (bus) f . Supposing that the average number of bus passengers is 20 and the average
number of passengers in a car is 2, we can obtain values of 0.5 and 0.05.

There are assumed to be three bus lines on the road network with corresponding
vehicle types and frequencies. Each vehicle type operates with a specific number of seats
and capacity, which incur a specific crowd discomfort. Thus, the crowd discomfort for mode
2 is formulated as a function of the number of seats, per-vehicle capacity, and travel time.

u2
l = γu20

1 + α′
(

v2
l − Sj

Aj

)β′
t2

l (8)

where u20
(min−1) is the crowd’s discomfort without passengers per time unit; Sj (passen-

gers) is the number of seats in bus j; Aj(passengers) is the vehicle capacity of bus j; α′, β′

are model parameters, of a dimensionless unit, with usual values of 0.02 and 1.8.
The travel fare of mode 2 on transfer links is assumed to be fixed. Therefore, the travel

cost function of link l can be expressed as follows:

c2
l =

λt + λuu20

1 + α

(
v2

l − Sj

Aj

)β
t20

l

1 + α

(
f v2

l + gv4
l

Cl

)β
 (9)

3.1.3. Transport Mode 3 (Subway)

In the absence of congestion, the travel time on the physical links for transport mode 3
is assumed to be fixed:

t3
l = t30

l (10)

where t30

l (min) is the free-flow travel time of mode 3 on physical link l, and is equal to the
average travel speed of the subway.

By applying a crowd discomfort function similar to (4), the crowd discomfort of mode
3 on physical link l can be expressed as follows:

u3
l = γu30

t3
l (11)

where u30
(min−1) is the crowd discomfort per time unit.

Similarly to (5), the travel fare of mode 3 is

m3
l = πm30

hl (12)

where m30
(km−1) is the travel fare of mode 3 per unit distance.

Combining the above, the travel cost of transport mode 3 on each link is established
as follows:

c3
l =

(
λt + λuu30

)
t30

l + λmπm30
hl (13)
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3.1.4. Transport Mode 4 (Car)

To remain consistent with transport mode 2, the travel time of mode 4 t4
l takes into

account road traffic congestion and can be modelled as follows:

t4
l = t40

l

1 + α

(
f v2

l + gv4
l

Cl

)β
 (14)

where t40

l (min) is the free-flow travel time of mode 4 on physical link l.
According to the above, the crowd discomfort and travel fare of mode 4 on physical

links are obtained as follows:

u4
l = γu40

t4
l (15)

m4
l = πm40

hl (16)

where u40
(min−1) is the crowd’s discomfort per time unit and m40

(km−1) is the travel fare
of mode 4 per unit distance.

Then, the travel cost of transport mode 4 on each link is

c4
l = λtt40

l

1 + α

(
f v2

l + gv4
l

Cl

)β
+ λmπm40

hl (17)

3.2. Transfer Links

Travel time in transfer links includes transfer waiting time and transfer walking time.
For simplicity, in this study, the frequency of the bus and subway modes running on fixed
routes and the average walking time transfer node are fixed. Then, the travel time for
transfer links can be written as follows:

th
l = tbi

l + tdi
l (18)

where tbi
l (min) is the average walking time for transfer to transport mode i; tdi

l (min) is
the average waiting time for transfer to transport mode i; tbi

l (min) is a nonzero constant if
i = 3, and otherwise tbi

l (min) is 0; tdi
l (min) is a nonzero constant if i = 2, 3, that is, the time

of frequency of modes 2 and 3. Otherwise, tdi
l (min) is 0.

To maintain consistency with (4), crowd discomfort due to transferring can be ex-
pressed as follows:

uh
l = γuh0

th
l (19)

where uh0
(min−1) is the average crowd discomfort per time unit due to transferring.

