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Abstract: Microseismic event identification is of great significance for enhancing our understanding
of underground phenomena and ensuring geological safety. This paper employs a literature review
approach to summarize the research progress on microseismic signal identification methods and
techniques over the past decade. The advantages and limitations of commonly used identification
methods are systematically analyzed and summarized. Extensive discussions have been conducted
on cutting-edge machine learning models, such as convolutional neural networks (CNNs), and their
applications in waveform image processing. These models exhibit the ability to automatically extract
relevant features and achieve precise event classification, surpassing traditional methods. Building
upon existing research, a comprehensive analysis of the strengths, weaknesses, opportunities, and
threats (SWOT) of deep learning in microseismic event analysis is presented. While emphasizing
the potential of deep learning techniques in microseismic event waveform image recognition and
classification, we also acknowledge the future challenges associated with data availability, resource
requirements, and specialized knowledge. As machine learning continues to advance, the integration
of deep learning with microseismic analysis holds promise for advancing the monitoring and early
warning of geological engineering disasters.

Keywords: microseismic events; machine learning; signal processing; waveform recognition; image
classification; sensor technology

1. Introduction

In the contemporary landscape of mining operations, a profound transformation is un-
derway, marked by the transition to intelligent mining [1]. This paradigm shift is catalyzed
by the integration of cutting-edge technologies such as the Internet of Things (IoT) [2], big
data analytics [3], and artificial intelligence (AI) [4]. Central to this transformation is the
unwavering commitment to enhancing mining safety [5]. As mining operations plunge
deeper into the Earth’s crust, the stability of rock formations is increasingly susceptible to
disruptions caused by human activities [6]. These disruptions give rise to geological haz-
ards like rock bursts and mining-induced seismic events, posing grave threats to the safety
of miners and the productivity of mining endeavors [7,8]. Within this context, microseismic
monitoring technology has emerged as a fundamental pillar for ensuring geological safety
in mining operations (Figure 1).

Microseismic monitoring entails the continuous surveillance of minuscule seismic
events during mining activities [9]. These imperceptible events provide valuable informa-
tion about evolving geological conditions. They serve as early warning signals, offering
crucial insights into potential hazards and enabling timely preventive measures. This
not only safeguards the well-being of miners but also enhances the overall efficiency and
sustainability of mining practices [10]. In addition to its practical value and significance
in smart mining, microseismic monitoring technology is widely used in various fields. By
searching the Web of Science database using the keyword “microseismic monitoring”, we
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selected a total of 1286 articles published between 2012 and 2023, spanning the past decade.
Based on the titles, abstracts, and keywords of these articles, we classified them into four
application domains: underground energy exploration and development (e.g., oil and gas
resources), real-time monitoring, and early warning of geological hazards (e.g., landslides
and karst collapses), seismic activity research and earthquake monitoring, and monitoring
and evaluation of underground storage and waste disposal facilities (e.g., nuclear waste
repositories). The statistical results are shown in Figure 2.

Figure 1. Application of microseismic monitoring in smart mining.

Figure 2. Application of microseismic monitoring technology in various fields.

Considering the changing mining environment and the need for safety assurance, we
initiated this review of contemporary techniques applied to the recognition and classifica-
tion of microseismic events. This work not only addresses the pressing need for advanced
methods, but also aligns with the broader trend of intelligent mining practices. By combin-
ing deep learning with microseismic event analysis, we aim to provide a comprehensive
survey for the geological engineering and computer science communities, enabling them to
harness the potential of AI-driven microseismic monitoring.

The fracturing of rock masses during seismic events, geological disasters, and under-
ground excavation processes generates abundant microseismic signals (MS) [11]. Micro-
seismic monitoring systems (MMS) used in deep subterranean engineering can collect a
vast amount of waveform data in real time [12]. Certain deceptive noise signals, on the
other hand, bear striking similarities to microfracture signals, requiring engineers to cross-
reference signal features from distinct domains [13]. This challenge poses difficulties in
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rapidly and accurately detecting microseismic data. Notably, the presence of noise signals
closely resembling microseismic signals significantly hampers swift and precise detection,
consequently undermining effective geological hazard assessment and risk prevention [14].

