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Abstract: Array sensor failure poses a serious challenge to robust direction-of-arrival (DOA) estima-
tion in complicated environments. Although existing matrix completion methods can successfully
recover the damaged signals of an impaired sensor array, they cannot preserve the multi-way signal
characteristics as the dimension of arrays expands. In this paper, we propose a structural-missing
tensor completion algorithm for robust DOA estimation with uniform rectangular array (URA), which
exhibits a high robustness to non-ideal sensor failure conditions. Specifically, the signals received at
the impaired URA are represented as a three-dimensional incomplete tensor, which contains whole
fibers or slices of missing elements. Due to this structural-missing pattern, the conventional low-rank
tensor completion becomes ineffective. To resolve this issue, a spatio-temporal dimension augmenta-
tion method is developed to transform the structural-missing tensor signal into a six-dimensional
Hankel tensor with dispersed missing elements. The augmented Hankel tensor can then be completed
with a low-rank regularization by solving a Hankel tensor nuclear norm minimization problem. As
such, the inverse Hankelization on the completed Hankel tensor recovers the tensor signal of an
unimpaired URA. Accordingly, a completed covariance tensor can be derived and decomposed for
robust DOA estimation. Simulation results verify the effectiveness of the proposed algorithm.

Keywords: robust DOA estimation; structural-missing tensor completion; sensor failure; spatio-temporal
dimension augmentation

1. Introduction

Direction-of-arrival (DOA) estimation using sensor arrays plays an important role
in various applications such as radar, sonar, and industrial Internet of Things (IIoT) [1–5].
Existing methods include subspace-based methods [6,7], sparsity-based methods [8–10],
beamforming-based methods [11,12], statistical reconstruction-based methods [13,14], and
neural-network-based methods [15,16]. Furthermore, advanced DOA estimation methods
have mitigated the multi-path effects in practical environments, based on either iterative
implementation approach [17,18] or low-rank decomposition and sparse representation
approach [19]. However, all the aforementioned methods typically work under the pre-
sumption that the deployed sensor array remains unimpaired. Nevertheless, in practical
environments with complex electromagnetic propagation and harsh working conditions,
the gain-phase deviation or position deviation of sensors commonly occurs [20–22]. In
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more severe cases, some sensors will be totally damaged and become nonfunctional, i.e., the
sensor failure problem. The above-mentioned methods are not robust to the sensor failure
scenario, and thus, the DOA estimation performance will dramatically drop.

To achieve robust DOA estimation with sensor failure, matrix completion methods are
developed to recover a complete signal matrix for the impaired array [23–25]. In particular,
the principles of recursive least squares [23], nuclear-norm-based convex relaxation [26],
and reweighted `2,1-norm [24] can be incorporated with a low-rank regularization for
signal matrix completion [27], leading to an effective DOA estimation. Meanwhile, co-array
processing is adopted to help reconstruct an unimpaired array with improved perfor-
mance [28]. To demonstrate the lower bound on the estimation accuracy under sensor
failure, the Cramér–Rao bound (CRB) in various sensor failure scenarios is analysed for
regular tetrahedral arrays [29]. Furthermore, the weighted sum of CRB for independent
sensor failure event has been proposed for scenario of randomly impaired sensors [30].
Nevertheless, as the dimensions of sensor arrays expand, the matrix-based signal modelling
and processing reflect at most two-dimensional (2-D) information, while complicated multi-
way signal characteristics are ignored when it comes to multi-dimensional array processing.
This phenomenon results in performance deterioration especially under sensor failure.

Different from matrix, tensor is utilized to preserve the original high-level information
of data with three-dimensional (3D) structure and beyond 3D. Meanwhile, numerous ten-
sor decomposition techniques such as the canonical polyadic decomposition (CPD) [31]
and Tucker decomposition [32] have been proposed to retrieve parameters from the ten-
sor data [33,34]. Based on tensor models and tensor decompositions, many tensor-based
DOA estimation methods are proposed to enhance the estimation performance for multi-
dimensional arrays [35,36]. Specifically, the CPD is applied to multiple-invariance array
signals for effective DOA estimation [37]. The tensor subspace method is developed by for-
mulating high-order singular value decomposition (HOSVD)-based spectral function [38].
The coupled CPD is proposed to fully exploit the spatial relevance of segmented signals to
enhance the DOA estimation accuracy [39]. Moreover, to improve computational efficiency
while maintaining estimation performance, the tensor train decomposition is developed to
replace the CPD [40]. To increase the degrees-of-freedom for DOA estimation, the strategies
of cross-correlation tensor processing [41], co-array tensor processing [42], and co-array
tensor completion [43] have been investigated. Targeting the problem of coherent source
DOA estimation in a multi-path environment, the tensor spatial smoothing [44] and tensor
reconstruction [45] approaches are further designed to obtain a high robustness to the
coherency of signal statistics. Unfortunately, none of these methods have considered the
problem of sensor failure for multi-dimensional arrays. Therefore, it is of great significance
to develop an effective tensor processing strategy tailored for robust DOA estimation with
sensor failure.

