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Abstract: Columns play a very important role in structural performance and, therefore, this paper
contributes to the critical need for failure mode prediction of reinforced concrete (RC) columns by
exploring the capabilities of random forest machine learning (ML) based on a well-known exper-
imental column database. Known as the PEER structural performance database, it assembles the
results of over 400 cyclic, lateral-load tests of reinforced concrete columns. The database describes
tests of spiral or circular hoop-confined columns, rectangular tied columns and columns with or
without lap splices of longitudinal reinforcement at the critical sections. The efficiency towards the
aforementioned goal of supervised ML methods such as random forests using a randomly assigned
test set from the Pacific Earthquake Engineering Research Center (PEER) database is examined here.
The overall accuracy score for rectangular RC columns is 94% and for circular RC columns is 86%.
The latter performances are influenced by the size of the testing and training sets of data and are
independent of the number of decision trees in the forest employed in the random forest algorithm.
The performances of random forests in postdicting the failure mode of RC columns prove that ML
has great promise in revolutionizing the profession of earthquake engineering.

Keywords: reinforced concrete; columns; PEER structural performance database; machine learning;
random forests; failure mode

1. Introduction

Machine learning (ML) is a subfield of artificial intelligence (AI) and an advanced form
of data analysis and computation that employs the high elaboration speed and pattern
recognition techniques of computers for knowledge output from data. In other words, it
is a computer programming technique inspired by AI that allows computers to improve
their learning abilities through data supplies or data access. This resembles the way human
beings improve their intelligence in real life. There are four generalized categories of ML.
To be more specific, there is supervised learning, semi-supervised learning, unsupervised
learning and reinforcement learning. In supervised learning, the desired output is known
by the trainer, where the trainer is the human being that can ascribe physical meaning to
the data and characterize it by adding a tag or correcting system errors. The machine is
trained based on inputs with tags that are connected to a corresponding output. Through
this process, the machine develops a predictive model for the connection of this input to a
certain output. This does not differ from the way that knowledge is learned in a classroom,
with a teacher available to correct any errors.

The mode of failure of structural members, such as reinforced concrete columns,
depends on several factors, such as their geometric characteristics, the longitudinal re-
inforcement, the efficiency of confinement through the transverse reinforcement and the
loading history. Their behavior throughout the loading range is controlled by competing
mechanisms of resistance such as flexure, shear, buckling of longitudinal bars when they
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are subjected to compressive loads and, in the case of lap splices, the lap splice mechanism
of the development of reinforcing bars. Very often, a combination of such mechanisms
characterizes the macroscopic behavior of the column, especially in cases of cyclic load
reversals. Various predictive models have been developed in the past to determine both the
strength as well as the deformation capacity of the columns, with the uncertainty being at
least one order of magnitude greater in terms of deformation capacity rather than strength,
as evidenced by comparisons with test results [1,2].

System identification and damage detection is a twofold area that utilizes ML to
imitate a structural system and predict its deterministic seismic response. Laboratory tests
of reinforced concrete (RC) structures have provided one source of data that enables ML
methods to identify their failure modes, strength, capacities and constitutive behaviors [3].
ML methods in which the algorithms are used to learn from the data have been used recently
for risk assessment and prediction models in civil engineering [4–11]. In this regard, some
studies have focused on predicting failure modes and shear strength for beam–column
joints [6,9,12,13]. For instance, Mitra et al. (2011) [12] categorized non-ductile joint shear
failure versus ductile beam yielding failure for interior beam–column joints. And, Tang
et al., 2022 [14] examined the design and application of a low-cycle reciprocating loading
test on 23 recycled aggregate concrete-filled steel tube columns and 3 ordinary concrete-
filled steel tube columns. Moreover, in the latter study, they applied artificial intelligence
to estimate the influence of parameter variation on the seismic performance of concrete
columns. Specifically, random forests with hyperparameters tuned by the firefly algorithm
were chosen. Similar studies with multi-objective optimization analyses are included
in [15].

In this paper, a supervised learning algorithm called the random forest is tested as a
predictive model for the first time for its performance in postdicting the failure mode of RC
columns against a widely used experimental database originally assembled by Berry and
Eberhard (2004) [16]. Known as the PEER structural performance database, it assembles the
results of over 400 cyclic, lateral-load tests of reinforced concrete columns. The database
describes tests of spiral or circular hoop-confined columns, rectangular tied columns and
columns with or without lap splices of longitudinal reinforcement at the critical sections. For
each test, where the information is available, the database provides the column geometry,
column material properties, column reinforcing details, test configuration (including P-
Delta configuration), axial load, digital lateral force displacement history at the top of the
column and top displacement that preceded various damage observations.

This paper has the following contributions in the research area of ML methods in
earthquake engineering:

• According to the authors’ knowledge, the PEER structural performance database is
employed for the first time in order to detect the failure mode of RC columns.

• Rectangular RC columns are examined for the first time for their failure mode detection
through the random forest ML method [3,17].

• The influence of the main design variables on the column ductility and failure mode is
also thoroughly examined.

• Finally, all the performance metrics necessary for the evaluation of the ML methodol-
ogy in detecting the failure mode of RC columns are provided too.

The structure of this study is the following: after the introduction which describes the
initiatives of this research paper, the employed data and the performed methodology are
described in Section 2. In the latter section, the influence of the main design variables on the
column ductility and failure mode is given in detail, along with the statistical representation
of the database. The steps of the performed supervised ML method in Python programming
language are provided here, too. Finally, the output results along with their discussion are
presented in Section 4, while the conclusions and future work are presented in Section 5.
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2. Materials and Methods

Statistics of the aforementioned PEER structural performance database are provided
below for the column depth, aspect ratio, axial load ratio, longitudinal reinforcement ratio
(ρl) and transverse reinforcement ratio (ρs) [1,2].