MMS generates vast volumes of data, primarily capturing microseismic events—a
task fraught with challenges due to the intricate nature of on-site monitoring environments.
Traditionally, the identification of these events relied heavily on manual experience. Subse-
quently, statistical analysis and spectral analysis methods were employed in an attempt to
decipher the complex signals embedded in the data. However, these methods often fell
short of effectively separating valuable MS from the sea of data that includes numerous
irrelevant noise signals [15].

The complexities of the monitoring environment and the dynamic nature of the
collected signals present significant challenges. These traditional approaches require
operators to possess a deep understanding of geophysics and signal processing to establish
precise identification criteria. However, due to the inherent variability in signals, achieving
consistent and accurate identification has proven to be a formidable task. Additionally,
traditional methods of identifying microseismic events have become time-consuming
and inefficient as monitoring datasets continue to grow [16]. Nonetheless, the rise of
machine learning, particularly deep learning approaches, has shown remarkable accuracy
in recognizing and classifying microseismic occurrences. Deep learning algorithms, when
compared to standard methods, have overcome constraints and offer intriguing possibilities
for complicated monitoring situations [17].

While various studies have examined the use of machine learning in MMS, there has
yet to be a comprehensive study of the combination of deep learning and image recognition
in this context. We undertook this study to fill this void and conduct targeted research. Our
goal is to explore the complexities of using deep learning to microseismic event waveform
picture detection and classification, providing insights into its potential and limitations.
The significance of this work is that it focuses on the investigation of cutting-edge deep
learning applications in microseismic monitoring. We provide a complete overview of
the available methods and a comparative study of their strengths and limitations through
an in-depth examination of picture recognition. Furthermore, this study serves as a vital
reference for researchers, practitioners, and stakeholders in geological engineering and
earth sciences. It lays the groundwork for future advancements in geological hazard
prediction and monitoring, ultimately enhancing safety in mining operations. As deep
learning continues to advance, its seamless integration into microseismic analysis promises
valuable insights and practical applications, bolstering geological safety in mining activities.

The rest of the article is organized as follows: Section 2 presents the materials and
methods and provides detailed descriptions of the microseismic monitoring system, mi-
croseismic monitoring data, and waveform characteristics. We also summarize the repre-
sentative literature on microseismic event identification and outline various identification
methods. Section 3 focuses on the analysis and discussion of the results. We classify existing
methods, conduct a SWOT analysis of deep learning methods, compare existing models,
and explore future development opportunities and challenges. Finally, we conclude this
study by summarizing the findings and proposing possible directions for future research.

2. Materials and Methods
2.1. Microseismic Monitoring Signals

Microseismic events refer to weak seismic activities caused by minor displacements
and stress changes within underground rock formations [18]. In mining environments,
factors such as mining activities and rock movements can lead to minor fractures and
deformations in rocks, resulting in microseismic events. These events can occur naturally
or be triggered by human activities like mining operations and blasting. Monitoring and
analyzing microseismic events are crucial for mine safety. Using the example of MMS in a
metal mine, the system collects underground microseismic signals. These signals include
seismic waveforms from microseismic events, which record the seismic signals generated
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when underground rock formations undergo slight changes. These signals may encompass
different types of events such as rock fractures and blasting. The monitoring system
captures these signals using sensors and transmits them to the surface or data centers
for further analysis. These signals exhibit unique characteristics in terms of waveform,
amplitude, frequency, etc., which can be used to identify various types of microseismic
events and provide essential information and warnings for mine safety [19].