While the travel fares of the transport modes (apart from mode 2) have been considered
on physical links, only the travel fares of mode 2 are considered on transfer links. They are
considered to be fixed, while the fares for the other modes are set to zero.

mh
l = πmhi (20)

where mhi (km−1) is a nonzero constant if i = 2, and otherwise mhi is 0.
Consequently, the travel cost function of a transfer link is represented as follows:

ch
l =

(
λt + λu × γ× uh0

)
×
(

tbi
l + tdi

l

)
+ λmmhi (21)
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3.3. Network Access and Departure Links

Similar to transfer links, the travel time on network access links is the transfer waiting
time plus the transfer walking time, while on network departure links, the travel time is
equal to the walking time. The travel fare is not taken into account, so the travel costs on
network access links and network departure links are, respectively, represented as follows:

cs
l =

(
λt + λu × γ× uh0

)(
tbi
l + tdi

l

)
+ λmmhi (22)

cx
l =

(
λt + λu × γ× uh0

)
tbi
l (23)

4. Effective Travel Cost (ETC) and Traffic Equilibrium Model
4.1. Effective Travel Cost

Due to the demand for interval travels, the travel cost of a route becomes an interval
variable. If only the expected value of the interval travel cost in travel mode and travel
route decision is considered similarly to the traditional equilibrium model, it is difficult
to illustrate the travellers’ real choices comprehensively. Therefore, a new choice criterion
needs to be defined and a corresponding equilibrium model needs to be formulated to
capture travellers’ choices on travel modes and routes under the interval travel cost.

By analyzing the characteristic of interval travel cost, the concept of ETC, denoted as
ĉp

w, is proposed, which explicitly considers both reliability and unreliability aspects of the
interval travel cost in the travel mode and route choosing process. First, a predicted travel
cost value is considered from the origin to the destination, which is defined as the TCB.

Definition 1. The TCB is defined as an interval variable c̃w = [c̃−w , c̃+w ], of which the mean value
is calculated as follows (Moore (1996, 1979) [20,21]):

c̃−w + c̃+w
2

= ∑
m

ςm
w (24)

where ςm
w is the expected free-flow travel cost of routes in travel mode m for OD pair ω; the deviation

value of TCB is calculated as follows:

c̃+w − c̃−w
2

=
c̃−w + c̃+w

2
×ω (25)

where ω is defined as an acceptable deviation value, which reflects the traveller’s tolerance for
variability of the interval travel cost. The value is assumed to be 0.1.

Comparing the upper and lower bounds of the budgeted travel cost with the actual
travel cost, the actual travel cost can be divided into multiple subintervals. If the value in
the sub-interval is likely to be less than the budgeted travel cost, the sub-interval is called
the reliability part of the actual travel cost. If the value in the subinterval is likely to be
greater than the budgeted trip cost, the subinterval is said to be the unreliable part of the
actual trip cost, The definition of reliability and unreliability aspects of the actual travel
costs is shown in Figure 3 .The effective trip cost is defined as the product of the mean of
the reliable subinterval and the probability that the subinterval is less than the budgeted
trip cost + the product of the mean of the unreliable subinterval and the probability that
the subinterval is greater than the budgeted trip cost. The first group reflects the reliability
aspect, under which travellers travel from their origin to their destination with an acceptable
level deviation of ω from their TCB. It is defined as the subintervals of the actual interval
travel cost, which has a certain probability of being less than the TCB. The second group
reflects the unreliability aspect, under which travellers travel from their origin to their
destination but exceed their TCB by a value greater than ω. It is defined as subintervals of
the actual interval travel costs, which have a certain probability of exceeding the TCB.
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Definition 2. The ETC ĉp
w for each route is defined as a weighted sum of the mean values of the

reliability and unreliability aspects of the actual travel costs. The respective weights are equal to the
corresponding probabilities. Therefore, the ETC equation is presented for the following six cases:

Case 1: When the actual interval travel cost and the TCB satisfy cp−
w ≤ cp+

w ≤ c̃−w ≤ c̃+w ,

the reliability aspect is given by the interval
[
cp−

w , cp+
w

]
, and the probability of not exceeding

the TCB is equal to 1.
Case 2: When the actual interval travel cost and the TCB satisfy cp−

w ≤ c̃−w ≤ cp+
w ≤ c̃+w ,

the reliability aspects are given by the intervals
[
cp−

w , c̃−w
]
and

[
c̃−w , cp+

w

]
, and their probabilities

of not exceeding the TCB are, respectively, given by
c̃−w − cp−

w

cp+
w − cp−

w

and

(
cp+

w − c̃−w
)2

2
(

cp+
w − cp−

w

)(
c̃+w − c̃−w

) +(
cp+

w − c̃−w
)

(
cp+

w − cp−
w

)
(

c̃+w − cp+
w

)
(
c̃+w − c̃−w

) ; the ATC’s unreliability aspect is
[
c̄−w , cp+

w

]
, and the probability of

exceeding the TCB is

(
cp+

w − c̃−w
)2

2
(

cp+
w − cp−

w

)(
c̃+w − c̃−w

) .

