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Abstract: Attacks on the Internet of Things (IoT) are not highly considered during the design
and implementation. The prioritization is making profits and supplying services to clients. Most
cryptographic algorithms that are commonly used on the IoT are vulnerable to attacks such as
linear, differential, differential–linear cryptanalysis attacks, and many more. In this study, we focus
only on linear cryptanalysis attacks. Little has been achieved (by other researchers) to prevent or
block linear cryptanalysis attacks on cryptographic algorithms used on the IoT. In this study, we
managed to block the linear cryptanalysis attack using a mathematically novel approach called
Galois Field of the order (232), denoted by GF (232), and high irreducible polynomials were used
to re-construct weak substitution boxes (S-Box) of mostly cryptographic algorithms used on IoT. It
is a novel approach because no one has ever used GF (232) and highly irreducible polynomials to
block linear cryptanalysis attacks on the most commonly used cryptographic algorithms. The most
commonly used cryptographic algorithms on the IoT are Advanced Encryption Standard (AES),
BLOWFISH, CAMELLIA, CAST, CLEFIA, Data Encryption Standard (DES), Modular Multiplication-
based Block (MMB), RC5, SERPENT, and SKIPJACK. We assume that the reader of this paper has
basic knowledge of the above algorithms.

Keywords: Internet of Things; cryptography; linear cryptanalysis attack; Galois Field; long
irreducible polynomials; Advanced Encryption Standard (AES); BLOWFISH; CAMELLIA; CAST;
CLEFIA; Data Encryption Standard (DES); Modular Multiplication-based Block (MMB); RC5;
SERPENT; SKIPJACK

1. Introduction

In this study, the focus is mainly on the linear cryptanalysis attack of cryptographic
algorithms commonly found and used in the Internet of Things (IoT). Linear cryptanal-
ysis attacks are the biggest problem in the IoT and in cryptology itself. To block linear
cryptanalysis attacks, we applied a mathematically novel approach called Galois Field
(GF (232)) and high irreducible polynomials to be mapped on the S-Box (or on any build-
ing block attacked) of ten commonly used algorithms on the IoT. The most commonly
used ten cryptographic algorithms are AES, BLOWFISH, CAMELLIA, CAST, CLEFIA,
DES, MMB, RC5, SERPENT, and SKIPJACK. This approach is novel because no one
has ever used GF (232) and polynomials to block linear cryptanalysis attacks on any
cryptographic algorithms.

1.1. Motivation and Problem Statement of the Study

The main source of concern is intruders’ use of linear cryptanalysis attacks on IoT
cryptographic algorithms to discover the secret key [1–39]. An attacker employs linear
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cryptanalysis attacks on IoT cryptographic algorithms by exploiting the low number of
output bits of S-Boxes [1–39]. On the S-Boxes, an attacker can easily attack cryptographic
algorithms with low-number output bits [9] (p. 21). On S-Boxes with less than 32 output
bits, most well-known algorithms have a low number of output bits. AES and CAMELLIA,
for example, have eight output bits of S-Boxes [10] (p. 16) and [11] (p. 18). S-Boxes are
the four output bits of DES and SERPENT [12] (pp. 13–14) and [13] (p. 3). SKIPJACK
has eight output bits, which are known as S-Boxes [14] (p. 8). Algorithms are vulnerable
to attack due to their small size (low number of output bits) [9] (p. 21). If not addressed
properly, the problem of a linear cryptanalysis attack can jeopardize the overall security of
an IoT system. To combat these attacks, little has been achieved to increase the number of
output bits on S-Boxes [1–39]. The goal of this research will be to solve the problem of linear
cryptanalysis attacks. The GF (232) and long irreducible polynomials will be used to block
linear cryptanalysis attacks on low-number output bits of S-Boxes of AES, BLOWFISH,
CAMELLIA, CAST, CLEFIA, DES, MMB, RC5, SERPENT, and SKIPJACK.

1.2. Contribution of the Study

This study investigates how to make LAT more difficult for intruders to construct
and more difficult to guess the key of cryptographic algorithms mapped with GF (232) and
long irreducible polynomials. It has already been stated that the security of algorithms is
dependent on the output bit size of S-Box; if the output bit size is small, attackers can easily
attack the algorithm. That was the authors’ previous hypothesis, but they did not know
how plausible it was. We mapped GF (232) and long irreducible polynomials to increase
the size of the S-Box output bits. GF (232) and long irreducible polynomials always produce
32-bit output when applied to S-Box or any algorithm building block.

1.3. Outline of the Study

The remaining sections are “Literature Review”, “Linear Cryptanalysis Attack”, “The-
oretical Background of Our Novel Approach”, “Research Methodology”, “Results and
Analysis”, and “Conclusions and Future Work”.