2.1. Statistical Representation of the PEER Structural Performance Database

Table 1 provides the mean values (Mean), Standard deviation (Std) and Coefficient
of variation (CoV) of key column properties for 306 rectangular reinforced columns and
177 spiral reinforced columns. Statistics are provided for the column depth, aspect ratio,
axial-load ratio, longitudinal reinforcement ratio (ρl) and transverse reinforcement ratio (ρs).

Table 1. Column property statistics.

Rectangular Reinforced (306 Tests) Spiral Reinforced (177 Tests)

Column
Property Mean Std CoV Mean Std CoV

Depth (mm) 323.43 116.5 0.36 420.97 202.11 0.48

Aspect Ratio 3.44 1.44 0.42 3.31 1.96 0.59

Axial-Load Ratio 0.27 0.19 0.73 0.14 0.14 1.04

ρl (%) 2.45 1.00 0.41 2.62 1.02 0.39

ρs (%) 1.34 1.07 0.80 0.93 0.74 0.80

2.2. Influence of Main Design Variables to Column Ductility and Failure Mode

One important goal in seismic structural assessment procedures is the reliable esti-
mation of the available capacity of structural members for inelastic deformation, as well
as their available ductility. Ductility drives assessment since its magnitude underlies the
general design philosophy (i.e., through the q-µ-T relationships it controls the magnitude
of strength reduction from the elastic demands that may be tolerated before failure) and,
in current code practice (EN 1998-1 2004 [18] and AASHTO LRFD 2013 [19], FEMA 440
2005 [20]), its magnitude is reflected on the specific reinforcing requirements of members
and structures.

In the experimental database report of Berry and Eberhard (2004) [12], the nominal
column failure mode was classified as (a) flexure critical, (b) flexure–shear critical, or
(c) shear critical, according to the following criteria:

- If no shear damage was reported by the experimentalist, the column was classified as
flexure critical.

- If shear damage (diagonal cracks) was reported, the absolute maximum effective
force (Fe f f : absolute maximum measured force in the experimental column response)
was compared with the calculated “ideal” force corresponding to a maximum axial
compressive strain in the concrete cover set equal to 0.004, which corresponds to
the spalling of unconfined concrete (F0.004). The failure displacement ductility at an
effective force equal to 80% maximum µ f ail was determined from the experimental
envelope. If the maximum effective force Fe f f < 0.95·F0.004Fe f f < 0.95·F0.004Fe f f <
0.95·F0.004 or if the failure displacement ductility was less than or equal to 2 (µ f ail ≤
2µ f ail ≤ 2µ f ail ≤ 2), the column was classified as shear critical. Otherwise, the column
was classified as flexure–shear critical. All columns in the database are divided into
two sub-groups according to cross-sectional shape (rectangular and circular section
columns).

In this section, the displacement ductility value clouds—as defined by the reported
experimental responses—are correlated against important design parameters and plotted in
graphs to illustrate the parametric dependencies of this variable on the column failure mode.
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For example, considering the concrete strength, the following points are made: (a) higher
strength materials are marked by lower ultimate strain, (b) strain can be enhanced through
confinement, (c) a higher concrete strength results in a lower compression zone both at
yielding and at failure. In general, it can be said that higher concrete strength causes a
reduction in ductility. This finding is confirmed by both groups of rectangular tied columns
and by the spiral reinforced columns, as can be seen in Figures 1 and 2. For the spiral
reinforced columns, it is more clearly evident that the ductility is increased for specimens
with lower concrete strengths.
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During the flexural analysis of a section both at yielding and at failure, the presence
of a compressive axial load increases the depth of the compressive zone, as compared to
an identical section without axial force. Based on the above remark, the presence of the
compressive axial load reduces the curvature ductility of a section. The experimental data
confirm this tendency, with brittleness being more evident in the cases where the axial load
ratios exceeded the point of balanced failure (see Figures 3 and 4).
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The shear span to depth ratio, known as the aspect ratio, a = Ls/h, has a determining
influence on the characteristics of shear behavior. In a column of small shear span to depth
ratio, shear deformation may become appreciable, compared with flexural deformation.
A dominant shear response causes a more pronounced pinching in the force-deformation
(hysteresis) curve and a faster degradation of the hysteresis energy dissipation capacity.
Interestingly, the experimental data show that the ductility ratio increases with a decreasing
aspect ratio (Figures 5 and 6); this perplexing result is attributed to the fact that the yield
displacement increases at a quadratic rate with shear span length Ls, whereas the ultimate
displacement is linear with Ls and thus the ductility estimate is inversely proportional to
Ls/h or a. The following expressions relate the flexural component of column response with
aspect ratio, illustrating the source of the observations interpreting the experimental trend:
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-Yield Curvature : ϕy = 2.1 ·
εsy

h
(1)

-Yield Displacement : ∆y =
1
3
· ϕy · L2

s ≈
2
3
· εsy ·

Ls

h
· Ls =

2
3
· εsy · a · Ls (2)

-Ultimate Displacement : ∆u ≈ ∆y + ϕpl · `pl · Ls = ∆y +
εpl
2h
3
· `pl · Ls

= ∆y + 1.5εpl + `pl · a
(3)

-Displacement Ductility : µ∆ ≈ 1 + 2.3(µε − 1) ·
`pl

Ls
(4)

where `pl is the plastic hinge length (approximated as 0.5h in practical calculations), εpl
the nonlinear (past yielding) part of the tension reinforcement total strain and µε is the
required bar strain ductility.
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Figures 7 and 8 depict the relationship between the maximum shear stress (maximum
experimental shear force divided by the gross area of the column) normalized by the square
root of the concrete strength of each column and the associated displacement ductility.
Columns with a higher ductility also support a higher shear force as both parameters are
correlated to the same variable, i.e., the quality and quantity of detailing. The observation
is also consistent with the trends of Figures 5 and 6 which illustrate that displacement
ductility is inversely proportional to aspect ratio, which, in turn, for a given member
flexural resistance, is inversely proportional to shear demand (since VEd = MEd/(h·a)).
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The database trends are also examined with reference to lateral confinement—which is
generally acknowledged to enhance the deformation capacity of the column. The arrange-
ment of confining reinforcement is important in this regard; a column with closely spaced
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stirrups and well-distributed longitudinal reinforcement shows very little strength decay
even when being subjected to very high axial forces with magnitudes exceeding the limit
of balanced failure. The plotted trends confirm this general expectation: the displacement
ductility increases with the transverse reinforcement ratio, as shown in Figures 9 and 10.
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2.3. Supervised ML-Based Prediction of Column Failure Mode with Random Forests