From the perspective of recovering damaged signals as the matrix completion methods
do, a promising solution is to complete tensor signals corresponding to the impaired
multi-dimensional array. With regard to the tensor signal model of an impaired array,
the missing elements will concentrate on entire fibers or even slices. This structural-
missing pattern (i.e., general cases of signal-missing pattern including the fiber-missing
and slice-missing pattern [46]) prevents the conventional low-rank tensor completion to be
directly implemented, because the effective low-rank regularization requires a randomly
missing pattern to guarantee sufficient spatial relevance [47]. With respect to the need
for completing structurally missing elements, the slice completion methods are proposed
exploiting multi-way delay-embedding transformation and Tucker rank increment [48,49].
Nevertheless, the complexity of rank-increment is high, and the Tucker model is unsuitable
for the array tensor signal, which is normally modelled in a canonical polyadic (CP) format
due to the deterministic source number. Furthermore, a CP approximation method has
been proposed to reconstruct functional magnetic resonance imaging (fMRI) data with
regular under-sampling patterns including both fiber-missing and slice-missing [50,51].
However, such reconstruction changes the undamaged pixels in the fMRI tensor, whereas
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the observed elements in the tensor signal are expected to remain unchanged to avoid
extra model deviations including unwanted noise and phase error. As such, all these tensor
completion methods cannot be applied to the problem of robust DOA estimation with
sensor failure. Finding a successful approach to completing the structural-missing tensor
signal remains a challenging task.

In this paper, we propose a structural-missing tensor completion algorithm for robust
DOA estimation with sensor failure. In particular, the signal received at a uniform rectangu-
lar array (URA) is represented as a tensor, which contains whole fibers or slices of missing
elements when several sensors are impaired. To enforce effective low-rank regularization
on the structural-missing tensor signal, a spatio-temporal dimension augmentation method
is developed to transform the original tensor into a dimensional-augmented Hankel ten-
sor, whose missing elements are sufficiently dispersed and dimensional information is
augmented. On this basis, the dimensional-augmented Hankel tensor can be optimized
through low-rank completion, which is characterized by a convex tensor nuclear norm min-
imization problem. After solving this dimensional-augmented Hankel tensor completion
problem, a completed tensor signal corresponding to an unimpaired array is obtained from
an inverse Hankelization operation. As such, the completed covariance tensor can be de-
rived and decomposed via CPD to achieve closed-form DOA estimation. According to our
simulation results, the proposed algorithm shows high robustness to different simulated
sensor failure scenarios compared to conventional methods.

Although the proposed algorithm is designed for the impaired URA with a uniform
inter-sensor spacing, it can be extended to deployments of sparse arrays such as coprime
array [52]. On one hand, the physical sparse array can be considered as a special case of
partially damaged URA. Hence, the proposed algorithm can be applied to the incomplete
sparse array signals for a direct completion. Based on this, the subsequent signal statistics
can be derived and used for DOA estimation. On the other hand, for the augmented
discontinuous co-array of the coprime array [53,54], the proposed algorithm can also be
extended to complete the co-array signal. In this case, by incorporating the proposed
algorithm in the co-array domain, the virtual array aperture can be further expanded,
contributing to enhanced DOA estimation performance.

The preliminary results of this work were presented in the conference paper [55].
In this journal paper, we present more details of the tensor signal model and the spatio-
temporal dimension augmentation method. Moreover, to ensure more effective tensor
signal recovery, the dimensional-augmented Hankel tensor is completed with a low-rank
regularization in this paper instead of Tucker approximation as in the conference paper [55].
We demonstrate the advantage of using the low-rank regularization both analytically and
numerically. We elaborate the procedures of Hankel tensor completion and completed
covariance tensor decomposition. Furthermore, to validate the effectiveness of the proposed
algorithm, we present new simulation results, including comparison of estimation accuracy,
comparison of angular resolution, performance of source identifiability, comparison with
other completion methods, and comparison of computational time.

The rest of the paper is organized as follows. In Section 2, we formulate the incomplete
tensor signal model under sensor failure. In Section 3, we design the structural-missing
tensor completion method, which includes the procedures of spatio-temporal dimension
augmentation and Hankel tensor completion. In Section 4, we propose the robust DOA
estimation method based on the completed Hankel tensor. We present numerous simulation
results in Section 5 and provide our conclusions in Section 6.

2. Tensor Signal Model with Array Sensor Failure

As shown in Figure 1, we consider an M× N URA

U={(xU, yU)|xU=[0, M− 1]d, yU=[0, N − 1]d}, (1)

where the unit inter-element spacing d equals to half of the signal wavelength. Assume
that K narrowband far-field uncorrelated signals impinge on the URA U from directions
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(θk, φk) for k = 1, 2, · · · , K, where θk and φk, respectively, denote the azimuth and elevation
of the k-th source. For the conventional matrix-based signal processing methods, the array
received signals at the t-th snapshot are modeled as a vector x(t) ∈ CMN , while the total T
snapshots will then be stacked into a matrix

X = [x(1), x(2), · · · , x(T)] ∈ CMN×T . (2)

Here, C represents the set of complex numbers. Nevertheless, such operation fails to reflect
the multi-spatial property of the URA signals, resulting in potential information loss.

Figure 1. The deployed URA with impaired sensors.