2. Literature Review

Algorithms used on IoT devices are attacked using linear cryptanalysis attacks. This
attack reveals the cryptographic key to the intruder. Intruders use the key to obtain access
to private data and information on the IoT system. Sakamura et al. [24] used the linear
cryptanalysis attack on AES. Yongzhuang et al. [25] used the linear cryptanalysis attack on
AES. The results of obtaining a key were successful on two rounds due to the way that the
AES S-Box was constructed [25]. Blowfish is also one of the algorithms that suffers from
linear cryptanalysis attacks. The small portions of keys were discovered after the linear
differential cryptanalysis attack was applied to BLOWFISH because of the generated weak
components (like P-arrays) [26]. P-array is the function defined on BLOWFISH; it has all
the properties like S-Box [27]. The attack can only be detected if the weak key is used [26]
(p. 20). CAMELLIA revealed its cryptographic key in round nine after being modified for
the application of the linear cryptanalysis attack [27]. Keliher [28] attacked CAMELLIA
using the linear cryptanalysis attack. Wang et al. [29] applied linear cryptanalysis to CAST;
the cryptographic key was revealed on rounds 6 and 18 [29], and the experiment was
conducted using the simplified S-Box. CLEFIA revealed its cryptographic key on 11, 12,
14, and 15, depending on the size of the inputs [31]. DES revealed its cryptographic key
on rounds 3, 5, 8, 12, and 16 during the linear cryptanalysis attack [32]. MMB revealed its
cryptographic key on all rounds during the linear cryptanalysis attack [33]. Kaliski and
Yin [34] revealed the full cryptographic key of RC5 using the linear cryptanalysis attack [34].
SERPENT revealed its cryptographic key on round 11 during the linear cryptanalysis
attack [35]. SKIPJACK reveals a certain bit of its cryptographic key from S-Box during the
linear cryptanalysis attack [36] (p. 25). S-Boxes are the main building blocks of algorithms
to give more chances to allow linear cryptanalysis attacks to be conducted [1–36,40–46].
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The more S-Box is poorly constructed, the easier it is to conduct the linear cryptanalysis
attack [1–36,40–46]. Little has been achieved to block linear cryptanalysis attacks on most
cryptographic algorithms used on IoT devices [1–36,40–46]. In this study, we block linear
cryptanalysis attacks by applying a mathematically novel approach of using the Galois
Field of order 232, denoted by GF (232), with the combination of generated irreducible
polynomials to generate S-Boxes (or any function like S-Box) that will give 32-bit outputs.
With the S-Box of 32-bit output, it is difficult to attack the algorithm using the linear
cryptanalysis attack [29] (p. 429). A summary of the literature review is given in Table 1.

Table 1. Summary of literature review.

Algorithm Linear Cryptanalysis Number of Rounds Attacked

AES Yes [24,25] 2 rounds [25]

BLOWFISH Yes [26,27] 18 rounds with week keys [26,27]

CAMELLIA Yes [27,28] 9 rounds [27]

CAST Yes [29] 6 and 18 rounds [29]

CLEFIA Yes [31] 11, 12, 14 and 15 rounds [31]

DES Yes [32] 3, 5, 8, 12 and 16 rounds [32]

MMB Yes [33] All rounds [33]

RC5 Yes [34] All rounds [34]

SERPENT Yes [35] 11 rounds [35]

SKIPJACK Yes [36] All rounds [36]

2.1. Limitation of Study

Apart from the linear cryptanalysis attack, cryptography cannot guarantee information
security. Additional techniques are required to protect against attacks, such as denial of
service or complete system failure [24–26].

2.2. Definition of Internet of Things (IoT)

IoT is an upcoming network platform and a new paradigm of communication innova-
tions of the future that keeps on connecting huge amounts of different devices in order to
provide new proper services [40–45]. Devices are technological machines or things used
to establish any communication when IoT is used, like smart cards, sensors, temperature
monitors, radio frequency identification (RFID), and many more [40–45].

2.3. Definition of Cryptography

Cryptography is the mathematical procedure that changes plaintext (a readable mes-
sage) into ciphertext (an unreadable scrambled message) and vice versa. The mathematical
procedure of changing plaintext to ciphertext is called encryption, and changing ciphertext
back to plaintext is called decryption [44,46]. In simple terms, cryptography is a desir-
able procedure to secure communications and data meant to block intruders or attackers
from obtaining access to confidential information [44–46]. This mathematical procedure
of encryption and decryption is called the cryptographic algorithm. For example, AES,
BLOWFISH, CAMELLIA, CAST, CLEFIA, DES, MMB, RC5, SERPENT, and SKIPJACK.