At this point after the statistical description of the available experimental data and
the examination of the influence of the main design variables to the displacement ductility
of the columns along with their failure mode, it is time to introduce the methodology of
the failure mode prediction of reinforced concrete columns by exploring the capabilities
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of ML methods. The procedure working towards the aforementioned goal of supervised
ML methods, such as random forests, using a randomly assigned test set from the PEER
database is described thoroughly here.

Random forests are an ensemble method and are based on the construction of many
different decision trees [21]. Every decision tree alone cannot provide an effective prediction
but all together can be a more effective model. This is, therefore, the essence of ensemble
methods. That is, to create models that result from the combination of many algorithms of
which each one apart is not sufficiently effective.

Random forests are proposed in order to confront the overfitting problem, where
decision trees are insufficient. Overfitting is a result of a very well-fitted model to the
training data (the collected observations). The fitting is so effective that the models’ pre-
dictions to new data are not satisfactory. The random forest algorithm creates a set of
different decision trees, each one with different characteristics that obtains the average
value of the output or the resulting value of the majority of the decision trees and therefore
can be considered as a majority voting algorithm. The creation of different decision trees
with different characteristic sets to each tree is called bagging and it is a subcategory of
ensemble methods. Another random source of the random forest is the selection of the
characteristics in each tree node. There are many hyperparameters that need to be defined
for the application of random forest algorithms, such as:

• The estimator number that defines the number of decision trees.
• The maximum feature number that defines the maximum feature number during the

separation of nodes in each decision tree.
• The maximum depth: the maximum depth in each decision tree.
• Minimum sample points at each node separation: the minimum sample point number

that should be taken into account at each node.

Likewise with decision trees, random forests do not demand any preprocessing. More-
over, they are less sensitive to overfitting in comparison to decision trees. However, random
forests are slower in learning compared to decision trees with many hyperparameters. Fi-
nally, due to the fact that random forests are random, there is not a full certainty for their
results since the latter could be changed.

Random Forests with Python [22]

In any machine learning problem, the following steps are taken:

1. The question is set and the demanded data are defined.
2. The data are obtained in an accessible form.
3. Any lack of data or uncertainty is defined and corrected accordingly.
4. The data are prepared for the machine learning model.
5. A baseline model is set that is intended to be overcome.
6. The model is trained with the training data.
7. Model predictions are made with the test data.
8. The predictions are compared to the known test goals and the performance metrics

are computed.
9. If the performance is not satisfactory, we adjust the model and obtain more data or

another modeling technique is tested too.

In the following section, the results of the application of the above-described methodol-
ogy (see also the flowchart in Figure 11) are given based on Python programming language
and the performance metrics are provided, too. It is shown that the classification of the
columns based on the latter ML method is accurate in identifying the failure mode of the
collected experimental data. It should be underlined that in the following results, the
random state in the random forests is set to value 42, which means that the results will
be the same every time that splitting of the data to training and testing data is performed
for reproducible results (random_state = 42 means that no matter how many times the
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code is executed, the result would be the same, i.e., the same values in training and testing
datasets). Finally, the number of the trees in random forests is set to 1000.
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Figure 11. Flowchart of the proposed methodology with random forest supervised ML method.

Before presenting the results of the above-described methodology, a description of
the sensitivity of the previously described hyperparameters is necessary. More details
with results of this sensitivity will be given in the next section. Regarding the number
of estimators, it should be underlined that more trees should be able to produce a more
generalized result but by choosing a greater number of trees, the time complexity of the
random forest model also increases. In addition, the maximum depth of a tree in the
random forest is defined as the longest path between the root node and the leaf node. As
the maximum depth of the decision tree increases, the performance of the model over the
training dataset increases continuously. The same is valid for the test dataset but with a
certain limit over which it decreases rapidly. In the proposed methodology, the maximum
depth of the tree is selected so that nodes are expanded until all leaves are pure or until
all leaves contain less than the minimum samples split. The default value of the latter
hyperparameter (minimum samples split) is two and so this is the minimum number of
samples required to split an internal node that was defined in the same way in the proposed
methodology. However, by increasing the value of this hyperparameter, the number of
splits that happen in the decision tree can be reduced and therefore prevent the model from
overfitting. Finally, the maximum number of features is the maximum features provided to
each tree in a random forest or else the number of features to consider when looking for
the best split. It is a good convention to consider the default value of this parameter, which
is one.

3. Results

After examination of the entire PEER database for circular and rectangular RC columns,
it can be seen that the necessary parameters to define the control variables that affect the
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mode of failure and displacement ductility, as described in Section 2.2, are not available for
all the columns of the database. Therefore, firstly the data files defining all the necessary
parameters like aspect ratio, axial load ratio, concrete strength, transverse reinforcement
ratio and normalized maximum shear stress (see Section 2.2) are generated and are divided
into two groups according to the shape of the section, i.e., rectangular and circular RC
columns (see Appendix A).