For instance, microseismic monitoring systems play a crucial role in ensuring coal
mine safety by capturing MS from coal-rock fractures and blasting activities. However, the
challenge lies in distinguishing between these signals due to their waveform similarities.
Scholars have extensively studied this issue to enable accurate identification of authentic
MS within the monitoring system [20,21]. Seismic data analysis methods, commonly used
for assessing seismic activity in volatile mines, encounter challenges due to localization
errors and incomplete data catalogs caused by unfavorable seismic detector layouts [22].
Furthermore, dynamic disasters like stress-type and fracture-type rock bursts significantly
impact mine safety. To address this, a study integrates spatiotemporal parameters through
a big data platform and employs the AdaBoost algorithm to predict rock burst risks,
contributing to accurate and timely warnings [23]. Shu et al. examined the features and
classification of MS in coal mine workings, as well as its importance in the early detection of
gas and coal outbursts [24]. In addition, Yin et al. employed a data-driven approach based
on deep learning to successfully predict coal seam floor water inrush using microseismic
monitoring data [25]. These applications highlight the significance of MMS and data
analysis in enhancing safety production in coal mining.

2.1.1. Microseismic Monitoring Data

Microseismic monitoring data exhibit unique characteristics that are vital for effective
event recognition and classification [26]. Firstly, these data demonstrate variations in
signal intensity over both time and space, which may be attributed to complex changes
in underground rock formations and mining activities. Second, mechanical processes,
equipment breakdowns, subsurface water movement, or environmental conditions can
contribute to high levels of noise in microseismic data. This complicates data processing
because a good distinction between signals and noise is required. Furthermore, due to
geological effects, the waveforms of microseismic data are frequently complex and diverse,
reflecting the physical qualities of rocks and differences in subsurface structures. Finally,
microseismic data span a wide range of frequencies and energy levels, implying that MS
can manifest in a variety of frequency ranges and energy levels. This variability causes
difficulties in event recognition and classification, necessitating the investigation and
processing of various features.

These microseismic surveillance data characteristics represent the complexity of the
underlying rocks and mining activities, which require advanced data analysis techniques
for interpretation and understanding. Variations in signal intensity across time and place
suggest that the distribution of microseismic events is nonuniform, which may be related to
the nonuniformity of underground rock layers or mining activity. To improve the detection
and analysis of microseismic events in the presence of high noise levels, preprocessing
measures such as blurring and filtering are required. The complex waveforms may reflect
a variety of subsurface structures, which is important for recognizing various types of
occurrences such as rock bursts, demolition, and microfractures. Because of the variety of
frequencies and energy levels, multiscale and multifeature analysis approaches must be
used to capture the many properties of microseismic signals.

Understanding these properties of microseismic monitoring data is therefore critical
for accurate identification and classification of microseismic occurrences. When confronted
with such complicated data, researchers must devise proper data processing and analysis
methods to distinguish between important events and irrelevant noise, as well as extract
key information about microseismic events. Furthermore, different types of microseismic
events may necessitate alternative feature extraction and classification approaches to ensure
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accuracy and reliability. These data features enable in-depth investigations of subterranean
engineering and rock behavior and provide critical information for mining activities and
underground engineering projects.

2.1.2. Waveform Features

Microseismic events manifest in various forms of waveform images, each possessing
unique characteristics. To comprehensively analyze and classify microseismic events, re-
searchers can employ methods for extracting relevant features from these waveform images.
Figure 3 illustrates different types of microseismic event waveform images, encompassing
microseismic events (commonly referred to as rock microfracture events), blasting events,
rock drilling events, power interference events, and other noise events. The diversity in
these images reflects the waveform features of different events; thus, feature extraction
from these images can aid in better understanding and distinguishing various types of
microseismic events.

Figure 3. Various types of microseismic event waveform images. (a) Different waveforms of rock
microfracture (b) Different waveforms of blasting (c) Drilling (d) Orepass blasting (e) Electrical noise
(f) Background noise.

Microseismic event classification can typically be based on triggering mechanisms,
waveform characteristics, and occurrence locations [27]. Common classifications of mi-
croseismic events include naturally occurring microseismic events, which are triggered
by natural processes such as underground structural movement and rock deformation;
human-induced microseismic events, which are caused by human activities such as mining
operations and blasting; and rock burst events, which are caused by the rupture or collapse
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of rocks. Based on different triggering mechanisms, monitored microseismic events can be
divided into the following categories:

1. Rock microfracture microseismic events, which are usually associated with stress
changes and cracks in underground rock formations. The waveform characteristics of
these events show small amplitude, high frequency, short duration, and may display
certain periodicity.

