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Abstract: The growing utilization of web-based search engines for learning purposes has led to
increased studies on searching as learning (SAL). In order to achieve the desired learning outcomes,
web learners have to carefully plan their learning objectives. Previous SAL research has proposed the
significant influence of task planning quality on learning outcomes. Therefore, accurately predicting
web-based learners’ task planning abilities, particularly in the context of SAL, is of paramount
importance for both web-based search engines and recommendation systems. To solve this problem,
this paper proposes a method for predicting the ability of task planning for web learners. Specifically,
we first introduced a tree-based representation method to capture how learners plan their learning
tasks. Subsequently, we proposed a method based on the deep learning technique to accurately
predict the SAL task planning ability for web learners. Experimental results indicate that, compared
to baseline approaches, our proposed method can provide a more effective representation of learners’
task planning and deliver more accurate predictions of learners’ task planning abilities in SAL.

Keywords: searching as learning; learning ability; HCDP; Tree-Structured Long Short-Term Memory
Networks; user analysis; task planning

1. Introduction

In recent years, the advent of web-based search engines has revolutionized the way
people access information. These ubiquitous tools are extensively employed, not only for
informational queries but also increasingly for learning purposes [1,2]. Recognizing the
potential of web-based search engines as valuable learning aids, researchers have focused
on searching as learning (SAL), utilizing web-based search engines as a means to acquire
knowledge and support learning processes and conceptualizing searching activities as
learning activities [3,4].

Unlike the traditional field of information retrieval, which primarily views search-
ing as a tool for information acquisition, studies on SAL place greater emphasis on the
learning process that learners engage in through web-based searching. Building upon this
perspective, research in the domain of SAL focuses on the role of search systems in directly
facilitating human learning [5]. This area of study goes beyond mere information retrieval
to emphasize examining the effects, implications, and results derived from utilizing search
systems in the context of educational processes. From a perspective of information retrieval,
SAL research shifts the focus from the relevance of individual search results to supporting
the learning process itself [6]. From an educational perspective, SAL research concentrates
on deeply understanding how learners use search engines to meet their learning needs and
how optimization can enhance learning outcomes [2].
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Studies have proposed that SAL combined with thoughtful task planning can lead
to enhanced learning outcomes [7,8]. At the beginning of the SAL process, learners often
only possess a vague understanding of the learning object, meaning their knowledge
structures are insufficient to precisely articulate what they seek to learn. During the SAL
process, learners are required to continually refine their learning tasks and retrieve relevant
information from web-based search engine results, progressively constructing and refining
their knowledge structures. This process involves the generation of queries, the evaluation
of search results, and iterative adjustments and refinements of knowledge structures [5,9].

Understanding and predicting learners’ task planning ability in SAL are crucial for
web-based search engine providers, recommendation systems, and educators [6,10]. By
comprehending learners’ planning abilities, web-based search engines and recommen-
dation systems can provide targeted guidance, suggest relevant learning resources, and
optimize search results to facilitate effective learning [11]. Additionally, educators and
instructional designers can utilize these insights to tailor instruction, provide appropri-
ate scaffolding, and design interventions aimed at improving learners’ planning skills,
ultimately fostering metacognitive awareness and self-regulated learning [12].

To address the challenge of predicting learners’ task planning ability, this paper
proposes a novel method that leverages the Hierarchical Clustering Algorithm Based on
Density Peaks (HCDP) model and the Tree-Structured Long Short-Term Memory Networks
(Tree-LSTM) algorithm. The HCDP model is employed to capture and represent the
hierarchical relationships among learning activities and learning subtasks. By modeling
the learning process in this way, we can effectively capture the nuances of task planning in
SAL. The Tree-LSTM algorithm is utilized to predict learners’ SAL task planning ability
based on the extracted features from the tree structure.

The experimental results demonstrate the efficacy of our proposed method in effec-
tively predicting learners’ task planning ability within the context of SAL. Furthermore, the
key features extracted from the tree structure serve as reliable indicators of learners’ plan-
ning ability, providing valuable insights for web-based search engines, recommendation
systems, and instructional designers.