The above-mentioned data are divided into training data and into test data for each
column section type. The proportion of the dataset to include in the testing data split is
defined as 25% and the training data size is automatically set to the complement of the
testing data size. During training, the model is allowed to see the correct answers, in this
case the failure mode of the RC columns (flexure, flexure–shear and shear), so that it can
learn how to predict the failure mode from the provided features. As described previously,
it is anticipated that there is a connection between all the features and the failure mode goal
and the model should try to figure out this connection. After this step, the model is asked
during testing to predict the failure mode of the test data having access only to the features
data and not the correct answers of the failure mode. Since these answers are available to
the supervisors, the accuracy of the model can be examined. Generally, when a model is
trained, the random data are divided into training data and test data in order for the trainer
to have a representation of the whole available data.

3.1. Rectangular RC Columns

Below, the performance metrics for the case of the rectangular RC columns are pro-
vided. It can be seen that random forests have 94% accuracy in predicting the actual failure
mode of the columns of the tested data. This accuracy score could be explained based on
Table 2 by dividing the sum of the diagonal matrix terms with the sum of all the terms of
the table. More performance metrics are provided in Table 3. It should be noted that by
examining separately each of the influencing parameters included in the features data, the
most crucial for the model’s success is the transverse reinforcement ratio which confirms
that the model correctly figured out the connection between all the features and the failure
mode goal. This is crucial for establishing a physical meaning-based ML method prediction
model. Finally, it should be also underlined based on Table 3 that the model is more
successful in predicting the flexural and shear modes of failure compared to the other one.
This makes sense since flexure-shear is more difficult also in the real engineering world to
be detected in terms of seismic assessment. Finally, it should be clear that Table 2 clarifies
the conception of Figure 12 and Table 3 does the same for Table 2.

Table 2. Confusion matrix in numbers for ML prediction of the failure mode of rectangular RC
columns of PEER structural performance database with random forest method.

Confusion Matrix in Numbers *

True Values

Flexure 55 2 0

Flexure–Shear 2 2 0

Shear 0 0 1

Flexure Flexure–Shear Shear

Predicted Values
* See also Figure 12.

Table 3. Performance metrics.

Performance Metrics *

True Positive True Negative False Positive False Negative Accuracy Precision Recall

Flexure 55 2 + 1 + 0 + 0 = 3 2 + 0 = 2 2 + 0 = 2 (55 + 3)/(55 + 3 + 2 +
2) = 58/62 = 94%

(55)/(55 + 2) =
55/57 = 97%

(55)/(55 + 2) =
55/57 = 97%
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Table 3. Cont.

Performance Metrics *

True Positive True Negative False Positive False Negative Accuracy Precision Recall

Flexure–Shear 2 55 + 0 + 0 + 1= 56 2 + 0 = 2 2 + 0 = 2 (2 + 56)/(2 + 56 + 2 +
2) = 58/62 = 94%

(2)/(2 + 2) = 2/4 =
50%

(2)/(2 + 2) = 2/4 =
50%

Shear 1 55 + 2 + 2 + 2 = 61 0 + 0 = 0 0 + 0 = 0 (1 + 61)/(1 + 61 + 0 +
0) = 62/62 = 100%

(1)/(1 + 0) = 1/1 =
100%

(1)/(1 + 0) = 1/1 =
100%

* See also Table 2.
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Figure 12. Confusion matrix as performance metric for ML prediction of the failure mode of rectan-
gular RC columns of PEER structural performance database with random forest method.

3.2. Circular RC Columns

Below, the performance metrics for the case of the circular RC columns are provided.
It can be seen that random forests have 86% accuracy in predicting the actual failure

mode of the columns of the tested data. This accuracy score could be explained based on
Table 4 by dividing the sum of diagonal terms with the sum of all the terms of the table.
More performance metrics are provided in Table 5. It should be noted that by examining
separately each of the influencing parameters included in the features data, the most crucial
for the model’s success is the transverse reinforcement ratio which confirms that the model
correctly figured out the connection between all the features and the failure mode goal.
This is crucial for establishing a physical meaning-based ML method prediction model.
Finally, it should be also underlined based on Table 5 that the model in the case of circular
RC columns is more successful in predicting the flexural and flexural–shear modes of
failure, compared to the other one, which makes sense since brittle failures further demand
nonlinear structural analyses to be deterministically detected. Finally, it should be clear
that Table 4 clarifies the conception of Figure 13 and Table 5 does the same for Table 4.

Table 4. Confusion matrix in numbers for ML prediction of the failure mode of circular RC columns
of PEER structural performance database with random forest method.

Confusion Matrix in Numbers *

True Values

Flexure 12 0 0

Flexure–Shear 1 5 1

Shear 0 1 1

Flexure Flexure–Shear Shear

Predicted Values
* See also Figure 13.
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Table 5. Performance metrics.

Performance Metrics *

True Positive True Negative False Positive False Negative Accuracy Precision Recall

Flexure 12 5 + 1 + 1 + 1 = 8 1 + 0 = 1 0 + 0 = 0 (12 + 8)/(12 + 8 + 1 +
0) = 20/21 = 95%

(12)/(12 + 1) =
12/13 = 92%

(12)/(12 + 0) =
12/12 = 100%

Flexure–Shear 5 12 + 0 + 0 + 1 = 13 0 + 1 = 1 1 + 1 = 2 (5 + 13)/(5 + 13 + 1 +
2) = 18/21 = 95%

(5)/(5 + 1) = 5/6 =
83%

(5)/(5 + 2) = 5/7 =
71%

Shear 1 12 + 0 + 1 + 5 = 18 0 + 1 = 1 0 + 1 = 1 (1 + 18)/(1 + 18 + 1 +
1) = 19/21 = 90%

(1)/(1 + 1) = 1/2 =
50%

(1)/(1 + 1) = 1/2 =
50%

* See also Table 4.
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Figure 13. Confusion matrix as performance metric for ML prediction of the failure mode of circular
RC columns of PEER structural performance database with random forest method.