To preserve the multi-spatial signal characteristics, we model the t-th snapshot as a
matrix X(t) ∈ CM×N , and then concatenate T snapshots to a 3D tensor, defined as

X =
K

∑
k=1

a(µk) ◦ a(νk) ◦ sk +N ∈ CM×N×T . (3)

Here,

a(µk) = [1, e−πµk , · · · , e−π(M−1)µk ]T,

a(νk) = [1, e−πνk , · · · , e−π(N−1)νk ]T
(4)

are, respectively, the steering vectors of U along the x-axis and the y-axis with the angular
projection factors

µk = sin φk cos θk,

νk = sin φk sin θk,
(5)

sk = [sk(1), sk(2), · · · , sk(T)]T is the signal waveform of the k-th source, ◦ denotes the
outer product,  =

√
−1, (·)T denotes the transpose operator, N is an additive Gaussian

white noise tensor, i.e., its t-th slice N(t) ∼ CN (0, δ2
nI), ∀t = 1, 2, · · · , T, where δ2

n denotes
the noise power, and I denotes the identity tensor. In this way, the tensor signal model
perfectly preserves the multi-spatial characteristics, which facilitates subsequent tensor
optimizations for enhanced DOA estimation performance. Note that, the signal part of X
in (3) follows a CP model, which is characterized by the sum of a certain number of rank-1
outer products.

The formulated tensor in (3) offers an ideal signal model for a completely functional
URA. Unfortunately, when sensor failure occurs, the signals received at the impaired
sensors will be missing. In this case, the corresponding URA signals can be characterized
by an incomplete tensor

X̃ = M~X ∈ CM×N×T , (6)

where M ∈ {0, 1}M×N×T is the mask tensor indicating the positions of impaired sensors,
and ~ denotes the Hadmard product. In particular, M(m,n,:) = 1 if (m, n) is the position
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of the unimpaired sensor, whereas M(m,n,:) = 0 if (m, n) is the position of the impaired
sensor with m = 1, 2, · · · , M and n = 1, 2, · · · , N.

As demonstrated in (6), each impaired sensor results in an entirely missing fiber in the
corresponding position of the incomplete tensor X̃ . Moreover, as the number of impaired
sensors increases, there might even exist whole missing slices in X̃ . As such, it is obvious
that the sensor failure results in a structural-missing pattern for the tensor signal instead
of the common random-missing pattern. The structural-missing tensor signal prevents a
direct implementation of the conventional low-rank tensor completion, which pushes us to
develop an effective structural-missing tensor completion method.

3. Structural-Missing Tensor Completion

In this section, we propose a structural-missing tensor completion method, facilitating
the effective DOA estimation robust to sensor failures. The structural-missing tensor
completion method includes spatio-temporal dimension augmentation and augmented
tensor nuclear norm minimization optimization. The details in implementing the Hankel
tensor formulation and solving the Hankel tensor completion problem are both provided.

3.1. Spatio-Temporal Dimension Augmentation for Missing Element Dispersion

Due to the existence of structurally missing elements in the incomplete tensor signal X̃ ,
the conventional low-rank regularization on an incomplete tensor with randomly missing
elements becomes infeasible. Thus, to guarantee effective low-rank regularization on
the tensor signal, we first design a spatio-temporal dimension augmentation method to
disperse the structurally missing elements into the higher-dimensional space.

In particular, considering that different dimensions of the tensor signal present strong
spatio-temporal relevance, properly augmenting these dimensions will enhance the capa-
bility of parameter retrieval, and also helps to disperse the structurally missing elements.
The tensorial Hankelization approach is known for regularly embedding spatial/temporal
delay information, which can be adopted for spatio-temporal dimension augmentation
of the structural-missing tensor signal X̃ . To be more specific, as shown in Figure 2, X̃
can be transformed into a six-dimensional (6D) dimensional-augmented Hankel tensor
H ∈ Cτ1×(M−τ1+1)×τ2×(N−τ2+1)×τ3×(T−τ3+1), defined as

H = f old(τi)
(X̃ ×1 S1 ×2 S2 ×3 S3), (7)

where the folding operator f old(τi)
organizes a τ1(L1 − τ1 + 1)× τ2(L2 − τ2 + 2)× · · · ×

τI(LI − τI + 1) tensor into another τ1 × (L1 − τ1 + 1) × τ2 × (L2 − τ2 + 1) × · · · × τI ×
(LI − τI + 1) tensor, τi denotes the duplication factor that expands the i-th dimension
from the size of Li to τi(Li − τi + 1), ×i denotes the mode-i tensor-matrix product, and
Si ∈ {0, 1}τi(Li−τi+1)×Li denotes the duplication matrices for i = 1, 2, · · · , I with I being
the tensor order (For the structural-missing tensor signal X̃ , we have I = 3, but such
an operation can be easily generalized to 3D cubic array with higher-dimensional tensor
signals). Here, the (p, q)-th element of Si can be denoted by

Si(p,q)
=

{
1 q = bp/τic+ mod(p, τi),
0 others,

(8)

where b·c denotes the rounding down operator, and mod(·, ·) denotes the residual operator.
Since the size of the expanded dimensions should be a positive integer, we have τi < Li.
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Figure 2. Illustration of the proposed structural-missing tensor completion.

By performing spatio-temporal dimension augmentation of the structural-missing
tensor signal as demonstrated in (7), its missing fibers or slices are now dispersed across
six dimensions of the dimensional-augmented Hankel tensor H, such that the low-rank
tensor completion can be subsequently incorporated for its completion.