2. Blasting events are seismic signals generated by blasting activities in mines or un-
derground projects. The waveform characteristics are usually high amplitude, low
frequency, longer duration, and specific spectral features.

3. Rock drilling events, which originate from mechanical activities such as rock gouging
and drilling in mines and other sites, produce noisy signals. Although these signals
may appear in microseismic monitoring, they are unrelated to seismic activity and
need to be distinguished from microseismic events. Their waveform characteristics
are generally characterized by high amplitude noise, broad bandwidth, transient
signals, and lack of significant periodicity.

4. Other noise events, which refer to noise sources other than rock drilling events, such
as unloading, equipment operation, power interference, and groundwater flow, may
interfere with the monitoring and identification of MS. The waveform characteristics
of these noise events are usually random, irregular, and without obvious frequency
and amplitude patterns.

Extracting features from waveform images is a critical step in microseismic event
analysis because these features can be used to characterize the event in both the time and
frequency domains. These features may include amplitude, frequency, energy distribution,
waveform shape, etc. By quantitatively analyzing these features, researchers can establish
models for microseismic event recognition and classification [28]. These models can assist
mining and underground engineering monitoring systems in more accurately identifying
and responding to potential microseismic events, thereby enhancing the safety and sustain-
ability of underground operations. Figure 3 provides a visual reference, emphasizing the
diversity of waveform images and underscoring the necessity of feature extraction from
these images. By subdividing microseismic events based on different classification criteria,
we can gain a more accurate understanding of different types of underground activities
and their potential impacts, thus better safeguarding the safety of mines and projects.

2.2. Literature Summary

This study’s resources were obtained from credible academic databases such as Google
Scholar, Web of Science, Scopus, and PubMed. The study information was indexed using a
preset set of keywords such as “microseismic event”, “microseismic waveform”, “machine
learning”, “deep learning”, “image recognition”, and “image classification”. An extensive
search of Google Scholar was undertaken and relevant studies were categorized according
to subject significance.

A thorough analysis of the existing literature is crucial for understanding method-
ologies in microseismic event waveform recognition and classification. By examining
current research, we can draw insights from predecessors to guide future studies. Table 1
summarizes the important discoveries, limitations, and pros and cons of various methods
used in this field. It provides a comprehensive reference for researchers, encompassing
statistics, spectral analysis, traditional machine learning, and deep learning approaches.
These findings offer valuable insights into the strengths and limitations of different methods
of addressing the challenges of microseismic event recognition and classification.
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Table 1. Summary of existing research.

Scholars Method/Objectives Key Findings Limitations/Gaps

Lin et al., 2018 [29]

Using a deep convolutional
neural network with spatial

pyramid pooling (DCNN-SPP)
method for joint recognition and

classification of multichannel
microseismic waveforms.

Automatic updating of network
parameters was achieved by directly
processing multichannel waveforms

through end-to-end training and
testing. The classification accuracy of

the test set was 91.13%.

Training data are limited,
and classification accuracy
can be further improved.

Binder and
Chakraborty, 2019 [30]

Using CNNs to detect
microseismic events in a

comprehensive distributed
acoustic sensing (DAS)

strain wavefield.

Neural networks provide low-cost,
automated detection of

microseismic events.

The study only compared
the STA/LTA algorithm,

lacking comparisons with
other advanced algorithms.

Lin et al., 2019 [31]

Using a hybrid technique of
DCNN and support vector

machine (SVM) to identify and
classify multichannel

microseismic waveforms.

The DCNN–SVM method
outperformed random forests (RF)

and k-nearest neighbors (KNN), with
an accuracy rate of 98.18%.

Preprocessing of the dataset,
including noise reduction
and filtering, required a

significant amount of time
and effort.

Zhang et al., 2019 [32]

Combining ensemble empirical
mode decomposition (EEMD),
singular value decomposition
(SVD), and extreme learning

machine (ELM) for the
automatic identification of

microseismic data.