3.3. Parametric Sensitivity of Random Forest Algorithm

As described already, the proportion of the dataset to include in the testing data split
is defined as 25% and the training data size is automatically set to the complement of the
testing data size. Moreover, the estimator number that defines the number of decision trees
in the forest is set to 1000. Here, the parametric sensitivity of these two parameters on
the accuracy performance score of random forests in postdicting the failure mode of RC
columns will be examined. The following Figures depict this sensitivity and it can be seen
that the number of decision trees in the forest has no influence on the confusion matrix
of the performance of the random forest algorithm (Figures 14 and 15). Finally, as seems
reasonable by increasing the testing set data (and decreasing the training data at the same
time), there is a decrease in the accuracy score of rectangular RC columns and less-so in
circular RC columns (Figures 16 and 17).
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Figure 14. Parametric sensitivity of the number of decision trees in the forest on the accuracy score
of ML prediction of the failure mode of rectangular RC columns of PEER structural performance
database with random forest method (100 estimators left—94% accuracy score, 10,000 estimators
right—94% accuracy score).
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Figure 15. Parametric sensitivity of the number of decision trees in the forest on the accuracy score of
ML prediction of the failure mode of circular RC columns of PEER structural performance database
with random forest method (100 estimators left—86% accuracy score, 10,000 estimators right—86%
accuracy score).
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prediction of the failure mode of rectangular RC columns of PEER structural performance database
with random forest method (50% testing set data left—85% accuracy score, 75% testing set data
right—81% accuracy score).
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Figure 17. Parametric sensitivity of the size of the testing set data on the accuracy score of ML
prediction of the failure mode of circular RC columns of PEER structural performance database with
random forest method (50% testing set data left—86% accuracy score, 75% testing set data right—83%
accuracy score).

4. Discussion

The state of the art in modeling the lateral load response of columns leaves a lot to
be desired: improved response estimation of the behavior of columns that are susceptible
to shear failure after flexural yielding; better procedures to estimate shear strength and
the pattern of degradation thereof with increasing displacement ductility; the need to
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account for reinforcement pullout and its effects on stiffness; the shape of the hysteresis
loops; the detrimental effects of axial load at large displacement limits; and the magnitude
of deformation (drift ratio) associated with milestone events in the response curve of the
column member. These are open issues that need to be settled before the performance-based
assessment framework may be considered complete and dependable [1,2,23–30]. In this
framework, it is evident from the current study that incorporating physical knowledge
(through experimental databases) in ML methods can accurately predict the failure mode of
RC columns. From the above-described results, random forests are successful in predicting
the failure mode of RC columns, both circular and rectangular, especially the more ductile
ones (flexural failure) and, moreover, in attributing the failure mode to the most crucial
column features, like the transverse reinforcement ratio. The overall accuracy score for
rectangular RC columns is 94% and for circular RC columns is 86%. The latter performances
are influenced by the size of the testing and training sets of data and are independent of
the number of decision trees in the forest employed in the random forest algorithm. Finally,
the low precision and recall scores for brittle failures, especially for circular RC columns,
are confirmed also by other studies [3], where it is suggested that brittle failures are crucial
in governing the retrofitting and operational strategies of critical infrastructures to adopt
other supervised ML methods, such as Neural Networks and Deep Learning.

5. Conclusions

The prediction of the failure mode of RC columns is crucial in defining the retrofit so-
lutions of buildings and bridges in the modern world. Current strategies include nonlinear
structural analysis procedures, which demand a lot of effort and time in order to be per-
formed accurately. This study explores the capability of incorporating physical knowledge
into ML methods for predicting the failure mode of RC columns. To this end, the PEER
structural performance database is employed and the influence of main design variables
on the column ductility and failure mode are examined. It can be seen that supervised
ML methods, such as random forests, using a randomly assigned test set from the PEER
database and incorporating physical knowledge into them can classify columns’ failure
modes accurately, proving that ML has great promise in revolutionizing the profession of
earthquake engineering. Finally, according to the authors’ knowledge and the state of the
art, the PEER structural performance database is employed for the first time in research in
order to identify columns’ failure modes through supervised ML methods. The section of
the column is also a variable that was not considered thoroughly and recent results refer
only to circular columns. This study will be the basis for further examination of other
supervised ML methods in detecting RC columns’ failure modes, such as Decision Trees,
k-Nearest Neighbor, Neural Networks and Deep Learning.
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Appendix A

Random forests grow many classification trees. To classify a new object from an
input vector, the input vector is given to each of the trees in the forest. Each tree gives a
classification, and the tree “votes” for that class. The forest chooses the classification with
the most votes (over all the trees in the forest). In the following tables, the feature values
and the true label values—showing the classification nature of the algorithm—are given.

Table A1. Feature values and true label values of circular RC columns from PEER structural perfor-
mance database.

Feature Values True Label Values (1 = Flexure,
2 = Flexure–Shear, 3 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