Case 3: When the actual interval travel cost and the travel cost budget satisfy c̃−w ≤
cp−

w ≤ cp+
w ≤ c̃+w , the reliability aspect of ACT is given by the interval

[
cp−

w , cp+
w

]
, and the

probability of not exceeding the TCB is
cp+

w − cp−
w

2
(
c̃+w − c̃−w

) + c̃+w − cp+
w

c̃+w − c̃−w
; the ATC’s unreliability is[

cp−
w , cp+

w

]
, and the probability of exceeding the TCB is

cp−
w − c̃−w
c̃+w − c̃−w

+
cp+

w − cp−
w

2
(
c̃+w − c̃−w

) .

Case 4: When the actual interval travel cost and the TCB satisfy c̃−w ≤ cp−
w ≤ c̃+w ≤ cp+

w ,

the ATC’s reliability aspect is given by
[
cp−

w , c̃+w
]
, and the probability of not exceed-

ing the TCB is

(
cp+

w − c̃−w
)2

2
(

cp+
w − cp−

w

)(
c̃+w − c̃−w

) ; the ATC’s unreliability aspects are given by

[
cp−

w , c̃+w
]

and
[
c̃+w , cp+

w

]
, and the corresponding probabilities of exceeding the TCB are(

c̃+w − cp+
w

)
(

cp+
w − cp−

w

)
(

cp−
w − c̃−w

)
(
c̃+w − c̃−w

) +

(
cp+

w − c̃−w
)2

2
(

cp+
w − cp−

w

)(
c̃+w − c̃−w

) and
cp+

w − c̃+w
cp+

w − cp−
w

.

Case 5: When the actual interval travel cost and the TCB satisfy cp−
w ≤ c̃−w ≤ c̃+w ≤ cp+

w ,

the ATC’s reliability aspects are given by
[
cp−

w , c̃−w
]

and [c̃−w , c̃+w ], and the corresponding

probabilities of not exceeding the TCB are
c̃−w − cp−

w

cp+
w − cp−

w
and

c̃+w − c̃−w
2
(

cp+
w − cp−

w

) ; the ATC’s unreli-

ability aspects are [c̃−w , c̃+w ] and
[
c̃+w , cp+

w

]
, and the corresponding probabilities of exceeding

the TCB are
c̃+w − c̃−w

2
(

cp+
w − cp−

w

) and
cp+

w − c̃+w
cp+

w − cp−
w

.

Case 6: When the actual interval travel cost and the TCB satisfy c̃−w ≤ c̃+w ≤ cp−
w ≤ cp+

w ,

then the ATC’s unreliability aspect is
[
cp−

w , cp+
w

]
, and the probability of exceeding the travel

cost budget is 1.
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Figure 3. ETC definition cases.

Therefore, the ETC cases can be is formulated as follows:

ĉp
w =



cp−
w + cp+

w
2

, cp−
w ≤ cp+

w ≤ c̃−w ≤ c̃+w

c̃−w + cp−
w

2
× c̃−w − cp−

w

cp+
w − cp−

w
+

(
c̃−w + cp+

w

)
2

×

(
cp+

w − c̃−w
)2

2
(

cp+
w − cp−

w

)(
c̃+w − c̃−w

)
+

(
c̃−w + cp+

w

)
2

×


(

cp+
w − c̃−w

)2

2
(

cp+
w − cp−

w

)(
c̃+w − c̃−w

) + c̃+w − cp+
w

c̃+w − c̃−w

,

cp−
w ≤ c̃−w ≤ cp+

w ≤ c̃+w

(
cp−

w + cp+
w

)
2

×
(

cp+
w − cp−

w

2
(
c̃+w − c̃−w

) + c̃+w − cp+
w

c̃+w − c̃−w

)
+

(
cp−

w + cp+
w

)
2

×
(

cp−
w − c̃−w
c̃+w − c̃−w

+
cp+

w − cp−
w

2c̃+w − c̃−w

)
, c̃−w ≤ cp−

w ≤ cp+
w ≤ c̃+w(

cp−
w + c̃+w

)
2

×

(
c̃+w − cp−

w

)2

2
(
c̃+w − c̃−w

)(
cp+

w − cp−
w

)
+

(
cp−

w + c̃+w
)