2.4. Linear Cryptanalysis Attack (also Known as Known Plaintext Attack)

Linear cryptanalysis (or known plaintext attack) is a strong technique introduced by
Matsui in 1993 to attack cryptographic algorithms [1]. The attack was first implemented on
the cryptographic algorithm called the Data Encryption Standard (DES), but an untimely
adaptation of the linear cryptanalysis attack, introduced by Matsui and Yamagishi, was
previously used to successfully attack FEAL in 1992 [2]. The attacker analyzes the linear
probability relations (linear approximations) of known plaintext to search for a secret key.
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Cryptographic algorithms routinely use non-linear S-Boxes in their structures [1–3]. In DES,
the only non-linear building blocks are the S-boxes [3]. The rest of the building blocks are
linear and can be easily attacked [3]. A linear probability relation (linear approximation) of
known plaintext is used to obtain the secret key and is calculated by XORing many pairs
of plaintext, and the results are tabled for analysis [4]. Attackers do not attack the entire
algorithm at once [4]. In the linear cryptanalysis attack, the attacker first analyzes the linear
vulnerabilities of an S-Box. For example, let us consider the simplified S-Box of DES shown
in Table 1, where the input bits are X = [X1 X2 X3 X4] and the output bits are Y = [Y1 Y2 Y3
Y4]. The attacker examined all possibilities of the events that S-Box conducted. Every linear
approximation can be calculated to discover its functionality by examining the probability
for each event using Equation (1) [5].

Probability[ X1 ⊕ X2 ⊕ . . . ⊕ XU ⊕ Y1 ⊕ Y2 ⊕ . . . ⊕ YV = 0] = P (1)

From Equation (1), if is much greater than half (1/2), there is a high probability of
occurrence to guess the key, whereas if is much lesser than half, the S-Box has a low
probability of occurrence [1]. Therefore, the probability bias of the S-Box can be calculated
using Equation (1) [2–4]. Figure 1 shows the four input bits X = [X1 X2 X3 X4] and the four
output bits Y = [Y1 Y2 Y3 Y4] of the simplified S-Box of DES defined in Table 2. The input
and output bits are used to define the S-Box size. The S-Box size in Figure 1 and Table 2 is a
4 × 4 S-Box.
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Table 2. Simplified S-Box of DES [5].

X 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(X) = Y E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

For example, From Table 2 and Figure 1, S-Box is 4 × 4, meaning that it has four bits of
input and four bits of output. To calculate the linear probability, if an event of X1 ⊕ X4 ⊕
Y2 = 0 is analyzed, Table 3 can be drawn, and a total of eight zeros are counted. See Table 3.
Therefore, from Equation (2), derived from Equation (1),

Probability[ X1 ⊕ X4 ⊕ Y2 = 0] =
8

16
=

1
2
= PL (2)
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Table 3. Calculating linearity when X1 ⊕ X4 ⊕ Y2 = 0 [6].

X1 X2 X3 X4 Y1 Y2 Y3 Y4

0 0 0 0 1 1 1 0 1

0 0 0 1 0 1 0 0 0

0 0 1 0 1 1 0 1 1

0 0 1 1 0 0 0 1 1

0 1 0 0 0 0 1 0 0

0 1 0 1 1 1 1 1 0

0 1 1 0 1 0 1 1 0

0 1 1 1 1 0 0 0 1

1 0 0 0 0 0 1 1 1

1 0 0 1 1 0 1 0 0

1 0 1 0 0 1 1 0 0

1 0 1 1 1 1 0 0 1

1 1 0 0 0 1 0 1 0

1 1 0 1 1 0 0 1 0

1 1 1 0 0 0 0 0 1

1 1 1 1 0 1 1 1 1

The denominator value of 16 is calculated from the size of the S-Box, which is
4 × 4 = 16. Alternatively, the denominator value can also be calculated using (24 = 16),
where 4 is the number of output bits [1–6]. Therefore,

Probability bias = PL − 1
2
= 0 (3)

Let us take another example: when the event of X3 ⊕ X4 ⊕ Y1 ⊕ Y4 = 0 is ana-
lyzed, the truth table of the simplified S-Box of DES is defined in the table with input bits
X = [X1 X2 X3 X4] and the output bits Y = [Y1 Y2 Y3 Y4] drawn in Table 4. The results where
X3 ⊕ X4 ⊕ Y1 ⊕ Y4 are listed in the last column in red. When X3 ⊕ X4 ⊕ Y1 ⊕ Y4 = 0, only
two occurrences are found. Refer to Table 4. Therefore, using Equation (4) derived from
Equation (1),

Probability[ X3 ⊕ X4 ⊕ Y1 ⊕ Y4 = 0] =
2
16

=
1
8

(4)

Therefore,

Probability bias = PL − 3
8
= −0.375 (5)

Though sometimes the minus value is found, the attacker is always interested in the
absolute value of the probability bias [4]. After the entire possible event is analyzed, the
attacker then constructs a table called the Linear Approximation Table (LAT) [1–6], using
Equations (1) and (2) and their truth table. Figure 2 shows all possible linear approximations
of the simplified S-Box of DES given in Table 2 and Figure 1. After the LAT is constructed,
the attacker uses a simple mathematical and statistical guess in a very short space of time
to discover the key of the cryptographic algorithm [4,5]. No LAT, no linear approximation;
therefore, no linear cryptanalysis attack [7,8]. With the use of the LAT, an attacker traces
and attacks the entire algorithm by tracing the changes in the bits of the entire algorithm,
like what is outlined in Figure 3. In Figure 3, the red lines are indications of the trace
probability of the secret key using LAT.
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Table 4. Calculating linearity when X3 ⊕ X4 ⊕ Y1 ⊕ Y4 = 0 [6].