2.00 0.00 0.51 37.5 0.42 2

2.00 0.00 0.51 37.2 0.29 2

2.50 0.00 0.51 36 0.37 2

2.00 0.00 0.51 30.6 0.42 3

2.00 0.00 0.76 31.1 0.47 2

1.50 0.00 0.51 30.1 0.57 3

2.00 0.00 0.38 29.5 0.41 3

2.00 0.20 1.02 28.7 0.69 2

2.00 0.20 1.02 31.2 0.64 2

2.00 0.20 0.51 29.9 0.59 2

1.50 0.10 1.02 28.6 0.78 2

2.00 0.10 1.02 36.2 0.58 2

2.00 0.00 0.51 33.7 0.43 2

2.00 0.00 0.51 34.8 0.31 2

2.00 0.10 0.51 33.4 0.51 3

2.50 0.10 0.51 34.3 0.44 2

1.50 0.10 0.51 35 0.68 3

1.50 0.10 0.38 34.4 0.59 3

1.75 0.17 0.38 36.7 0.64 3

2.00 0.00 0.38 33.2 0.37 3

2.00 0.00 0.39 30.9 0.41 3

2.00 0.00 0.76 32.3 0.47 2

2.00 0.00 0.77 33.1 0.47 2

2.00 0.19 1.42 38 0.60 1

2.00 0.39 0.47 37 0.64 2

2.00 0.39 1.42 37 0.76 1

6.22 0.05 0.63 38.8 0.07 1

6.22 0.09 0.63 36.2 0.08 1

2.93 0.05 0.63 35.9 0.19 2

2.92 0.10 0.63 34.4 0.21 2

7.50 0.24 1.45 34.5 0.18 1

3.75 0.24 1.45 34.5 0.39 1

3.75 0.35 1.45 34.5 0.40 1

6.01 0.07 0.63 35.8 0.12 1

3.01 0.07 1.49 34.3 0.31 1

3.00 0.10 1.41 24.1 0.27 1

3.00 0.21 1.41 23.1 0.31 1

6.00 0.10 0.68 25.4 0.13 1

3.00 0.10 1.41 24.4 0.26 1

3.00 0.20 1.41 24.3 0.32 1

6.00 0.11 0.68 23.3 0.13 1
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Table A1. Cont.

Feature Values True Label Values (1 = Flexure,
2 = Flexure–Shear, 3 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

4.50 0.09 0.94 29 0.19 1

4.50 0.09 0.94 29 0.19 1

4.50 0.09 0.94 35.5 0.17 1

4.50 0.09 0.94 35.5 0.21 1

4.50 0.09 0.94 35.5 0.18 1

4.50 0.09 0.94 32.8 0.19 1

4.50 0.09 0.94 32.8 0.17 1

4.50 0.09 0.94 32.5 0.18 1

4.50 0.10 0.94 27 0.20 1

4.50 0.10 0.94 27 0.19 1

4.50 0.10 0.94 27 0.19 1

1.50 0.06 0.28 30 0.26 2

1.50 0.06 0.17 30 0.37 2

6.00 0.15 0.89 41.1 0.19 1

1.99 0.31 1.14 38.3 0.61 1

1.99 -0.10 1.14 39.2 0.28 2

1.99 0.15 1.14 39.4 0.54 1

1.99 0.15 2.70 35 1.02 2

1.99 -0.08 0.85 35.2 0.41 2

1.99 0.33 3.04 35 1.14 1

8.00 0.30 0.92 36.6 0.19 1

8.00 0.27 1.38 40 0.17 1

8.00 0.28 0.92 38.6 0.19 1

4.00 0.07 0.70 31 0.18 1

8.00 0.07 0.70 31 0.09 1

10.00 0.07 0.70 31 0.06 1

4.00 0.07 0.70 31 0.11 1

4.00 0.07 0.70 31 0.30 1

3.00 0.09 0.89 34.5 0.32 1

8.00 0.09 0.89 34.5 0.12 1

10.00 0.09 0.89 34.5 0.11 1

3.00 0.04 0.54 34.6 0.26 1

3.00 0.04 0.81 33 0.28 1

6.58 0.31 1.54 65 0.18 1

6.58 0.31 3.49 65 0.17 1

6.58 0.42 1.74 90 0.17 1

6.58 0.21 1.54 90 0.16 1

6.58 0.42 1.54 90 0.17 1

2.58 0.00 0.10 34.7 0.19 2

2.58 0.00 0.26 35.4 0.23 2

2.00 0.00 0.13 29.8 0.25 3

2.00 0.00 0.13 26.8 0.22 3

2.00 0.00 0.13 31.2 0.20 3
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Table A2. Feature values and true label values of rectangular RC columns from PEER structural
performance database.

Feature Values True Label Values (1 = Flexure,
2 = Flexure–Shear, 3 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

2.18 0.26 1.50 23.1 0.48 1

2.18 0.21 2.30 41.4 0.42 1

2.18 0.42 2.00 21.4 0.48 1

2.18 0.60 3.50 23.5 0.47 1

4.00 0.38 2.83 23.6 0.25 1

4.00 0.21 2.22 25 0.21 1

4.00 0.10 0.86 46.5 0.18 1

4.00 0.30 1.22 44 0.26 1

4.00 0.30 0.80 44 0.26 1

4.00 0.30 0.57 40 0.26 1

4.00 0.22 1.56 28.3 0.25 1

4.00 0.39 1.99 40.1 0.27 1

4.00 0.50 0.66 41 0.29 1

4.00 0.50 0.32 40 0.29 1

4.00 0.70 1.26 42 0.29 1

4.00 0.70 0.70 39 0.30 1

4.00 0.70 2.33 40 0.31 1

4.00 0.20 2.55 25.6 0.21 1

4.00 0.20 2.55 25.6 0.21 1

4.00 0.20 2.55 25.6 0.22 1

4.00 0.20 2.55 25.6 0.21 1

3.00 0.10 1.70 32 0.23 1

3.00 0.10 1.70 32 0.24 1

3.00 0.30 2.08 32.1 0.36 1

3.00 0.30 2.08 32.1 0.36 1

2.97 0.10 2.17 26.9 0.32 1

1.50 0.33 1.18 20.6 0.57 1

1.50 0.17 0.81 21.6 0.47 3

1.50 0.35 1.39 21 0.61 2

4.00 0.03 0.32 24.8 0.15 1

4.00 0.03 0.32 24.8 0.14 1

4.00 0.03 0.32 24.8 0.14 1

2.00 0.14 0.57 32 0.45 2

2.00 0.15 0.57 29.9 0.51 2

1.65 0.05 0.36 27.1 0.45 3

2.00 0.80 0.73 21.1 0.58 2

2.00 0.80 0.73 21.1 0.61 1

2.00 0.90 1.75 21.1 0.57 2

3.00 0.70 0.73 28.8 0.41 2

3.00 0.70 0.73 28.8 0.40 2

3.00 0.70 1.75 28.8 0.38 2

3.00 0.11 0.38 27.9 0.25 1

3.00 0.11 0.38 27.9 0.24 1

3.00 0.11 0.38 27.9 0.25 1

3.00 0.12 0.38 24.8 0.27 1

3.00 0.11 0.38 27.9 0.25 1

3.00 0.11 0.38 27.9 0.23 1

1.25 0.18 0.21 31.8 0.71 3
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Table A2. Cont.