2
×


(

c̃+w − cp+
w

)
(

cp+
w − cp−

w

)
(

cp−
w − c̃−w

)
(
c̃+w − c̃−w

) +

(
c̃+w − cp−

w

)2

2
(
c̃+w − c̃−w

)(
cp+

w − cp−
w

)


+

(
cp+

w + c̃+w
)

2
× cp+

w − c̃+w
cp+

w − cp−
w

,

c̃−w ≤ cp−
w ≤ c̃+w ≤ cp+

w

cp−
w + c̃−w

2
× c̃−w − cp−

w

cp+
w − cp−

w
+ (c̃−w + c̃+w )

c̃+w − c̃−w
2
(

cp+
w − cp−

w

) +
c̃+w + cp+

w
2

× cp+
w − c̃+w

cp+
w − cp−

w
, cp−

w ≤ c̃−w ≤ c̃+w ≤ cp+
w

cp+
w + cp−

w
2

, c̃−w ≤ c̃+w ≤ cp−
w ≤ cp+

w

(26)

4.2. Variational Inequality Formulation

The equilibrium conditions are given by the intersection of the following two subsets
of conditions:

The choice of travel mode: For each OD pair w ∈W, the proportion of users in every
travel mode is given as the logit model function, which is defined as follows:

qm
w = qw

exp(−θµm
w)

∑m∈M exp(−θµm
w)

m ∈ M, w ∈W (27)

where qm
w is the proportion of passengers using travel mode m for OD pair w; qw is the

travel demands for OD pair w; µm
w is the ETC of the minimum route in travel mode m for

OD pair w; θ is a parameter of travel utility perception variation.
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The choice of route: It is assumed that each hyper-path on the multi-modal network
has an ETC that models these implicit choices. The users’ behaviors are modelled through
a version of Wardrop’s user-optimal principle. Therefore, in the equilibrium state, no
traveller can unilaterally change the travel path to reduce the ETC; that is, all the used
paths have the same ETC, which is less than or equal to the ETC of the unused paths. This
condition can be formulated as follows:

f p
w

(
cp

w − µm
w

)
= 0, cp

w − µm
w ≥ 0, ∀p ∈ Pm

w , m ∈ M, w ∈W (28)

Then, the feasible set can be described as follows:

∑
m∈M

qm
w = qw, w ∈W (29)

∑
p∈Pm

w

f p
w = qm

w , m ∈ M, w ∈W (30)

vl = ∑
w∈W

∑
p∈Pw

f p
wσ

lp
w , l ∈ L (31)

f p
w ≥ 0, p ∈ Pw, w ∈W (32)

qm
w > 0, m ∈ M, w ∈W (33)

where (29) and (30) are the travel demand conservation constraints, (31) is a definitional
constraint that summarizes all the route flows that pass through a given link, and (32) and
(33) are non-negativity constraints on the route flows.

Then, the equilibrium model can be formulated as a variational inequality problem
VI( f , Ω), as follows:

∑
w∈W

∑
m∈M

∑
p∈Pm

w

cp
w

(
f p∗
w

)(
f p
w − f p∗

w

)
+ ∑

w∈W
∑

m∈M

1
θ

ln
qm∗

w
qw

(
qm

w − qm∗
w

)
≥ 0 (34)

where Ω represents constraints (29)–(33).
The following two propositions state the equivalence of the VI formulation and the

equilibrium model, as well as the existence of an equilibrium solution.

Proposition 1. If the effective route travel time function cp
w is positive, and the solution of the VI

problem (34) is equivalent to the equilibrium solution of the ETC model.

Proof 1. By considering the Karush–Kuhn–Tucker conditions of model (34), we have[
∑

p∈Pm
w

cp
w

(
f p
w

)
− µm

w

]
f p
w = 0, ∑

p∈Pm
w

cp
w

(
f p
w

)
− µm

w ≥ 0, ∀p ∈ Pm
w , w ∈W (35)

[
1
θ

ln
qm

w
qw
− λw + µm

w

]
qm

w = 0,
1
α

ln
qm

w
qw
− λw + µm

w ≥ 0, m ∈ M, w ∈W (36)

Then, from (33), we obtain

1
θ

ln
qm

w
qw
− λw + µm

w = 0, m ∈ M, w ∈W (37)

which can be written in the following form:

qm
w

qw
=

exp(−θµm
w)

exp(−θλw)
, m ∈ M, w ∈W (38)
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Combined with (29), this yields

λw = ∑
m∈M

µm
w (39)

When (38) is substituted into (37), we obtain

qw = qm
w

exp[−θµm
w ]

∑
m∈M

exp[−θµm
w ]

(40)

The final equation is the logit model (34).