X1 X2 X3 X4 Y1 Y2 Y3 Y4

0 0 0 0 1 1 1 0 1

0 0 0 1 0 1 0 0 1

0 0 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1

0 1 0 0 0 0 1 0 0

0 1 0 1 1 1 1 1 1

0 1 1 0 1 0 1 1 1

0 1 1 1 1 0 0 0 1

1 0 0 0 0 0 1 1 1

1 0 0 1 1 0 1 0 1

1 0 1 0 0 1 1 0 1

1 0 1 1 1 1 0 0 1

1 1 0 0 0 1 0 1 1

1 1 0 1 1 0 0 1 1

1 1 1 0 0 0 0 0 1

1 1 1 1 0 1 1 1 1
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3. Theoretical Background of Our Novel Approach

In this study, the proposed procedure (novel approach), which is believed to cater to
less probability, give a big table of LAT, and bring confusion to the attacker, is the Galois
Field of highest order, which will yield 32 output bits compared to the minimum output
bits of known S-Boxes. Hosseinkhani et al. [9] (p. 21) indicated that the S-Boxes with more
output bits provide high security. In cryptography, the size of the S-Box is defined using
input bits (let us say the number of input bits is N) and output bits (let us say the number
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of output bits is M); therefore, the size of the S-Box is NxM. In this proposal, the highest
chosen order of Galois Field is 232. A Galois Field of order 232 is mathematically represented
by GF (232); this means that the size of an S-Box constructed by GF (232) will be Nx32 (that
is, N input bits and 32 output bits). Most algorithms used on IoT (like AES, BLOWFISH,
CAMELLIA, CAST, CLEFIA, DES, MMB, RC5, SERPENT, and SKIPJACK) have S-Boxes
that have fewer output bits than 32, making them vulnerable to attackers [9]. Hosseinkhani
et al. [9] (p. 21) indicated that the S-Boxes with fewer output bits provide less security. The
size of tables like LAT is determined by the size of the S-Box. For example, if the simplified
DES S-Box size is 4 × 4, then the LAT size will have 16 columns × 16 rows, which is
calculated as 24 × 24. Refer to Table 4. Therefore, an S-Box of 32 × 32, for example, will give
a LAT of the size of 232 × 232, which is 4,294,967,296 (number of columns) × 4,294,967,296
(number of rows). With this increase in events, the attacker is believed to have low chances
or probability of guessing a key [15]. This is also supported by statistical theory (the
probability of guessing a head from a coin is 1/2 and the probability of guessing a space
ace from a deck card is 1/(56)) [16,17]. With the size (232 = 4,294,967,296) probability table,
attackers will need extra time (or struggle) to construct and analyze tables such as LAT,
unlike before when the size of an S-Box was 4 × 4. After the construction of an S-Box of
Nx32 using GF (232) and a high irreducible polynomial, where N and 32 are the number of
input and output bits, respectively, the developer can even construct an S-Box of 4 × 32,
6 × 32, 8 × 32, and 16 × 32 by extracting entities from the original Nx32 S-Box [9–17]. If
N = 4, 6, 8, or 16, a new S-Box of 4 × 32, 6 × 32, 8 × 32, and 16 × 32 constructed by GF
(232), respectively, would give complicated probability tables of LAT of 24 × 232, 26 × 232,
28 × 232, and 216 × 232, respectively. The number of rows still needed to construct LAT
will be 232 = 4,294,967,296. The other aspect is driven from a statistical point of view: if the
entities of the event are greater, it is more difficult to guess an entity to be true. Therefore,
using a higher-order Galois Field, the probability of guessing the key will be too low, unlike
before when the size of an S-Box was 4 × 4. Little has been achieved to reconstruct, replace,
and strengthen the S-Boxes of ten cryptographic algorithms, which are commonly used
on the IoT. In this proposal, reconstruction of algorithms is going to be performed, and
reconstruction of small output S-Boxes to 32-bit output is going to be developed using
GF (232). The proposed procedure to construct a strong algorithm is based on Galois
Field theory.