3.2. Dimensional-Augmented Hankel Tensor Completion

Thanks to the imposed spatio-temporal dimension augmentation, the resultant incom-
plete Hankel tensor H has sufficiently dispersed missing elements along with augmented
spatio-temporal dimensions. As such, the augmented Hankel tensor H can be completed
based on the low CP rank regularization (Note that, the Tucker-based tensor completion
causes a problem of model mismatch in this scenario. Specifically, the Tucker decomposition
yields a core tensor with uncertain Tucker ranks, which is inconsistent with the tensor signal
model. Meanwhile, Tucker ranks should be manually initialized for Tucker decomposition,
which causes performance deterioration if they are incorrectly set. Moreover, CPD based
on the residual error minimization reconstructs a completed tensor, where the observed
elements are modified. However, the observed elements in the tensor signal are expected to
remain unchanged to avoid model deviations. As such, these tensor completion methods
are not applicable to robust DOA estimation), which is characterized by the following
optimization problem

min
H̄

rCP
(
H̄
)

s.t. PΩ̄

(
H̄
)
= PΩ̄(H),

(9)

where the optimization variable H̄ ∈ Cτ1×(M−τ1+1)×τ2×(N−τ2+1)×τ3×(T−τ3+1) is the com-
pleted dimensional-augmented Hankel tensor, rCP denotes the CP rank of a tensor, Ω
is the index set of missing elements in H, and Ω̄ is the complement set of Ω, i.e., the
index set of the observed elements in H. The proposed dimensional-augmented Hankel
tensor completion problem in (9) minimizes the CP rank of H̄ under the constraint that all
observed elements in H are kept in H̄. It is worth mentioning that the above optimization
problem (9) is non-convex due to the NP-hardness of determining tensor ranks.

To solve the non-convex dimensional-augmented Hankel tensor completion prob-
lem (9), it is converted into a convex tensor nuclear norm minimization problem. The
reason for this lies in that the nuclear norm is proved to be the tightest convex relaxation of
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the rank function. Specifically, the dimensional-augmented Hankel tensor nuclear norm
minimization problem can be represented as

min
H̄
‖H̄‖∗ =

6

∑
j=1

αj‖[H̄]j‖∗

s.t. PΩ̄

(
H̄
)
= PΩ̄(H),

(10)

where ‖·‖∗ denotes the nuclear norm, [ · ]j denotes mode-j tensor unfolding, and αj > 0
is the coefficient satisfying ∑6

j=1 αj = 1. Note that, the matrix nuclear norm is proven to
be the tightest relaxation of the rank function, and the tensor can be characterized by its
unfolding matrices along respective dimensions. As such, the tensor nuclear norm serves
as a convex combination of the nuclear norms of its matrix unfoldings, which makes it
possible to solve the above problem with convex optimization approaches.

3.3. ADMM for Solving the Hankel Tensor Completion Problem

Normally, the optimization problem (10) is difficult to solve because the tensor nuclear
norm terms ‖H̄‖∗ are non-smooth. Hence, we adopt the alternating direction method of
multipliers (ADMM), which can effectively solve large-scale optimization problems with
non-smooth objectives [56]. The implementation of the ADMM for solving the Hankel
tensor completion is elaborated in the following.

Specifically, in order to make sure that the six nuclear norm terms ‖[H̄]j‖∗in the objec-
tive of the dimensional-augmented Hankel tensor nuclear norm minimization problem (10)
can be independently optimized, we define six auxiliary tensors Y j with identical initial-
ization. As such, the dimensional-augmented Hankel tensor nuclear norm minimization
problem (10) can be converted into an equivalent form

min
H̄
‖H̄‖∗ =

6

∑
j=1

αj‖[H̄]j‖∗

s.t. PΩ̄

(
H̄
)
= PΩ̄(H),

Y j − H̄ = O, j = 1, 2, · · · , 6,

(11)

where O is zero tensor with appropriate size.
Then, we introduce six dual variables G j ∈ Cτ1×(M−τ1+1)×τ2×(N−τ2+1)×τ3×(T−τ3+1)

corresponding to the six dimensions of the optimization variables H̄ with j = 1, 2, · · · , 6.
Based on that, the augmented Lagrangian function of the dimensional-augmented Hankel
tensor nuclear norm minimization problem (11) is defined as

L
(
H̄,Y j,G j

)
= ‖H̄‖∗+ <Y j−H̄,G j > +

ρ

2

∥∥Y j − H̄
∥∥2

F, (12)

where ρ > 0 is the penalty constant, ‖·‖F denotes the Frobenius norm, and < ·, · > denotes
the inner product between two tensors. Subsequently, at the (w + 1)-th iteration, the
variables H̄, Y j and G j can be, respectively, updated as

Y (w+1)
j = argmin

Y j
L
(
H̄(w),Y j,G

(w)
j

)
,

H̄(w+1)
= argmin

H̄
L
(
H̄,Y (w+1)

j ,G(w)
j

)
,

G(w+1)
j = G(w)

j − ρ
(
Y (w+1)

j − H̄(w+1)
)