Proposition 2. If the route ETC function ĉp
w is positive and continuous, the ETC model has at

least one solution.

Proof 2. Based on Proposition 1, solving the equivalent VI formulation is sufficient. Note
that the feasible set is nonempty and convex. Furthermore, according to the assumption,
the route ETC is continuous. Thus, the VI problem (21) has at least one solution.

5. Solution Algorithm

The method of successive averages (MSA) has been widely used for solving traffic
equilibrium problems (Liu and He (2009) [22]). In this study, interval mathematics are
applied to the algorithm to obtain the results in the form of interval variables, and similarity
formulation is proposed to calculate the equilibrium coefficient E. Considering the interval
variables A = [a−, a+] and b = [b−, b+], according to interval mathematics, under the
conditions P(A ≥ B) = 0.5 and P(A ≤ B) = 0.5, the interval variable A is regarded
as equivalent to B. Therefore, the interval variable similarity formulation is expressed as
follows:

E =
√
(P(A ≥ B)− P(A ≤ B))2(P(A ≤ B))−1 (41)

Therefore, an MSA algorithm based on interval mathematics is proposed to solve the
multi-mode traffic equilibrium problems under interval demands. The detailed steps for
the solution are as follows.

1. Initialization. Find all viable hyperpaths between OD pairs using a graph traversal al-
gorithm; based on the free-flow route travel cost, perform an initial loading procedure
according to Equations (27) and (28) to obtain link flows v(1)l and then set n = 1.

2. Update. Use the interval link flows v(n)l to calculate the route interval travel cost cp,(n)
w

and the route ETC ĉp,(n)
w using interval mathematics.

3. Direction. Apply the loading process according to Equations (27) and (28) using ĉp,(n)
w

to obtain an auxiliary link flow pattern y(n)l .
4. Move. Calculate the new link flow using an MSA scheme:

v(n+1)
l = v(n)l + χ(n)

(
y(n)l − v(n)l

)
(42)

χ(n) =
nd

1d + 2d + 3d + · · ·+ nd (d = 1) (43)

5. Convergence criterion. Set an acceptable convergence level e, and calculate the
equilibrium coefficient E. If

E =

√
∑

l

(
P
(

v(n+1)
l > v(n)l

)
− P

(
v(n+1)

l < v(n)l

))2
(

∑
l

P
(

v(n+1)
l < v(n)l

))−1

≤ e (44)
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stop; otherwise, set n = n + 1, and return to Step 2.

6. Numerical Example

To demonstrate the effectiveness of the model and algorithm, a multi-modal network
was designed with four transport modes, as shown in Figure 1, with interval demands
of [3800, 4200] and [9500, 10,500] passengers per hour from the origin, Node 1, to the
destination, Nodes 9 and 12, respectively. The determination for crowd discomfort of
transport mode i per time unit (ui0), average crowd discomfort per time unit for transfer
(uh0

), travel fare of transport mode i per distance unit (mi0), and average travel fare per
distance unit for transfer have been fully demonstrated [23], so these parameters were
adopted directly. f , g are, respectively, the passenger equivalents for modes 2 and 4,
passenger equivalents for transport mode 2 (bus) f , supposing that the average number of
passengers on a bus is 20 (passengers) and the average number of passengers in a car is 2
(passengers), we can obtain values of 0.05 and 0.5. Then the other dimensionless parameter
in the formula of travel cost is shown in Table 1. According to the actual situation, some
dimensional parameters related to the network were set. The length of each roadway link
is shown in Table 2, and the free-flow travel time and capacity of each roadway link are
shown in Table 3. The subway section has a fixed travel time, and the travel time of the
roadway link in subway mode is shown in Table 4. The operative information of the bus
and subway is shown in Table 5. The walking time by subway tb3 is assumed to be 5 min.

Table 1. Modal parameters.

θ α β α′ β′ λt λu λm γ π

0.4 0.15 4 0.02 1.8 0.5 0.3 0.2 0.5 0.5

f g u10
u20

u30
u40

uh0
m10

m20
m30

0.5 0.05 0.6 0.5 0.2 0.1 0.15 0.15 0.1 0.2

m40 mh2

0.8 2

Table 2. Link length.