Feature Values True Label Values (1 = Flexure,
2 = Flexure–Shear, 3 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

1.25 0.45 0.21 33 0.72 3

2.50 0.40 1.61 85.7 0.66 1

2.50 0.63 1.61 85.7 0.65 1

2.50 0.63 1.61 85.7 0.67 1

2.50 0.25 1.61 115.8 0.59 1

2.50 0.25 1.61 115.8 0.59 1

2.50 0.42 1.61 115.8 0.67 1

2.50 0.42 1.61 115.8 0.67 1

1.50 0.26 0.91 25.8 0.64 2

1.50 0.62 0.91 25.8 0.67 2

2.00 0.35 0.50 99.5 0.66 1

2.00 0.35 0.75 99.5 0.66 1

2.00 0.35 0.61 99.5 0.69 1

2.00 0.35 0.50 99.5 0.65 1

2.00 0.35 0.50 99.5 0.65 1

2.00 0.35 0.50 99.5 0.67 1

2.00 0.35 0.50 99.5 0.65 1

1.16 0.74 0.89 46.3 0.98 2

2.88 0.12 0.33 34.7 0.36 2

2.88 0.12 0.33 34.7 0.37 1

2.88 0.15 0.48 26.1 0.44 2

2.88 0.15 0.48 26.1 0.41 1

2.88 0.11 0.33 33.6 0.35 2

2.88 0.11 0.33 33.6 0.39 1

2.88 0.07 0.33 33.6 0.33 3

2.88 0.07 0.33 33.6 0.35 1

2.88 0.11 0.67 33.4 0.38 2

2.88 0.11 0.67 33.4 0.37 1

2.88 0.11 1.47 33.5 0.45 2

2.88 0.11 1.47 33.5 0.45 1

2.88 0.11 0.92 33.5 0.45 2

2.88 0.11 0.92 33.5 0.45 1

5.50 0.10 1.54 29.1 0.12 1

5.50 0.09 0.93 30.7 0.12 1

5.50 0.10 1.54 29.2 0.12 1

5.50 0.10 0.93 27.6 0.15 1

5.50 0.20 1.54 29.4 0.15 1

5.50 0.18 0.93 31.8 0.14 1

5.50 0.26 1.54 33.3 0.15 1

5.50 0.27 0.93 32.4 0.15 1

5.50 0.28 1.54 31 0.16 1

5.50 0.27 0.93 31.8 0.15 1

1.11 0.16 0.28 34.9 0.58 3

1.98 0.16 0.31 34.9 0.47 3

1.11 0.27 0.28 42 0.67 3

1.50 0.10 0.26 29.9 0.42 3

3.00 0.21 2.19 39.3 0.36 1

3.00 0.31 1.26 39.8 0.37 1

2.86 0.00 0.85 43.6 0.34 1
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Table A2. Cont.

Feature Values True Label Values (1 = Flexure,
2 = Flexure–Shear, 3 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

2.86 0.14 1.69 34.8 0.38 1

2.86 0.15 2.54 32 0.47 1

2.86 0.13 1.95 37.3 0.46 1

2.86 0.13 1.95 39 0.45 1

4.56 0.30 1.22 80 0.23 1

4.56 0.30 1.22 80 0.22 1

4.56 0.20 1.22 80 0.18 1

4.56 0.20 1.22 80 0.25 1

4.56 0.20 1.83 80 0.25 1

4.56 0.30 1.83 80 0.23 1

4.56 0.30 1.83 80 0.23 1

4.56 0.20 1.83 80 0.20 1

4.56 0.20 3.66 80 0.18 1

4.56 0.30 3.66 80 0.23 1

4.56 0.20 3.66 80 0.24 1

4.56 0.30 3.66 80 0.24 1

4.56 0.20 1.22 80 0.31 1

4.56 0.30 1.22 80 0.30 1

4.56 0.30 1.22 80 0.31 1

4.56 0.20 1.22 80 0.37 1

4.56 0.20 1.83 80 0.29 1

4.56 0.20 1.83 80 0.35 1

4.56 0.30 1.83 80 0.31 1

4.56 0.30 1.83 80 0.31 1

4.56 0.20 3.66 80 0.31 1

4.56 0.20 3.66 80 0.31 1

4.56 0.30 3.66 80 0.30 1

4.56 0.30 3.66 80 0.32 1

3.83 0.10 0.37 27.2 0.30 1

3.83 0.24 0.37 27.2 0.33 1

3.83 0.09 0.48 28.1 0.31 1

3.83 0.23 0.48 28.1 0.35 1

3.22 0.09 0.08 26.9 0.26 3

3.22 0.07 0.08 33.1 0.20 2

3.22 0.28 0.08 25.5 0.29 2

3.22 0.26 0.08 27.6 0.30 3

3.22 0.26 0.25 27.6 0.32 3

3.22 0.09 0.08 26.9 0.25 3

3.22 0.07 0.08 33.1 0.19 2

3.22 0.28 0.25 25.5 0.35 2

2.00 0.10 3.67 76 0.58 1

2.00 0.20 3.67 76 0.67 1

2.00 0.10 3.67 86 0.46 1

2.00 0.19 3.67 86 0.53 1

2.00 0.10 1.63 86 0.45 2

2.00 0.19 1.63 86 0.54 2

2.00 0.60 0.90 118 0.61 1

2.00 0.60 1.41 118 0.66 1

2.00 0.60 1.82 118 0.74 1
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Table A2. Cont.