,

(13)

where H̄(w+1) represents the optimization variable at the (w + 1)-th iteration.
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Using the principle of gradient descent to solve (13), we can obtain the closed-form
solution to Y (w+1)

j and H̄(w+1), i.e.,

Y (w+1)
j = fold(j)

(
Υ αj

ρ

([
H̄(w)]

j +
1
ρ

[
G(w+1)

j
]

j

))
,

PΩ

(
H̄(w+1)

)
= PΩ

(1
6

( 6

∑
j=1

Y (w+1)
j − 1

ρ
G(w)

j

))
,

PΩ̄

(
H̄(w+1)

)
= PΩ̄(H),

(14)

where

Υ αj
ρ

(U) = FUΣ

( αj
ρ

)
U WU (15)

denotes the shrinkage singular value decomposition of a matrix U ∈ CU1×U2 , FU , WU
represent the left singular matrix and the right singular matrix, respectively, and

Σ

( αj
ρ

)
U = diag

(
max

(
ηl −

αj

ρ
, 0
))

. (16)

Here, ηl denotes the singular value of U, l ∈
{

1, 2, · · · , min(U1, U2)
}

, min(·) and max(·),
respectively, denote the minimum and maximum value, and diag(·) forms a diagonal
matrix from its arguments.

By repeating the above updating procedure, we can finally obtain the optimized
variable, i.e., the completed Hankel tensor H̄. In particular, the ADMM for solving the
Hankel tensor completion problem converges when the relative error of the completed
Hankel tensor between two iterations is less than a threshold ξ > 0, that is,

‖H̄(w+1) − H̄(w)‖F

‖H̄(w)‖F

6 ξ. (17)

Note that, the ADMM for solving the general tensor nuclear norm optimization problem is
proven to be globally convergent. The detailed proof is provided in [43].

4. Robust DOA Estimation with Array Sensor Failure

In this section, we propose an inverse Hankelization approach to derive the completed
covariance tensor based on the designed completed dimensional-augmented Hankel tensor.
The covariance tensor is then decomposed to obtain estimated DOAs with high robust-
ness to sensor failure. We also present analysis on the computational complexity for the
proposed algorithm.

4.1. Inverse Hankelization for Completed Covariance Tensor Derivation

Based on the completed 6D dimensional-augmented Hankel tensor H̄, we propose
the inverse Hankelization to recover a completed 3D tensor signal Y which serves as the
equivalent signals received at an unimpaired URA U. The reduced dimensionality not only
contributes to higher efficiency, but also facilitates the calculation of tensor statistics. Based
on that, the completed covariance tensor of Y can be derived for DOA estimation.

As shown in Figure 2, according to the spatio-temporal dimension augmentation of the
incomplete tensor signal which involves dimensional duplication and folding, its inverse
procedure can be represented as

Y = un f old(τi)
(H̄)×1 S†

1 ×2 S†
2 ×3 S†

3 ∈ CM×N×T , (18)

where (·)† represents the Moore–Penrose pseudo-inverse operator, and
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un f old(τi)
(·) = f old−1

(τi)
(·) (19)

represents the inverse operator of f old(τi)
(·). Note that, the completed tensor signal Y is

an approximate of the ideal tensor signal X in (3). Thus, Y should also conform to the CP
representation as X .

Furthermore, the second-order tensor statistics of the URA U can be derived from
the completed tensor signal Y for DOA estimation. Specifically, we calculate the four-
dimensional (4D) covariance tensor of Y with a CP representation as

R = E
{

1
T
〈Y ,Y∗〉3

}
∈ CM×N×M×N

=
K

∑
k=1

σ2
sk

a(µk) ◦ a(νk) ◦ a∗(µk) ◦ a∗(νk) + σ2
nI ,

(20)

where σ2
sk
= E{sk(t)s∗k (t)} denotes the power of k-th source signal, σ2

n is the noise power,
I denotes the 4D identity tensor, (·)∗ denotes the conjugation operator, E{·} denotes the
statistical expectation, and 〈·, ·〉i denotes the tensor contraction along the i-th dimension.
Now, R can be regarded as the completed covariance tensor of the unimpaired URA U.
Thus, we can decompose it to retrieve the angular parameters embedded in the CP factors
of R, leading to effective DOA estimation under sensor failure. The implementation of
decomposition R is elaborated in the next subsection. In practice, the covariance tensor
can be approximated by its sample version

R̂ =
1
T
〈Y ,Y∗〉3 (21)

due to the finite number of snapshots.

4.2. Covariance Tensor CPD for Robust DOA Estimation

By decomposing the covariance tensor R to retrieve the estimated steering vectors
a(µ̂k) and a(ν̂k), the estimated angular projection factors µ̂k and ν̂k can be obtained, lead-
ing to the closed-form solution of both azimuth and elevation. Considering that R
is represented in a CP model, we apply the CPD to R by solving the following least
squares problem

min
Â(µ),Â(ν)

∥∥R−J ×1 Â(µ)×2 Â(ν)×3 Â∗(µ)×4 Â∗(ν)
∥∥2

F, (22)

where

Â(µ) =
[
a(µ̂1), a(µ̂2), · · · , a(µ̂K)

]
∈ CM×K,

Â(ν) =
[
a(ν̂1), a(ν̂2), · · · , a(ν̂K)