ELM outperformed backpropagation
neural networks, neural networks
optimized with genetic algorithms,
and SVM classification models. It
achieved an average recognition

accuracy of 93.85% with a training
time of 0.15 s.

The data preprocessing
process is relatively

cumbersome.

Dong et al., 2020 [16]

A CNN-based image
recognition model for

microseismic events and
explosions in seismic

waveforms.

The CNN-based model achieved
99.46% accuracy for microseismic
events and 99.33% accuracy for

explosions in the test dataset using
original seismic waveform images.

The study lacks stability and
robustness testing of the
model using actual data

from different mines.

Kang et al., 2020 [33]
Classified microseismic events
and explosions using a deep

belief network (DBN).

The model outperformed the
accuracy obtained with SVM and
Fisher classifiers, achieving 94.4%.

This method still requires
combining source data and
selecting feature parameters.

Peng et al., 2020 [34]

Used capsule network
(CapsNet) for the automatic

classification of limited sample
microseismic records.

On a small number of training
examples, the approach obtained

99.2% accuracy. It surpassed CNN
and other machine learning

algorithms in terms of performance.

There is a lack of robustness
testing with actual data

from different mining sites.

Song et al., 2020 [35]

Identification of mining
microseismic and blast signals

using CNN and Stockwell
transform-based color images.

Leveraged the advantages of CNN in
image recognition by directly training

on raw images of microseismic
signals, thereby avoiding

cumbersome data preprocessing.

The sample data are limited,
and the model’s stability
and robustness require

further testing.

Wei et al., 2020 [36]

Proposed a waveform image
discrimination method using
principal component analysis
(PCA) + SVM for automatic

classification of microseismic
events and explosions

Combining waveform image features
extracted using PCA with the SVM

classifier can accurately identify
microseismic events with an optimal

result of 90%.

Lack of comparison with
existing research methods,
and classification accuracy

still has room for
improvement.

Yi et al., 2020 [37]

Using CEEMDAN_SE
(complete ensemble empirical

mode decomposition with
adaptive noise sample entropy)
for feature extraction and the

classification of mining
microseismic signals.

Significant differences in sample
entropy values exist between

microseismic and blast signals. When
combined with ELM, CEEMDAN_SE
achieves a classification recognition

accuracy of 91.5%.

Larger and more diverse
training datasets are needed

for extensive research to
quantify the robustness of

this method.
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Table 1. Cont.

Scholars Method/Objectives Key Findings Limitations/Gaps

Bi et al., 2021 [38]

Proposed an understandable
time–frequency convolutional

neural network (XTF-CNN) for
microseismic waveform

categorization.

XTF-CNN outperforms competing
methods (CNN, LSTM, RNN-FCN,
and ResNet) in both performance

and interpretability.

Larger-scale research is
needed to quantify the

robustness of this method.

Jiang et al., 2021 [39]

Proposed a method for
automatic discrimination

between microseismic and
blasting events based on

time–frequency
spectral features.

This method reduced the operator’s
sensitivity to classification, and

improved the accuracy and efficiency
of mass spectrometry signal data

identification in spectral monitoring
technology applications.

Larger-scale research is
needed to quantify the

robustness of this method,
including considering the

influence of different
blasting schemes on the

identification results.

Peng et al., 2021 [40]

Used the deep convolutional
neural network inception

(DCNN–inception) algorithm
for microseismic
data recognition.

The DCNN–inception algorithm
outperformed CNN in
recognition accuracy.

This method has a long
training time and requires a

large amount of data to
refine the network.

Rao et al., 2021 [41]

Employed a particle swarm
optimization (PSO) algorithm to

optimize the ELM artificial
intelligence model, PSO–ELM,
to discriminate microseismic

events and explosions.

Compared with the original ELM
model and other commonly used
intelligent discrimination models,
PSO–ELM demonstrated the best

discrimination performance.

The method still requires the
manual selection of feature
parameters. Additionally, it
was tested using data from
only one mining site, and its

generalizability requires
further exploration.