Overall, this paper contributes to the field of information retrieval and learning by of-
fering a methodological approach to predict learners’ task planning ability in the context of
SAL. The findings hold implications for web-based search engine providers, recommenda-
tion systems, and educational practitioners. For search engine designers, our study aids in
developing learner-focused search interfaces by understanding SAL task planning, leading
to enhanced personalization and efficiency. For educational practice, our research informs
educators about learner challenges in SAL, enabling more effective learning experience
design and targeted support.

2. Related Works
2.1. Predictive Models for Learners’ Abilities

The predictive modeling of learners’ abilities has gained significant interest, especially
due to its potential in customizing learning environments for individual learners, thereby
optimizing the learning process.

Numerous models have been proposed that utilize Machine Learning (ML) and Ar-
tificial Intelligence (AI) algorithms to predict abilities. For example, Thai-Nghe et al. [13]
introduced a method to predict student performance based on past interactions using collab-
orative filtering and matrix factorization techniques. Similarly, Márquez-Vera et al. [14] em-
ployed decision trees, Naive Bayes, and k-nearest neighbors to anticipate student dropouts
in online courses. Liu et al. [15] propose a two-stage framework to predict the cognitive
level of the learner. Agrawal et al. [16] pointed out that learning ability can be estimated
by administering a test designed using modern practices such as those based on Item
Response Theory (IRT). Bockmon et al. [17] conducted a comprehensive study on the pre-
dictive modeling of students’ introductory programming abilities at the end of the semester.
To achieve this, they employed a multinomial logistic regression approach, aiming to de-
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velop a robust model that could effectively forecast students’ performance in programming
tasks. This model’s sophistication lies in its ability to handle multiple predictor variables
and their interactions, offering a nuanced understanding of student performance. Fur-
thermore, the research delved into the relationship between various factors, such as prior
programming abilities, spatial skills, socioeconomic status, and students’ attitudes toward
computing, in order to determine their influence on the final programming outcomes. In
sum, this comprehensive analysis provides a foundation for developing targeted educa-
tional strategies that can significantly improve student outcomes in programming and
related technical disciplines.

The advancements in predictive modeling underscore the importance of understand-
ing learners’ abilities, which is a crucial aspect of Searching as Learning (SAL). This under-
standing aids in the development of more effective web-based learning tools and strategies.

2.2. Searching as Learning

The growing utilization of web-based search engines as tools for learning has attracted
considerable attention from researchers. Studies have explored the impact of web-based
search engine features, such as query formulation assistance, result evaluation techniques,
and personalized recommendations, on learning outcomes [7,18]. These investigations
highlight the significance of effective web-based search engine usage in supporting the
learning process [19,20].

For instance, query formulation assistance helps learners in generating effective search
queries, enabling them to retrieve relevant and accurate information [6,21,22]. Result
evaluation techniques aid learners in critically assessing the credibility, relevance, and
reliability of search results, enabling them to make informed decisions regarding the
information they encounter during their learning process [23].

SAL studies use searching as a part of the learning process and aim to explore the
integration of web-based search engine utilization and web learning to improve learning
outcomes [6,24,25]. Similar SAL studies conceptualize searching as an integral component
of the learning process and underscore the significance of search in enhancing learning
outcomes [6,26,27]. These studies emphasize the importance of task planning quality,
including query formulation and result evaluation, in achieving desired learning outcomes.

3. Data Collection and Labeling

In this section, we discuss the dataset employed in our experiments that was procured
from the University Writing Program (UWP) courses at Northeastern University. Further,
we discuss how we achieved capability labeling for task planning in the SAL context.

3.1. Data Collection

In this section, we begin by detailing the SAL dataset utilized in this study, collected
from learners enrolled in the UWP course at Northeastern University. The data collection
methodology has been described in our previous work [6]. Here, we briefly outline the
types of SAL data captured for each learner:

(1) Search logs. We recorded learners’ search activities with web-based search engines
by developing a Firefox browser plug-in. Specifically, for a learner, we recorded
searching activities such as their issued search queries, clicking on URLs, and reading
duration times.

(2) Search results. We recorded search results after each issued search query.
(3) Learning outcomes. We recorded programming snapshots for each learner during

compilation.