]
∈ CN×K,

(23)

are the estimated steering matrices of U, J ∈ CK×K×K is the signal power tensor with σ2
sk

on its main diagonal.
The above least squares problem (22) can be solved by iteratively updating Â(µ) and

Â(ν) as

Â(µ) = argmin
Â(µ)

∥∥∥[R]1 − Â(µ)
(

Â∗(ν)� Â∗(µ)� Â(ν)
)T
∥∥∥2

F
,

Â(ν) = argmin
Â(ν)

∥∥∥[R]2 − Â(ν)
(

Â∗(ν)� Â∗(µ)� Â(µ)
)T
∥∥∥2

F
,

(24)

where � denotes the Khatri–Rao product. For each iteration, the closed-form solution of
the estimated steering matrices can be computed as
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Â(µ) = [R]1
[(

Â∗(ν)� Â∗(µ)� Â(ν)
)T
]†

,

Â(ν) = [R]2
[(

Â∗(ν)� Â∗(µ)� Â(µ)
)T
]†

.
(25)

The iterations repeat until the relative error of the decomposed covariance tensor between
successive iterations is smaller than a convergence threshold, and the resulting estimation
of steering matrices can be used for retrieving the angular parameters.

As such, the estimation of the angular projection factors µ̂k and ν̂k can be obtained as

µ̂k =
1
M

M

∑
m=1

∠(am+1(µ̂k)/am(µ̂k))/π,

ν̂k =
1
N

N

∑
n=1

∠(an+1(ν̂k)/an(ν̂k))/π,

(26)

where am(µ̂k), an(ν̂k), respectively, represent the m-th element and n-th element of â(µk),
â(νk), and ∠ denotes the phase of a complex number. Finally, according to the relationship
between angular projection factors (µk, νk) and (θk, φk) as defined in (5), the azimuth and
elevation of the k-th source can be calculated in closed-forms as

θ̂k = arctan(ν̂k/µ̂k),

φ̂k = arcsin(
√

ν̂2
k + µ̂2

k).
(27)

4.3. Analysis on Computational Complexity

In this subsection, we provide theoretical analysis on the computational complexity
of the proposed algorithm. The proposed algorithm mainly involves the Hankel tensor
completion and the completed covariance tensor decomposition, whose computational
complexities are O

(
(M + N + T)(M− τ1)(N − τ2)(T − τ3)τ1τ2τ3QTC

)
and O

(
M2N2T +

(K3 + M2N2)KQCPD
)
. Here, QTC and QCPD are, respectively, the numbers of iterations

for implementing the tensor completion and CPD. The computational complexity of the pro-
posed algorithm can then be measured by O

(
(M + N + T)(M − τ1)(N − τ2)

(T− τ3)τ1τ2τ3QTC + M2N2(QCPD + T)
)
. Due to the globally convergent ADMM for tensor

completion, the proposed Hankel tensor completion approach presents satisfactory conver-
gence behavior. It normally converges within dozens of iterations, making QTC relatively
small.

The computational complexity of the matrix completion (MC) method [23] is
Q
(
T + log( 1

η )(rMNT + r2(MN + T)) + T(M2N2 + MN) + MNQSG
)
, where η and QSG,

respectively, denote the convergence threshold and number of spectral searching grids for
implementing the matrix completion. In addition, the computational complexity of the
direct CPD method [37] is O

(
M2N2T + (K3 + M2N2)KQCPD

)
. The proposed algorithm is

more computational costly compared to the direct CPD method due to the Hankel tensor
completion. Also, the high-order tensor formulation and multi-linear tensor completion
would cause increased complexities than the matrix completion and spectral searching
procedures. However, the satisfactory convergence of the ADMM and closed-form solution
of CPD enables comparable efficiency. Thus, though incorporating the high-order tensor
formulation and optimization, the computational complexity of this proposed algorithm
can be moderate compared with existing methods.

5. Simulation

In the simulation, we set the duplication factors {τi, i = 1, 2, 3} for spatio-temporal
dimension augmentation to [3, 3, 10], and set the coefficients {αj, j = 1, 2, · · · , 6} for defining
the Hankel tensor nuclear norm equally to 1

6 . We set the penalty constant of the ADMM
augmented Lagrangian function (12) to ρ = 10−3, and set the threshold of ADMM to
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ξ = 10−12. Since the positions of impaired sensors in the URA are unpredictable in real
applications, they are set randomly for each simulated scenario. The root mean square
error (RMSE)

RMSE =

√√√√ 1
2KNMC

NMC

∑
nMC=1

K

∑
k=1

[
(θ̂k,nMC

− θk)2 + (φ̂k,nMC
− φk)2

]
(28)

is adopted as the evaluation metric, where (θ̂k,nMC
, φ̂k,nMC

) is the estimate of (θk, φk) for
the nMC-th Monte Carlo trial, and NMC = 1000 Monte Carlo trials are run for each data
point to obtain the RMSE curves. Unless otherwise specified, we deploy a URA U with
M = 7 and N = 7, and assume K = 2 sources from the directions (θ1, φ1) = (10◦, 10◦)
and (θ2, φ2) = (25◦, 25◦), respectively. The proposed algorithm is implemented with
Tensorlab 3.0 on MATLAB R2021b, which develops useful tools for implementing the
tensor formulation and CPD [57]. Meanwhile, the ADMM for solving the Hankel tensor
completion problem can be implemented with well-studied tool in the literature [43].