Theory of Galois Field (GF (pq))

Evariste Galois, who was a great French algebraist who died at the age of 20 years,
discovered Galois Field theory [18–23]. According to Galois Field theory, if p is a prime
number, then it is also possible to define a field with pq elements for any q. A field is a set
function F with two composition laws, plus (+) and multiplication (*), such that

a. (F, +) is a commutative [18–23]. This means that any element of a set F (for example,
the a, b, and c elements of F), when added, holds the following property [18]:

a + b + c = c + a + b = b + c + a (6)

b. (FX, *) is a commutative [19]. This means that any element of a set F (for example, the
a, b, and c elements of F), when multiplied, holds the following property [18–23]:

a ∗ b ∗ c = c ∗ a ∗ b = b ∗ c ∗ a (7)

c. The distributive law holds, and each element has an inverse [18]. This means that
any element of a set F (for example, the a, b, and c elements F), when computed,
holds the following property [18–23]:

a ∗ (b + c) = a ∗ b + a ∗ c (8)
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The total number of elements in the field is defined as the order of a field [20]. The order
of GF (pq) is pq. For each Galois Field (GF (pq)), there exists a prime number (irreducible
polynomial) of base p with element q. An irreducible polynomial is a polynomial that
cannot be factorized or divided into more than one segment except by 1 or itself [9–23]. For
example, GF (22), has an irreducible polynomial of x1 + 1 = 11binary = 3decimal [21] (p. 385).
This means that from 20 to 22, the only number that cannot be factored or divided except by
1 or itself is 3. For GF (23), there exist two irreducible polynomials: x3 + x + 1 = 1011binary

= 11decimal and x3 + x2 + 1 = 1101binary = 13decimal [9] (p. 385). Therefore, in GF (232), there
exist at least six long irreducible polynomials as follows [23] (pp. 25–26), [18]:

x32 + x22 + x2 + x + 1 = 80200007hexidecimal = 2149580807decimal (9)

x32 + x22 + x21 + x20 + x18 + x17 + x15 + x13 + x12 + x10 + x8 + x6 + x4 + x1

+1 = 10076B553hexidecimal
(10)

x32 + x23 + x17 + x16 + x14 + x10 + x8 + x7 + x6 + x5 + x3 + 1 = f1(x) (11)

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1
= f2(x)

(12)

x32 + x27 + x26 + x25 + x24 + x23 + x22 + x17 + x13 + x11 + x10 + x9 + x8 + x7+
x2 + x1 + 1 = 10FC22F87hexadecimal = 4559351687decimal

(13)

x32 + x28 + x19 + x18 + x16 + x14 + x11 + x10 + x9 + x6 + x5 + x1 + 1 = f3(x) (14)

It is already stated that GF (232) is the chosen mathematical procedure to be used to
generate S-Boxes with an output of 32 bits. It is noted that a polynomial x32 + x22 + x21 +
x20 + x18 + x17 + x15 + x13 + x12 + x10 + x8 + x6 + x4 + x1 + 1 = 10076B553hexidecimal and
a polynomial x32 + x27 + x26 + x25 + x24 + x23 + x22 + x17 + x13 + x11 + x10 + x9 + x8 +
x7 + x2 + x1 + 1 = 10FC22F87hexadecimal = 4559351687decimal and are long irreducible
polynomials. To recall the simplified S-Box of DES from Table 2, see Table 5. We multiplied
each of the four output bits of the simplified S-Box of DES by 10076B553hexidecimal , then
added the product to 10FC22F87hexadecimal ; the sum will be multiplied by modulus (232).
Modulus (232) was used to quantify (make sure) that the entity generated has a 32-bit
output. For example, let us convert the simplified S-Box of DES, which is 4 × 4 (four inputs
and four outputs), to 4 × 32 using GF (232) and long irreducible polynomials. Refer to
Equations (15) and (16).

Table 5. Recall of Table 2 of simplified S-Box of DES [5].

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(X) = Y E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

The first entity is Ehexadecimal = 14decimal and is 4 outputted bits; to convert it to
32 bits, Ehexadecimal is multiplied by 10076B553hexidecimal , the product will be added with
10FC22F87hexadecimal and then the sum will be modulated by mod (232) = Modulus
(100000000hexadecimal ). That is

S(0)
= (Ehexadecimal ∗ 10076B553hexadecimal
+10FC22F87hexadecimal ) mod (100000000)hexadecimal
= 16401A11hexadeciaml

(15)
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S(1)
= (4 ∗ 10076B553hexadecimal
+10FC22F87hexadecimal ) mod (100000000)hexadecimal
= 119D04D3hexadeciaml

(16)

Continuing to convert all 4 output bits to 32 output bits of the simplified S-Box, the
new S-Box will be represented by Table 6.

Table 6. New S-Box generated by GF (232) and long irreducible polynomial of simplified DES’s S-Box.