Tang et al., 2021 [42]

Proposed a CNN architecture
with an attention mechanism to

automatically identify
microseismic events.

This model can improve network
performance by enhancing the

intermediate information in CNN
without many additional parameters
or significant computational costs. In
addition, the multichannel model can

achieve the best results.

Further analysis and
discussion are needed

regarding the selection of
the number of channels in
the multichannel model.

Zhao et al., 2021 [43]

Developed a hybrid model
combining singular spectrum

analysis (SSA), CNN, and long
short-term memory network

(LSTM) to identify
microseismic signals.

Compared with common
identification methods, including

CNN, LSTM, backpropagation neural
network (BP), SVM, decision tree

(DT), KNN, and linear discriminant
analysis (LDA), this hybrid model

achieved higher recognition accuracy.

The performance of this
method was tested using

data from only one mining
site, so its generalizability

requires further exploration.

Ding et al., 2022 [44]

Proposed an improved neural
network combined with transfer
learning for the recognition of
mining microseismic events.

The improved T-SimCNN transfer
learning model achieved a

recognition accuracy of 95% for
microseismic events.

Further large-scale research
is required to quantify the
robustness of this method.

Fan et al., 2022 [45]

Proposed a wavelet scattering
decomposition (WSD)

transform combined with an
SVM algorithm for

discriminating microseismic
signals with low

signal-to-noise ratios.

The scattering coefficients of each
signal proved to be suitable as

features for training unique models.
In experimental samples, this model
achieved 92.86% recognition accuracy.

The method was compared
only with the standard

STA/LTA algorithm and
lacks comparison with other
more advanced algorithms.

Jia et al., 2022 [46]

Designed three earthquake
event classifiers referencing the

CNN structures VGGnet,
ResNet, and Inception. These

classifiers were tested and
compared using three-channel

seismic full waveform time
series and spectral data.

The test dataset includes three classes
of events: natural earthquakes,

explosions, and collapses. The results
showed that the classifier achieved

recall and accuracy rates
exceeding 90%.

Lack of comparison with
other commonly used

research methods.
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Table 1. Cont.

Scholars Method/Objectives Key Findings Limitations/Gaps

Li et al., 2022 [15]

Recognition and classification of
MS waveform images and
spectrograms using deep

learning models, including
VGG16, ResNet18, AlexNet, and

their ensemble models.

Each model performed well on the
non-denoised waveform image set,
with accuracies of 96% for AlexNet,
98% for VGG16, 96% for ResNet18,
and 98% for the ensemble model.

The performance of the
method requires further
validation on data from
multiple mining sites to

assess its generalizability.

Wang et al., 2022 [47]

Proposed an enhanced
convolutional natural network
(ECNN) based on the ACGAN

structure for MS waveform
classification. In this approach,

the generator synthesizes
samples of specified types, and
the discriminator identifies class

and authenticity.

The study investigated how changes
in training samples affect ECNN and
traditional CNN models. The results

indicate that the classification
accuracy of both models stabilizes

when the number of samples
exceeds 1024.

Further research on a larger
scale is needed to quantify

the robustness of
this method.

Wang et al., 2022 [48]

Proposed a dual-channel CNN
model (T-WPD CNN) with time

domain information and
wavelet packet

decomposition coefficients.

Wavelet packet decomposition factors
emphasize signal qualities while
suppressing noise characteristics.

T-WPD CNN surpasses typical CNN
approaches in terms of reliability and

resilience, according to
experimental results.

The time cost of signal
processing requires further

consideration.

Chen et al., 2023 [49]

Conv–LSTM–Unet is a deep
learning model which utilizes
convolutional neural networks

(Conv) and long short-term
memory networks (LSTM) for
microseismic signal detection.

The Conv–LSTM–Unet model adopts
a semantic segmentation method to
extract the spatiotemporal aspects of
microseismic data more effectively. It

is less susceptible to noise and
outperforms conventional

recognition models.

Future research should
focus on addressing the
model’s generalization

performance.