In the initial five weeks of our study, we systematically introduced tasks with an
incrementally increasing number of subtasks. The distribution of these subtasks within
the assignments is illustrated in Figure 1. Research conducted in the domain of SAL has
suggested that the act of searching within SAL can be perceived as a sequence of activities
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with the purpose of learning [28]. Although we cannot directly observe, we can predict
their learning state by analyzing their search activities and learning outcomes.
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3.2. Data Labeling

In this study, six researchers specializing in the field of SAL from Northeastern Univer-
sity participated in the labeling process. These experts included two associate professors,
two doctoral candidates, and two master’s degree learners. Each participant was tasked
with evaluating the SAL abilities of learners based on the dataset we collected. This evalua-
tion involved reviewing the collected data in conjunction with the scores of corresponding
assignments within the course curriculum. The average scores from five distinct assign-
ments were ultimately employed as the annotated indicators for gauging the SAL abilities
of the learners.

To facilitate the labeling of SAL task planning abilities, it is first necessary for each
participant to analyze the learning process of learners in order to understand how these
learners decompose their learning tasks. To ensure the validity of manual annotations,
we required participants to answer specific questions given different types of interaction
behaviors. This ensures a comprehensive understanding of the learner’s learning process
during analysis, as illustrated in Table 1. Additionally, participants can also refer to the
learner’s phased learning outcomes and final grades for labeling.

The statistical outcomes of the capability labeling for task planning in the SAL context
is illustrated in Figure 2. For the purpose of this research, the manually annotated SAL
task planning abilities are classified into five distinct levels, ranging from 1 to 5. A score of
1 represents the lowest level of capability, while a score of 5 signifies the highest level of
proficiency in SAL task planning.
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Table 1. Questions that need to be answered for different types of SAL behavior.

Issuing queries

1. Why did the learner issue this query?
2. Is this query related to the previously submitted queries?
3. What is the relationship between the results returned by this query and the results returned by
previous queries?

Clicked on URLs

1. What learning object is the learner interested in?
2. Was this click event triggered by the most recent query?
3. Is the learner’s learning objective the same as or related to the learning objective of the
previously submitted queries?

Programming

1. Through which queries did the learner acquire his/her learning outcomes?
2. To achieve the learning outcomes, did the learner experience struggles or study
unrelated content?
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4. Proposed Methodology

In this section, we will accomplish two primary objectives. First, we innovatively
employ the HCDP method for constructing tree-like structures, effectively enabling the
hierarchical representation of SAL task planning. Second, we introduce the use of the
Tee-LSTM approach to facilitate the prediction of SAL task planning abilities.

4.1. Representation of Task Planning in Searching as Learning

In this section, we focus on the construction of a structured representation for task
planning in SAL. While linear structures have been extensively employed for representing
task planning, recent research has indicated that learning processes are often intricate search
activities requiring learners to navigate among varying learning objectives and tasks [29].
Consequently, a linear structure proves insufficient for capturing the complexity inherent
in a learner’s task planning strategies.

Mehrotra et al. [30] substantiated the advantages of tree-structured representations in
modeling search task planning. Moreover, current research has indicated that hierarchical
clustering algorithms can effectively capture the subtask structure of learners’ search
tasks [6]. Accordingly, in the present study, we adopt a tree-structured approach to provide
a more nuanced and effective representation of task planning in SAL.
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To fully leverage the unique context-specific features of SAL and to provide a more
accurate representation of a learner’s task-based structural divisions, we introduce a novel
method for SAL task partitioning based on HCDP. This advanced hierarchical clustering
algorithm allows for capturing the intricacies of searching and learning interactions in
SAL [31].

To accurately model the structure of a learner’s task planning, we consolidate his/her
SAL-related interactive activities prior to initiating the modeling process. We complete this
based on the observation that learning activities are triggered by issuing search queries.
Furthermore, what learners acquire is contingent upon the queries they submit. Hence, in
constructing the structural representation of a learner’s task planning, we employ queries
as the nodes of the structure. While these nodes are represented by queries, it should be
noted that they encapsulate not only the search queries themselves but also the subsequent
learning that occurs as a result.