5.1. Performance of the Proposed Algorithm with Different Array Geometries

We first evaluate the performance of the proposed algorithm with different array
geometries. As claimed before, the 7× 7 URA is used as the benchmark. Then, we deploy
two larger URAs with the sizes of 10× 10 and 12× 12. K = 2 sources come from (35◦, 25◦)
and (68◦, 57◦), respectively. The numbers of impaired sensors in these URAs are all set
to 5. The signal-to-noise ratios (SNR) of sources are equally set to 10 dB, and the number
of snapshots is fixed to T = 100. We run 10 trials, and present the estimation results in
Figure 3. It is clear that all URAs with different geometries can accurately estimate the
source DOAs under sensor failure. Meanwhile, with a larger array size, the estimation
accuracy increases.
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Figure 3. DOA estimation with different array geometries.

5.2. Comparison of the Estimation Accuracy with Different Number of Damaged Sensors

In Figure 4, we compare the estimation accuracy of the proposed structural-missing
tensor completion algorithm with those of the matrix completion method [23] and the
CPD method [37], where the number of impaired sensors varies from 1 to 23. The SNRs of
sources are equally set to 15 dB, and the number of snapshots is fixed to T = 300.

It is clear that the proposed algorithm is superior to the compared methods in all
simulated sensor failure scenarios. The improvement comes from the utilization of multi-
spatial signal characteristics, and more importantly, the effective recovery of structural-
missing elements in the formulated tensor signal. It is also worth mentioning that as the
number of impaired sensors increases (30% sensor failure with 15 impaired sensors), the
performance of all methods degrade, while the proposed algorithm presents a moderate
reduction in estimation accuracy. The proposed method fails to estimate the DOA when
the number of impaired sensors reaches 23 (47% of the sensors are impaired), which can be
regarded as the boundary for the proposed algorithm. However, in practice, it is unusual
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to have a very high percentage of impaired sensors. The above findings demonstrate the
high robustness of the proposed algorithm against serious sensor failure conditions.

Number of Failed Sensors
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 (
d
e
g
)

Proposed

CPD

MC

Figure 4. Comparison of accuracy with different number of impaired sensors.

5.3. Comparison of the Estimation Accuracy with Different SNRs and Number of Snapshots

Furthermore, the estimation accuracy of the above-mentioned methods is compared
with 5 impaired sensors in Figure 5. The SNR varies whereas the number of snapshots is
set to T = 100 in Figure 5a, while the number of snapshots varies whereas the SNRs of
sources are set to 15 dB in Figure 5b. The implementation of CPD on an unimpaired URA is
presented as reference. In addition, considering the CRB is a common lower bound on the
performance of DOA estimators, we use it as the benchmark in the simulation. Specifically,
we calculate the weighted sum of CRB for a URA with randomly impaired sensors [30].
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Figure 5. Comparison of accuracy. (a) RMSE vs. SNR. (b) RMSE vs. the number of snapshots.
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As shown in Figure 5a, the estimation accuracy of the proposed structural-missing
tensor completion algorithm is the highest among the entire tested SNR regime as compared
to other methods with array sensor failure. The proposed algorithm outperforms the CPD
method with array sensor failure, because it effectively completes the tensor signals with
missing fibers or slices. In contrast, the direct CPD on the incomplete tensor statistics
suffers from worse capability of parameter retrieval. On the other hand, since the proposed
tensor signal model preserves the original 2D angular information, the proposed algorithm
also enjoys a significant improvement in accuracy compared to the conventional matrix
completion method. Moreover, as the SNR increases, the RMSE curve of the proposed
algorithm gradually approaches that of the CPD method for the unimpaired URA, and the
two RMSE curves become very close with SNR higher than 10 dB, which also verifies the
advantage of the proposed algorithm in overcoming the effect of impaired sensors. Similar
result can be found in Figure 5b, where the estimation accuracy of the proposed algorithm
is very close to that of the CPD method for the unimpaired URA, and is higher than all
other methods.

5.4. Comparison of the Angular Resolution

In Figure 6, we compare the angular resolution of the evaluated methods with 5 im-
paired sensors, where the two sources (θ1, φ1) and (θ2, φ2) are placed closely. Here, the
source (θ1, φ1) is fixed at (20◦, 40◦), and (θ2, φ2) is generated with an angular spacing of

δ =

√
|θ2 − θ1|2 + |φ2 − φ1|2 (29)

to (θ1, φ1). The evaluated methods are identify to distinguish the two sources if√
|θ̂k,nMC

− θk|
2
+ |φ̂k,nMC

− φk|
2
< δ (30)

for each trial. The successful rate will be calculated from the number of successful trials
over the NMC = 1000 Monte Carlo trials. The SNRs of sources are set to 15 dB, the number
of snapshots is fixed at T = 100, and the angular spacing varies from 2◦ to 8◦.

 (°)

S
u
c
c
e
s
s
fu

l 
R

a
te

 (
%

)

CPD

MC

Proposed

Figure 6. Comparison of angular resolution.