Link
node 1–2 1–4 1–5 2–3 2–5 3–6 4–5 4–7 5–6 5–8

Length/km 2 1 5 2 2 3 1 2 1 3

Link
node 5–9 6–9 7–8 7–10 8–9 8–11 9–12 10–11 11–12

Length/km 6 1 3 8 2 7 6 4 3
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Table 3. Free-flow travel time and capacity of each roadway link.

Link Node
Free-Flow Travel Time (min) Capacity(pcu · h−1)

Bicycle
(

t10

l

)
Bus

(
t20

l

)
Auto

(
t40

l

) Bus and
Auto (Cl)

Bike (Bl)

1–2 10 2 3 650 200
1–4 5 2 2 800 250
1–5 – – – – –
2–3 10 4 3 600 200
2–5 10 4 2 1000 400
3–6 15 6 4 900 300
4–5 5 2 2 750 200
4–7 10 4 3 750 300
5–6 5 2 2 700 200
5–8 15 6 3 1400 400
5–9 – – – – –
6–9 5 2 1 700 300
7–8 15 6 4 800 200

7–10 40 16 10 800 300
8–9 10 4 2 800 200

8–11 35 14 8 1200 400
9–12 30 12 7 850 350
10–11 20 8 5 750 250
11–12 15 6 4 650 250

Table 4. Travel time of roadway link in subway mode.

Link node 1–5 5–9

Travel time (min) 4 6

Table 5. The operative information of bus and subway.

Link Node Bus Line Subway Line Frequency (min) Seat Number
Vehicle Capacity

Aj (Passengers/Vehicle)

1–2 1 – 6 29 50
2–3 1 – 6 29 50
3–6 1 – 6 29 50
6–9 1 – 6 29 50
2–5 2 – 10 39 70
5–8 2 – 10 39 70
8–11 2 – 10 39 70
4–7 3 – 15 59 90
7–10 3 – 15 59 90

10–11 3 – 8 59 90
11–12 3 – 8 59 90

1–5 – 1 3 – –
5–9 – 1 3 – –

The convergence characteristics of the proposed solution algorithm are illustrated in
Figure 4. It can be seen that the equilibrium condition at a relative gap of 10−3(e = 0.001)
was obtained after 7200 iterations (for θ = 0.4, ω = 0.1 ). This result indicates that the
proposed MSA solution algorithm can solve the problem with an acceptable accuracy level.
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Figure 4. Convergence curve of the SMA algorithm.

To highlight the differences between using the ETC as the travel mode and route
choice criterion in the ETC equilibrium model and the acceptable travel cost as the route
choice criterion in the traditional equilibrium model (TEM), a comparison and analysis
between the two models are, respectively, illustrated in Tables 6 and 7.

It can be seen from the tables that the distribution results of both the ETC equilibrium
model and the TEM are consistent in the following. On the one hand, the summation of
the traffic volume of each travel mode is equal to the total travel demands between OD
pair w, and the summation of passenger flows of each link is also equal to the total travel
demands between OD pair w when the equilibrium state is reached. This indicates that the
distribution result is correct and effective. On the other hand, no matter which criterion is
adopted, the bicycle travel mode always results in the least traffic volume, which is also
far lower than that of the combined travel modes of “bicycle + bus or bicycle + subway”.
This indicates that the bicycle travel mode is rarely adopted. However, as a complementary
transport mode, bicycles are more commonly combined with other transport modes. The
difference in the results of modal splits is not significant, and the most obvious differences
are mainly concentrated in links 1–5, 4–7, 7–8, and 8–9, which are links of the transport bus
line 3 and subway.

Table 6. Resultant modal splits.

OD Pair Travel Mode Mode Splits (Passengers·h−1)

ETC TEM

OD1,9

Bicycle [0, 0.01] [0, 0.01]
Bus [3338.52, 3689.43] [2121.24, 2344.51]

Subway [27.05, 30.96] [23.65, 26.14]
Auto [1605.41, 1774.02] [1011.42, 1179.13]

Bicycle + Bus [419.47, 463.68] [631.12, 697.55]
Bicycle + Subway [14.69, 16.83] [12.62, 13.95]

OD1,12

Bicycle [0, 0.01] [0, 0]
Bus [821.42, 907.88] [1156.34, 1278.06]

Auto [1751.08, 1935.38] [1750.91, 1935.28]
Bicycle + Bus [5426.27, 5998.56] [5316.83, 5876.52]

Bicycle + Subway [0, 0] [0, 0]
Bus + Subway [1498.45, 1656.64] [1276.02, 1410.31]
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Table 7. Link flow distribution.