In traditional HCDP, the algorithmic framework is fundamentally structured around
three core procedures: the computation of local densities, the construction of a hierarchical
representation of the data, and the extraction of optimal clusters [32–34]. Given that
our research objective specifically aims to establish a hierarchical architecture for task
partitioning in SAL, our study focuses only on executing the initial two procedures.

HCDP employs k-nearest neighbors for the computation of local densities. The HCDP
model computes the local density as follows [34]:

ρi = max
j∈knn(i)

dist(i, j) (1)

where ρi is the Nodei’s k-nearest density, dist(i, j) denotes the distance between Nodei
and Nodej.

For each Nodei, SAL establishes a connection to its nearest neighbor with higher
density using edge weight ϕ. The computation for ϕ is as follows.

ϕi = min
j:ρi>ρj

dist(i, j) (2)

Therefore, in our task of hierarchical representation for task planning, the focus is on
being able to calculate dist(i, j) by integrating features from SAL. To achieve this goal, we
calculate dist(i, j) from three dimensions: search, learning, and the connection between
search and learning. We list the SAL features for calculat dist(·) that we employed in
Table 2. The hierarchical clustering visualization of partial SAL data for a learner in the
UWP dataset is shown in Figure 3.
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Table 2. The SAL features for calculating dist(·).

Search-related features

1. Cosine distance between two sets of query terms.
2. Edit distance between two sets of query terms.
3. Jaccard distance between two sets of query terms.
4. The proportion of identical terms in two search queries.
5. Semantics distance between queries.

Features of the relationship between searching and learning

1. The average cosine distance between the web page links clicked after queries.
2. The average edit distance between the web page links clicked after queries.
3. Cosine distance between the sets of UWP terms contained in clicked links after two queries.
4. Cosine distance between the sets of UWP terms contained in the search results after
two queries.

Learning-related features

1. Cosine distance between the sets of UWP classes contained in programming snapshots after
two queries.
2. Edit distance between the sets of UWP classes contained in programming snapshots after
two queries.
3. Semantic distance between two programming snapshots.

4.2. SAL Task Planning Ability Predicted Based on the Tree-LSTM Model

In this paper, we address the challenge by employing the Tree-LSTM model. A
Tree-LSTM is a neural network architecture that extends the standard Long Short-Term
Memory (LSTM) framework [35]. While standard LSTM models are designed to process
sequential data, Tree-LSTM models are adapted to handle tree-structured data. This makes
them particularly useful for tasks that involve hierarchical or nested structures, such as
natural language sentences, computer programs, or chemical molecules [31]. Therefore,
the Tree-LSTM model serves as an instrumental methodology, enabling a more nuanced
understanding of hierarchical dependencies and thereby predicting task planning ability
from tree hierarchical representation.

The key advantage of Tree-LSTMs lies in their ability to capture the hierarchical de-
pendencies within tree-structured data [35,36]. This is particularly beneficial in educational
contexts where learning tasks often involve layered concepts or stepwise procedures. For
instance, in the realm of programming education, the Tree-LSTM model can effectively
represent and analyze the structure of code, discerning the underlying logic and predicting
potential errors or areas of improvement in student submissions [37,38].

In the context of our research framework, the Tree-LSTM model ingests a tree-structured
representation encapsulating the complexities of the learning task as its input. The tree-
structured data input represents the hierarchical organization of a learning task, capturing
various elements such as the sequence of steps, dependencies among concepts, and the
progression of learning objectives. The Tree-LSTM model then processes this input to
generate an output in the form of a predictive assessment, quantifying a learner’s abilities
in task planning. Analogous to the conventional LSTM model, each unit in a Tree-LSTM
architecture is equipped with input gates denoted as im, output gates symbolized by om,
along with a memory cell cm and a hidden state hm. Unique to the Tree-LSTM model,
the updating mechanism for these gate vectors and memory cells is conditioned upon
the aggregated states of multiple child units, if present. Moreover, each Tree-LSTM unit
is endowed with specialized forget gates fm,k for each child unit k [39,40]. This design
intricacy enables the Tree-LSTM to serve as a robust framework for modeling hierarchical
relationships, particularly valuable for tree-structure presentation of learning tasks.