Obviously, the angular resolution of the proposed algorithm is higher than the other
methods. Such improvement is benefited from the enforced structural-missing tensor
completion, which enables to utilize the entire URA aperture for high-resolution DOA
estimation. In contrast, for other methods, the URA aperture is not fully exploited due to
the impaired sensors, resulting in degraded angular resolution of DOA estimation. Note
that the proposed algorithm can still identify source DOAs with the angular spacing of
only 2◦, whereas the compared methods almost fail.
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5.5. Performance of Source Identifiability

The source identifiability of using the 4D covariance tensor R ∈ CM×N×M×N corre-
sponding to the M× N URA U can be measured by the Kruskal’s condition. Generally
speaking, for the 4D tensor A ∈ CI1×I2×I3×I4 with rank R, its CPD is essentially unique if

R≤ I4, R(R−1)≤ I1 I2 I3(3I1 I2 I3− I1 I2− I2 I3 − I1 I3− I1− I2− I3+3)/4. (31)

As for the 4D covariance tensor R, the maximum of R can be calculated as 7. This means
that a 7× 7 URA can identify up to K = 7 sources.

Based on the above analysis, we validate the source identifiability of the proposed
algorithm in Figure 7, where the azimuth and elevation angles of 7 sources are uniformly
distributed within [−50◦, 70◦]. The SNRs of sources are set to 15 dB and the number of
snapshots is fixed at T = 200. The proposed algorithm can locate all these sources with
high accuracy. Such a finding verifies the source identifiability of the proposed algorithm.

In addition, we test the performance of the proposed algorithm for 8 sources in Figure 8
with the same simulation settings. Although the analytical result presented in (31) offers
the theoretical bound on the maximum number of distinguishable sources, the proposed
algorithm is still capable of estimating more sources with slightly lower accuracy, which
further highlights its robustness in practical usage.
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Figure 7. Source identifiability of the proposed algorithm.
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Figure 8. Estimation of 8 sources.

5.6. Comparison with Other Completion Methods

To validate the effectiveness of the proposed structural-missing completion algorithm
with serious sensor failure, in Figure 9, we compare the estimation accuracy of the proposed
algorithm with those of the CPD-based completion method and Tucker-based completion
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method, where the number of impaired sensors reaches 10, i.e., 20% of the sensors are
impaired. As illustrated in the Introduction, the CPD-based completion method use the
CP model to approximate the completed tensor, whereas the observed elements will also
be modified. The Tucker-based completion method imposes the Tucker rank increment to
complete the missing fibers, but requires exhausting rank searching and does not fit the
tensor signal model.
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Figure 9. Comparison of the accuracy with other completion methods. (a) RMSE vs. SNR. (b) RMSE
vs. the number of snapshots.

It is clear that the estimation accuracy of the proposed algorithm is superior to the other
two completion methods. It is worth noting that the error between the manually set Tucker
rank and the real Tucker rank will be amplified as the number of failed sensors increases,
which results in degraded performance for the Tucker-based completion method. This
highlights the advantage of the enforced low CP rank regularization for structural-missing
tensor signal completion.

5.7. Comparison of the Computational Time

Finally, in Figure 10, we compare the computational time of the proposed algorithm
with those of the matrix completion method and the direct CPD method. The simulation
settings are kept the same as in the former simulations. As demonstrated in Section 4.3,
the complexity of the proposed algorithm is greater than those of the direct CPD method
and the matrix completion method, due to the high-order tensor formulation and the
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structural-missing tensor completion for performance enhancement. Therefore, the pro-
posed algorithm requires more computational time in pursuit of higher estimation accuracy
and resolution as shown in the previous simulation. However, thanks to the efficient
convergence of tensor completion and closed-form tensor decomposition, the proposed
algorithm is capable of maintaining moderate efficiency. It is clear that the computational
time of the proposed algorithm and the matrix completion method is at a similar level.
Therefore, the proposed algorithm can still offer practical DOA estimation with significantly
enhanced performance.
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Figure 10. Comparison of computational time.

6. Conclusions

In this paper, a structural-missing tensor completion-based robust DOA estimation
algorithm is proposed to address the array sensor failure problem. The structural-missing
pattern of the incomplete tensor signal is investigated, based on which the spatio-temporal
dimension augmentation method is designed to construct a six-dimensional augmented
Hankel tensor with sufficiently dispersed missing elements. As such, the augmented
Hankel tensor can be effectively completed by solving the Hankel tensor nuclear norm
minimization problem with ADMM. Implementing inverse Hankelization on the completed
Hankel tensor yields equivalent tensor signal of an unimpaired sensor array, such that the
completed covariance tensor can be derived. Finally, the CPD of the covariance tensor leads
to closed-form DOA estimation. According to both analytical and numerical results, the
proposed algorithm achieves superior estimation performance compared to the competing
methods, including enhanced estimation accuracy, angular resolution, robustness to sensor
failure, source identifiability, and moderate computational complexity.
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Abbreviations
The following abbreviations are used in this manuscript:

DOA Direction-of-arrival estimation
IIoT Industrial Internet of Things
CPD Canonical polyadic decomposition
HOSVD High-order singular value decomposition
fMRI functional magnetic resonance imaging
URA Uniform rectangular array
ADMM Alternating direction method of multipliers
RMSE Root-mean-square error
CRB Cramér–Rao bound
MC Matrix completion
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