Link Link Flow (Passengers ·h−1)

ETC TEM

1–2 [2049.17, 2265.59] [2223.92, 2457.96]
1–4 [3517.86, 3888.92] [3146.09, 3477.12]
1–5 [7353.04, 8127.42] [0, 0.01]
2–3 [432.06, 478.92] [563.79, 623,14]
2–5 [6536.21, 7225.84] [6362.74, 7032.41]
3–6 [432.07, 479.92] [563.79, 623.14]
4–5 [433.56, 479,19] [284.59, 314.55]
4–7 [1117.16, 1235.90] [2637.51, 2915.13]
5–6 [1038.07, 1147.86] [1104.21, 1220.54]
5–8 [6051.15, 6687.53] [5999.93, 6631.54]
5–9 [9.73, 10.96] [12.56, 13.88]
6–9 [1471.41, 1626.09] [1668.03, 1843.62]
7–8 [626.08, 692.52] [2169.91, 2398.34]

7–10 [612.59, 677.71] [619.10, 684.27]
8–9 [1239.67, 1369.02] [2866.21, 3167.91]

8–11 [5403.52, 5972.08] [5303.74, 5861.92]
9–12 [1157.31, 1279.18] [1157.61, 1279.51]
10–11 [612.59, 677.71] [619.10, 684.27]
11–12 [6016.12, 6649.71] [5922.81, 6546.22]

Travellers’ choices were investigated under different levels of perception variables and
deviation values in terms of travel mode and travel route choices. To simplify the analysis,
the distribution results of two typical travel modes (car and “bicycle + bus”) and two links
(5–8, 7–10) were selected for the analyses of Figures 5 and 6.

(a) Car travel mode (b) “Bicycle+Bus” travel mode

Figure 5. Modal splits under different levels of perception variable θ and deviation value ω.
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(a) link 5–8 (b) link 7–10

Figure 6. Link flow distributions under different levels of perception variable θ and deviation value.

It can be seen from Figures 5 and 6 that as the deviation value ω increases from 0.1
to 1, the distribution results show only slight fluctuations on the whole except when ω = 0.2
and ω = 0.3. For the results of the modal split, the traffic volume of cars increases rapidly
at ω = 0.2, then decreases rapidly at ω = 0.3. On the contrary, the traffic volume of the
“bicycle + bus” travel mode decreases rapidly at ω = 0.2, then increases rapidly at ω = 0.3.
Regarding link flow distribution, the passenger flows of both links 5–8 and links 7–10 decrease
rapidly at ω = 0.3. In addition, the value of the perception variable θ also has significant
effects on travellers’ route and mode choice behaviors. It can be seen from Figures 5 and 6
that as the deviation value ω increases from 0.1 to 1, the overall trend of the distribution result
increases. This is because the perception variable in the logit model represents the travellers’
perceptions of the information of the road network, and higher values reflect a more accurate
grasp of the available information, which results in the logit choice model being closer to
deterministic choice behaviors. In practice, compared to other travel modes, the ETC of car
and “bicycle + bus” travel modes is lower. Therefore, the traffic volume of these two modes is
increasing, and the link flows are increasing accordingly.

7. Conclusions

In this paper, the traffic distribution equilibrium problem of uncertain traffic demand
in a multi-mode network is studied. Travel demands are expressed as interval variables,
and passenger flows and travel costs are thus formulated as interval variables. The effective
travel cost is defined as a measure value for interval travel cost to consider both the
reliability and unreliability aspects of actual travel cost. Moreover, it is introduced into
the travel mode and route choice and an ETC equilibrium model is then developed. An
equivalent variational inequality formulation is provided, which permits the existence and
uniqueness of solutions and is solved by an interval-based MSA algorithm. A numerical
experiment to illustrate these models was also performed, and numerical results under
different choice criteria demonstrate different characteristics of traffic equilibrium patterns,
and the traffic assignment results in changes in the parameters. The theoretical analysis
results of this paper would be useful to the problem of traffic distribution equilibrium.
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