Let S(m) denote the subtree of m, and the transition equations of the Tree-LSTM model
are as follows [41]:

∼
hm = ∑n∈S(j) hn (3)
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im = σ
(

W(i)xm + U(i)hm + b(i)
)

(4)

fm,k = σ
(

W( f )xm + U( f )hm + b( f )
)

(5)

om = σ
(

W(o)xm + U(o)hm + b(o)
)

(6)

um = tan h
(

W(u)xm + U(u)hm + b(u)
)

(7)

cm = im ◦ um + ∑k∈S(m)
fm,k ◦ ck (8)

hm = om ◦ tan h(cm) (9)

where σ(·) denotes the logistic sigmoid function, and ◦ denote the element-wise multiplica-
tion. In the Tree-LSTM model, the state of the composite nodes is derived from the states of
the nodes, as illustrated in Figure 4.
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The inclusion of these additional gates and the unique updating mechanism enables
the Tree-LSTM model to effectively capture and analyze the intricacies of hierarchical data,
making it a powerful tool for modeling the dynamic nature of learning tasks. This advanced
functionality positions the Tree-LSTM as an ideal framework for tasks that require an
understanding of nested or sequential dependencies, such as predicting a learner’s ability
to plan and execute complex learning tasks.

5. Experiments

To assess the efficacy of our proposed methodology in forecasting learners’ abilities in
task planning within the SAL, we executed an array of experiments utilizing the North-
eastern University UWP dataset as our empirical foundation. This section commences by
detailing the experimental setup. Subsequently, we substantiate the merits of our approach
by juxtaposing its performance metrics against those of established baseline algorithms.

5.1. Experimental Setup

To verify the performance of our proposed method, we commence by delineating
the experimental setup. The design of our experiments employed the dataset gathered
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from the UWP course at Northeastern University (China), and the manually labeled task
planning abilities that we discussed in Section 3.2. To ensure the reliability of our findings,
we employed stratified ten-fold cross-validation for dataset partitioning into training and
testing subsets. The rationale behind utilizing stratified ten-fold cross-validation lies in its
capacity to mitigate the introduction of potential biases and anomalous results, which may
stem from imbalanced or skewed data distributions.

For comparative model analysis, our methodology underwent a two-phase evaluation.
Initially, we compared our proposed method with state-of-the-art (SOAT) hierarchical
clustering algorithms, thereby establishing the performance efficiency of the HCDP algo-
rithm in the hierarchical representation within the SAL task planning. Subsequently, our
framework was benchmarked against baseline predictive models for assessing the model’s
predictive accuracy.

5.2. Comparison with SOAT Hierarchical Clustering Methods Based on the UWP Dataset

In this section, we evaluate the advanced nature of our proposed methodology in the
domain of learning task-structured representation through comparative experiments with
SOAT methods. Selected methods for comparison include hierarchical clustering methods
like Bayesian Hierarchical Clustering (BHC) [42], Min-Min-Roughness (MMR) [43], and
Bayesian Rose Tree (BRT) [30]. A commonality between these methods and our proposed
approach is their capability to construct hierarchical representations for learning task-
planning. To ensure fairness and validity in the comparative analysis, all methods utilize
SAL features consistent with those presented in Table 3 wherever possible. During the
prediction phase, all of these hierarchical clustering methodologies employ the same Tree-
LSTM model and undergo parameter optimization through identical procedures.

Table 3. The experimental results with hierarchical clustering methods.

Method Precision Recall F1

BHC 0.717 0.701 0.709
MMR 0.782 0.73 0.755
BRT 0.82 0.805 0.812

Our method 0.889 0.825 0.856

As illustrated in Table 3, it is evident that the methodology proposed in this study
demonstrates a superior performance over the baseline methods across multiple evalua-
tion metrics. Specifically, the proposed approach surpasses the best-performing baseline
method by approximately 7.1% in terms of average prediction accuracy for the UWP dataset.
Notably, our method’s performance exceeds that of the original BRT model, thereby sub-
stantiating the efficacy of the proposed model in the learning process. Moreover, among
all methods, the BHC method exhibits the weakest predictive performance. This can be
attributed to the fact that the binary tree structure is not congruent with the structural
nuances of the learning process. In Table 4, the confusion matrix corresponding to the
method we have proposed is delineated. This matrix effectively illustrates the performance
of our methodology in terms of true positives, false positives, true negatives, and false
negatives. Through this representation, we aim to provide a clear and comprehensive
understanding of the accuracy, precision, recall, and specificity of our approach.