X S(X) = Y

0 16401A11

1 119D04D3

2 15C964DE

3 1038E4DA

4 10AF9A2D

5 16B6CF6A

6 14DBFA18

7 1377DAIF

8 11264780

9 146544C5

A 12846F79

B 1552AF6B

C 1213BA26

D 13EE8F72

E 0FC22787

F 130124CC

All S-Boxes of ten algorithms commonly used on IoT (AES, BLOWFISH, CAMELLIA,
CAST, CLEFIA, DES, MMB, RC5, SERPENT, and SKIPJACK) will be reconstructed using
the GF (232) method to strengthen them against linear cryptanalysis attacks. Algorithms
will also be reconstructed to suit newly generated S-Boxes.

4. Research Methodology

The research methodology was based on preventing linear cryptanalysis attacks by
mapping GF (232) and long irreducible polynomials on the building blocks that we found
to be the weakest links during a linear cryptanalysis attack. The research was conducted
as follows:

i. We collected all ten algorithms (AES, BLOWFISH, CAMELLIA, CAST, CLEFIA, DES,
MMB, RC5, SERPENT, and SKIPJACK) from different IoT devices using FileDisas-
sembler and analyzed all the .dll cryptographic files using dotPeek
and iLSpy.

ii. We checked all ten algorithms’ correctness using test vectors from their developers.
Test vectors are sets of inputs and outputs for any system to check the system’s
correctness [26]. For example, test vectors of the AES algorithm are shown in [26]
(p. 35). For more information about test vectors, refer to Appendix A.

iii. We analyzed the way all algorithms are attacked by intruders using the linear
cryptanalysis attack method.

iv. We mapped or applied GF (232) and long irreducible polynomials to the building
blocks that are the weakest link during the linear cryptanalysis attack.
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v. We checked whether it was still possible for the linear cryptanalysis attack to be
successful after GF (232) and long irreducible polynomials were applied. If it was
still possible, we went back to steps (iv) and (v).

vi. If the linear cryptanalysis attack is blocked on steps (iii), (iv), and (v), then we
accept and rebuild a new algorithm mapped with GF (232) and long irreducible
polynomials as an algorithm that is resistant to the linear cryptanalysis attack.

For example, we investigated how to make LAT more difficult for attackers to construct
and more cumbersome to guess the key of cryptographic algorithms mapped with GF (232)
and long irreducible polynomials. It is already stated that the security of algorithms relies
on the output bit size of S-Box; if the output bit size is small, it is easy for attackers to attack
algorithms. That is the theory we had before, but we did not know how possible it was.
We mapped GF (232) and long irreducible polynomials to increase the size of the output
bits of S-Boxes. GF (232) and long irreducible polynomials always yield 32 bits of output
when applied to S-Box or any building block of an algorithm. The research methodology is
summarized by the schematic diagram in Figure 4.
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5. Results and Analysis

On AES, we found that linear cryptanalysis attacks are possible on rounds one and
two only. Attacks are impossible on rounds three and above. The main building block
that makes rounds one and two possible for linear cryptanalysis attacks is the S-Box. The
S-Box of AES is 8 × 8, meaning that it has 8 inputs and 8 outputs. We found that it is
easy to construct a LAT table using the AES S-Box. The LAT of the AES S-Box is a table of
28 × 28 matrixes with probability entities for guessing a key. We wrote a C++ program
to construct the LAT of the AES S-Box. We confirmed that it is possible to attack the AES
algorithm using LAT after analyzing the procedure. To block linear attack, we mapped
GF (232) and its long irreducible polynomial to obtain a new S-Box with 32-bit output.
The new S-Box for AES was constructed. We tried to construct the LAT of a new S-Box,
which is supposed to be a 28 × 232 matrix. That is a 256 × 4,294,967,296 matrix. We found
that it is infeasible to construct the LAT of a new AES S-Box with an output of 32 bits
because of the maximum size allocation. We tried to use array 232 = 4,294,967,296 size,
and we found that we also have to include input 28 = 256. The program for constructing
LAT on a new S-Box crashed before LAT was constructed due to a lack of memory. The
computation of 232 needs more than 264 memory allocations, which is impossible. Iwata
et al. [37] (p. 121) also confirmed that it is infeasible to construct a probability table (like
LAT) for a 32-bit output S-Box because it needs a memory of 264, which is impossible. To
achieve probabilities of guessing a key from a 32-bit output, S-Box is impossible [38] (p. 9).
32-bit S-Boxes are robust to linear cryptanalysis attacks due to the cost of computing LAT
due to the memory required [39] (p. 179). Therefore, we managed to block and prevent
LAT construction using GF (232) and its long irreducible polynomial. GF (232) and long
irreducible polynomials always yield 32-bit output when applied to S-Box or any building
block of an algorithm. No LAT, no linear cryptanalysis attack. Therefore, we managed to
secure AES against the linear cryptanalysis attack. For Blowfish, the linear cryptanalysis
attack was performed on P-arrays rather than S-boxes. S-Boxes of Blowfish already have
32-bit output, so attackers avoided S-Boxes and attacked P-array because P-array is weakly
generated [26]. P-array is generated from PI ratio = 22/7; all digits are taken from the
string of P1 [26] (p. 21). We applied GF (232) and the long irreducible polynomial to the
P-array, and we tried to do the linear cryptanalysis attack using the same steps used on [26].
We found it to be impossible because we destroyed the weakness of the P-array and the
nature of the PI derivation, which was the advantage of the attacker in running the linear
cryptanalysis attack easily. We found that CAST already has 32-bit out S-Boxes; attackers
reduced output CAST S-Boxes [45]. We applied GF (232) and a long irreducible polynomial
to the original 32-bit output S-Boxes and tried to apply a linear cryptanalysis attack. We
found that it was impossible to guess the key. We found that RC5 and MMB have no
S-Boxes. We used the new AES S-Box on RC5 and MMB to block linear cryptanalysis
attacks since the new AES S-Box has already been developed and proven to be strong
against linear cryptanalysis attacks. For the rest of the algorithms, like DES, CAMELLIA,
SERPENT, etc., we applied GF (232) and its irreducible polynomial. We found that all are
resistant to linear cryptanalysis attacks due to the memory required to construct LAT. No
LAT, no linear cryptanalysis attack. We rewrote all ten algorithms with new components
mapped to GF (232) and long irreducible polynomials. We tested whether all ten algorithms
were encrypting and decrypting with new 32-bit output components. All were working
according to our expectations.