Feature Values True Label Values (1 = Flexure,
2 = Flexure–Shear, 3 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

2.00 0.35 1.41 118 0.67 1

2.00 0.35 1.82 118 0.67 1

7.64 0.34 0.12 40.6 0.13 1

6.04 0.50 3.15 72.1 0.19 1

6.04 0.36 2.84 71.7 0.19 1

6.04 0.50 2.84 71.8 0.19 1

6.04 0.50 5.12 71.9 0.19 1

6.04 0.45 4.02 101.8 0.21 1

6.04 0.46 6.74 101.9 0.21 1

6.04 0.45 2.72 102 0.18 1

6.04 0.47 4.29 102.2 0.19 1

4.70 0.43 1.00 34 0.27 1

4.70 0.43 2.00 34 0.27 1

4.70 0.20 2.00 34 0.23 1

4.70 0.46 1.33 34 0.29 1

4.70 0.46 2.66 34 0.33 1

4.70 0.46 2.66 34 0.31 1

4.70 0.46 1.26 34 0.30 1

4.70 0.23 1.26 34 0.28 1

4.70 0.46 1.26 34 0.31 1

4.70 0.46 2.66 34 0.33 1

3.00 0.05 1.00 69.6 0.20 1

3.00 0.05 1.00 69.6 0.20 1

3.00 0.10 1.00 67.8 0.28 1

3.00 0.10 1.00 67.8 0.28 1

3.00 0.21 1.00 65.5 0.32 1

3.00 0.21 1.00 65.5 0.31 1

3.00 0.00 1.00 37.9 0.23 1

3.00 0.00 1.00 37.9 0.23 1

3.00 0.14 1.00 48.3 0.25 1

3.00 0.14 1.00 48.3 0.25 1

3.00 0.36 1.00 38.1 0.33 1

3.00 0.36 1.00 38.1 0.33 1

3.50 0.11 0.76 24.9 0.31 1

3.50 0.16 0.76 26.7 0.32 1

3.50 0.22 0.76 26.1 0.37 1

3.50 0.11 0.73 25.3 0.31 1

3.50 0.16 0.73 27.1 0.34 1

3.50 0.21 0.73 26.8 0.37 1

3.50 0.11 0.71 26.38 0.31 1

3.50 0.15 0.71 27.48 0.34 1

3.50 0.21 0.71 26.9 0.36 1

2.67 0.00 0.04 21.9 0.23 3

1.33 0.00 0.09 16 0.38 3

3.92 0.00 0.96 102.7 0.20 1

3.92 0.20 0.96 86.3 0.34 1

3.92 0.00 0.96 87.5 0.19 1

3.92 0.10 0.96 83.4 0.26 1

3.92 0.20 0.96 90 0.30 1
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Table A2. Cont.

Feature Values True Label Values (1 = Flexure,
2 = Flexure–Shear, 3 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

3.92 0.00 0.96 67.5 0.21 1

3.92 0.10 0.96 74.6 0.26 1

3.92 0.20 0.96 81.8 0.27 1

3.92 0.20 0.77 75.8 0.28 1

3.92 0.20 0.64 87 0.29 1

3.92 0.20 0.54 71.2 0.27 1

3.22 0.15 0.25 21.1 0.33 2

3.22 0.61 0.25 21.1 0.37 2

3.22 0.15 0.25 21.8 0.30 2

6.56 0.14 2.50 92.4 0.14 1

6.56 0.28 2.50 93.3 0.18 1

6.56 0.39 2.50 98.2 0.21 1

6.56 0.14 1.16 94.8 0.12 1

6.56 0.26 1.16 97.7 0.18 1

6.56 0.37 1.16 104.3 0.19 1

6.56 0.40 2.50 78.7 0.21 1

6.56 0.41 2.50 109.2 0.22 1

6.56 0.35 1.93 109.5 0.20 1

6.56 0.37 1.33 104.2 0.21 1

6.56 0.53 1.93 104.5 0.21 1

6.56 0.51 2.50 109.4 0.22 1

2.25 0.08 0.57 33.7 0.42 1

2.25 0.08 0.57 33.7 0.42 1

2.25 0.09 1.64 32.1 0.44 1

2.25 0.09 1.64 32.1 0.44 1

2.25 0.10 0.82 29.9 0.45 1

2.25 0.10 0.82 29.9 0.45 1

2.25 0.10 1.09 27.4 0.47 1

2.25 0.10 1.09 27.4 0.47 1

2.25 0.16 0.82 36.4 0.47 1

2.25 0.16 0.82 36.4 0.47 1

2.25 0.08 1.09 34.9 0.42 1

2.25 0.08 1.09 34.9 0.42 1

2.25 0.08 1.09 36.5 0.42 1

2.25 0.08 1.09 36.5 0.42 1

2.50 0.30 0.59 37.6 0.52 1

2.50 0.60 0.59 37.6 0.49 1

2.00 0.57 0.99 39.2 0.55 1

2.00 0.57 0.99 39.2 0.59 1

2.14 0.59 0.99 32.2 0.67 1

3.11 0.03 0.23 35.9 0.16 1

3.11 0.03 0.23 35.7 0.15 1

3.11 0.03 0.23 34.3 0.16 1

3.11 0.03 0.23 33.2 0.17 1

3.11 0.03 0.23 36.8 0.16 1

3.11 0.03 0.23 35.9 0.18 1

3.49 0.20 1.85 64.1 0.35 1

3.49 0.33 1.85 62.1 0.40 1

3.49 0.22 1.48 62.1 0.36 1
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Table A2. Cont.

Feature Values True Label Values (1 = Flexure,
2 = Flexure–Shear, 3 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

3.49 0.32 1.48 62.1 0.40 1

3.49 0.20 1.23 64.1 0.34 1

3.49 0.20 1.23 64.1 0.34 1
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