Table 4. The confusion matrix our method.

Method TP FP TN FN

Our method 104 13 91 22

Further, we conducted a comparative analysis of various algorithms’ predictive capa-
bilities across learning tasks with varying numbers of subtasks. As illustrated in Figure 5
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(where the X-axis represents the number of subtasks in a learning task), with an increase
in the number of subtasks, the prediction accuracy of the method proposed in this paper
declines less compared to that of other baseline methods. When the number of tasks
reaches 14 (which corresponds to the assignment with the most subtasks in this course), the
difference in prediction accuracy between our proposed method and the best-performing
baseline algorithm is at its maximum. In summary, as the number of subtasks increases,
the performance advantage of our proposed algorithm becomes increasingly evident.
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5.3. Comparison with Predicative Methods

In this section, we evaluate the efficacy of our proposed methodology in the realm
of task planning capability prediction by contrasting it with baseline approaches. The se-
lected comparative methodologies include fundamental ML algorithms like Graph Neural
Networks (GNNs) [44] and Recursive Neural Networks (RecNNs) [45]. These models were
chosen for their capacity to accommodate tree-structured input data, thereby ensuring
a level playing field for comparative analysis. The input to all of the models was con-
structed using HCDP, a preprocessing technique suited for SAL. During the training phase,
parameter optimization was performed across all models to ensure performance.

Table 5 showcases a comprehensive evaluation of various algorithms, including our
proposed methodology. The results elucidated in this table are a testament to the effec-
tiveness of our technique. It is evident from the empirical data that our approach has a
definitive edge over the baseline methodologies.

Table 5. The experimental results with baseline predicative methods.

Method Precision Recall F1

GNN 0.843 0.824 0.833
RecNN 0.835 0.817 0.826

Our method 0.889 0.825 0.856

In the field of SAL, the precision and accuracy of predictions hold paramount signifi-
cance. Given the complexities inherent to SAL, it is imperative for algorithms to adeptly
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predict and optimize task planning. As delineated in Table 5, our methodology distinctly
excels in this dimension. It not only assures enhanced accuracy but also emphasizes
the salience of context-aware predictions within SAL. Multiple elements bolster the pre-
eminence of our approach. Primarily, the strategy we introduced is congruent with the
task planning architecture intrinsic to learners. Subsequently, the Tree-LSTM exhibits
remarkable efficacy in modeling and predicting tree-structured data.

6. Conclusions

This research innovatively introduces a novel method for the accurate prediction of
task planning abilities in the context of SAL. By utilizing the HCDP algorithm, we offer a
hierarchical representation of the task planning for learners engaged in SAL. Leveraging
the Tree-LSTM algorithm, we subsequently achieve precise predictive abilities for assessing
task planning in SAL. Empirical validation, based on the UWP dataset, corroborates the
effectiveness of our proposed approach.

For search engine designers, our research will assist web-based search engine de-
signers in constructing learner profiles and in understanding how learners progressively
complete their tasks in the context of SAL. Additionally, our findings will guide designers
in creating more personalized and efficient search interfaces tailored for educational pur-
poses. Moreover, our research can inform the optimization of query suggestions and the
customization of result filtering based on learners’ task planning abilities in SAL.

For educational practice, our research will significantly aid educational practitioners
in designing more effective learning experiences. Specifically, it will help practitioners
promptly identify and address the challenges and struggles learners may encounter, offer-
ing robust support in instructional design. Furthermore, this understanding will enable
practitioners to provide targeted guidance and support, particularly for learners who
struggle with planning and organizing learning tasks.

Future research avenues may encompass the analysis and understanding of various
other abilities demonstrated by learners throughout the learning process. Additionally,
the role of metacognition in influencing learning trajectories within SAL contexts warrants
further investigation.
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