To prove that we conducted all procedures of linear cryptanalysis attack used to attack
algorithms using the LAT, we give an executable file of the simplified S-Box defined in
Figure 2. We analyzed how Figure 2 is theoretically constructed and wrote our experimental
C++ code for verification. Refer to Figures 2 and 5. Figures 2 and 5 have the same entities.
Figure 2 is our theoretical LAT, and Figure 5 is our experimental LAT executed by our C++
LAT code.
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Table 7 compares theoretical and experimental results before and after GF (232) was
applied. Table 8 shows the results of time complexity before and after the GF (232) was
applied. Table 9 shows the results of LAT constructability before and after the GF (232)
was applied.

Table 7. Results of linear attack before and after the GF (232) was applied.

Algorithm Linear Cryptanalysis before
GF (232) Was Applied

Number of Rounds
Attacked before GF
(232) Was Applied

Linear Cryptanalysis after
GF (232) Was Applied

Number of Rounds
Attacked after GF (232)
Was Applied

AES Yes [24,25] 2 rounds [25] No None

BLOWFISH Yes [26,27] 16 rounds with week
keys [26,27] No None

CAMELLIA Yes [27,28] 9 rounds [27] No None

CAST Yes [29] 6 and 18 rounds [29] No None

CLEFIA Yes [31] 11, 12, 14 and
15 rounds [31] No None

DES Yes [32] 3, 5, 8, 12 and
16 rounds [32] No None

MMB Yes [33] All rounds [33] No None

RC5 Yes [34] All rounds [34] No None

SERPENT Yes [35] 11 rounds [35] No None

SKIPJACK Yes [36] All rounds [36] No None

Table 8. Results of time complexity before and after the GF (232) was applied.

Algorithm
Attack Time Complexity
before GF (232)
Was Applied

Number of Rounds
Attacked before GF (232)
Was Applied

Attack Time Complexity after
GF (232) Was Applied

Computation of LAT after
GF (232) Was Applied

AES 2176 [47] 2 rounds [25] C++ program crashed before
completing execution

Impossible, no ordinary computer
can compute and store a 232 LAT
simultaneously [37] (p. 121)
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Table 8. Cont.

Algorithm
Attack Time Complexity
before GF (232)
Was Applied

Number of Rounds
Attacked before GF (232)
Was Applied

Attack Time Complexity after
GF (232) Was Applied

Computation of LAT after
GF (232) Was Applied

BLOWFISH 214 [26]
16 rounds with week
keys [26,27]

C++ program crashed before
completing execution

Impossible, no ordinary computer
can compute and store a 232 LAT
simultaneously [37] (p. 121).

CAMELLIA 2110 [48] 9 rounds [27] C++ program crashed before
completing execution

Impossible, no ordinary computer
can compute and store a 232 LAT
simultaneously [37] (p. 121).

CAST 2−12.91 [29] 6 and 18 rounds [29] C++ program crashed before
completing execution

Impossible, no ordinary computer
can compute and store a 232 LAT
simultaneously [37] (p. 121).

CLEFIA 2244.2 [30]
11, 12, 14 and
15 rounds [31]

C++ program crashed before
completing execution

Impossible, no ordinary computer
can compute and store a 232 LAT
simultaneously [37] (p. 121).

DES 243 [49]
3, 5, 8, 12 and
16 rounds [32]

C++ program crashed before
completing execution

Impossible, no ordinary computer
can compute and store a 232 LAT
simultaneously [37] (p. 121).

MMB 240 [50] All rounds [33] C++ program crashed before
completing execution

Impossible, no ordinary computer
can compute and store a 232 LAT
simultaneously [37] (p. 121).

RC5 236 [51] All rounds [34] Infinity. C++
program crashed.

Impossible, no ordinary computer
can compute and store a 232 LAT
simultaneously [37] (p. 121).

SERPENT 280 [52] 11 rounds [35] C++ program crashed before
completing execution

Impossible, no ordinary computer
can compute and store a 232 LAT
simultaneously [37] (p. 121).

SKIPJACK 249 [53] All rounds [36] C++ program crashed before
completing execution

Impossible, no ordinary computer
can compute and store a 232 LAT
simultaneously [37] (p. 121).

Table 9. Results of LAT constructability before and after the GF (232) was applied.

Algorithm Possibility of Linear Attack
before GF (232) Was Applied Remarks Possibility of Linear Attack after

GF (232) Was Applied

AES Possible because LAT was
constructible [47]

Linear cryptanalysis attack
relies on LAT.

Impossible because LAT was not
constructible, due to memory
constraints [39] (p. 176).

BLOWFISH Possible because LAT was
constructible [26]

Linear cryptanalysis attack
relies on LAT.

Impossible because LAT was not
constructible, due to memory
constraints [39] (p. 176).

CAMELLIA Possible because LAT was
constructible [48]

Linear cryptanalysis attack
relies on LAT.

Impossible because LAT was not
constructible, due to memory
constraints [39] (p. 176).

CAST Possible because LAT was
constructible [29]

Linear cryptanalysis attack
relies on LAT.

Impossible because LAT was not
constructible, due to memory
constraints [39] (p. 176).

CLEFIA Possible because LAT was
constructible [30]

Linear cryptanalysis attack
relies on LAT.

Impossible because LAT was not
constructible, due to memory
constraints [39] (p. 176).

DES Possible because LAT was
constructible [49]

Linear cryptanalysis attack
relies on LAT.

Impossible because LAT was not
constructible, due to memory
constraints [39] (p. 176).
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Table 9. Cont.

Algorithm Possibility of Linear Attack
before GF (232) Was Applied Remarks Possibility of Linear Attack after

GF (232) Was Applied

MMB Possible because LAT was
constructible [50]

Linear cryptanalysis attack
relies on LAT.

Impossible because LAT was not
constructible, due to memory
constraints [39] (p. 176).

RC5 Possible because LAT was
constructible [51]

Linear cryptanalysis attack
relies on LAT.

Impossible because LAT was not
constructible, due to memory
constraints [39] (p. 176).

SERPENT Possible because LAT was
constructible [52]

Linear cryptanalysis attack
relies on LAT.

Impossible because LAT was not
constructible, due to memory
constraints [39] (p. 176).

SKIPJACK Possible because LAT was
constructible [53]

Linear cryptanalysis attack
relies on LAT.

Impossible because LAT was not
constructible, due to memory
constraints [39] (p. 176).

6. Conclusions and Future Work

We have managed to block all procedures taken to conduct linear cryptanalysis at-
tacks on AES, BLOWFISH, CAMELLIA, CAST, CLEFIA, DES, MMB, RC5, SERPENT, and
SKIPJACK using our novel method of GF (232) and its long irreducible polynomial. We
have proven that it is impossible to draw the LAT from a 32-bit output S-Box. We have
proven that if there is no LAT, there is no linear cryptanalysis attack. Therefore, we blocked
the linear cryptanalysis attack. Future work will try to block differential cryptanalysis
attacks and differential–linear cryptanalysis attacks using GF (232) and its long irreducible
polynomial. Apart from the linear cryptanalysis attack, cryptography cannot guarantee
information security. Additional techniques are required to protect against attacks such as
denial of service or complete system failure [24–26].

Author Contributions: Conceptualization, K.D.M.; methodology, K.D.M.; software, K.D.M.;
validation, K.D.M. and M.S.; formal analysis, K.D.M.; investigation, K.D.M.; resources, K.D.M.
and M.S.; data curation, K.D.M. and M.S.; writing—original draft preparation, K.D.M. and M.S.;
writing—review and editing, K.D.M. and M.S.; visualization, K.D.M. and M.S.; supervision, M.S.; All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figures A1 and A2 show how we use a C++ program to test and run test vectors. In the
C++ code, we set temp as the key and temp2 as the plaintext. Then, we call the encryption
and decryption functions; if the decryption function generates the same array as temp2, the
test vectors are validated, and the algorithm is encrypting and decrypting as expected. If
you compare Figures 4 and A1, the array after decryption is the same as the array of temp2.
Therefore, the test vectors are valid and .dll file is the algorithm. If that was not the case,
the .dll file obtained from the IoT device is not an algorithm or is corrupt.
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