Ma et al., 2023 [50]

Deep learning techniques and
short-time Fourier transform

(STFT) technologies were used
to develop an accurate

microseismic signal recognition
and classification model.

STFT time–frequency analysis
exposes distinct properties of noise,
microseismic, and blasting signals,

allowing for fine time domain
distinction from noise signals that

approach MS.

Future research should
focus on conducting

larger-scale studies to
quantify the robustness of

this method.

Dong et al., 2023 [51]

Using CNN-based transfer
learning models for
microseismic event

waveform classification

Four types of microseismic event
datasets were constructed, and

transfer learning was performed on
pretrained AlexNet, GoogLeNet and
ResNet50 models. Compared with
the SVM classifier, GoogLeNet has
the best overall performance with

99.8% recognition accuracy.

Future research should
focus on conducting

larger-scale studies to
quantify the robustness of

this method.

1. Methodological diversity: The table highlights the diversity of methodologies
employed in microseismic event recognition, covering a spectrum from traditional methods,
such as EEMD (Table A1 shows the full names of all abbreviations covered in this article)
and SSA, to machine learning methods such as DT, SVM, and CNN. This diversity provides
researchers with a wide range of tools to choose from based on their specific needs.

2. Performance metrics: Reported classification accuracies, such as approximately
99% achieved by CNN, provide quantitative measures of the effectiveness of certain meth-
ods. This information is crucial for researchers seeking high-performance models for
microseismic waveform classification.

3. Data preprocessing challenges: Several studies have emphasized the importance of
data preprocessing, including noise reduction and filtering. The time and effort required
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for preprocessing, as mentioned in the study by Lin et al. [31], highlight the challenges in
ensuring data quality before applying recognition models.

4. Need for larger datasets: Many studies have highlighted the importance of larger
and more diverse training datasets for the robustness of model performance. For instance,
Yi et al.’s [37] study emphasizes the need for extensive research to quantify the robustness
of their method, indicating that dataset size could be a potential limiting factor.

5. Success of transfer learning: Dong et al.’s [51] demonstration of the success of
transfer learning, where pretrained models like AlexNet and GoogLeNet outperform
traditional SVM classifiers, suggests that leveraging existing knowledge in models could
be a powerful strategy in microseismic event recognition.

6. Computational resource requirements: While deep learning methods are powerful,
they demand a substantial amount of labeled data and computational resources. This
underscores a practical consideration for researchers, especially those with limitations in
data availability or computing infrastructure.

7. Appeal for comprehensive evaluation: Several studies call for larger-scale research
to quantify the robustness and generalizability of their proposed methods. This emphasizes
the need for a comprehensive evaluation framework to assess the practical applicability of
developed models.

The verification of the stability and robustness of the model primarily includes (1) a
stability assessment, which generally involves using techniques such as cross-validation,
repeated experiments, or introducing noisy data to evaluate the consistency and stability of
the model under different conditions and (2) robustness testing, which typically involves
using adversarial samples to test the model’s response to interference and perturbation.
Additionally, introducing variations in input data, such as scaling, rotation, or translation,
can be used to assess the model’s robustness. Methods to enhance model robustness include
using data augmentation techniques to expand the training dataset, applying regularization
methods to reduce the risk of overfitting, and using ensemble learning methods to obtain
more stable and robust predictions.

Checking the results of different studies and validate their reproducibility usually
involves the following methods: (1) dataset examination: examine the dataset used in each
study. Evaluate the quality, scale, and applicability of the dataset. Understand information
such as the source of the dataset, data collection methods, and preprocessing steps to
ensure the reliability and reproducibility of the dataset. (2) Method description: carefully
read the detailed description of the methods used in each study. Understand details
such as model architecture, hyperparameter settings, training strategies, etc. Ensure that
the method description is sufficiently clear, allowing other researchers to replicate the
experiments following the same steps. (3) Code sharing: check if there is code related to the
study available for sharing. If so, attempt to reproduce the author’s experimental results.
Running the same code with the same dataset and settings can validate the reproducibility
of the results. (4) Result comparison: compare the results of different studies. Pay attention
to the consistency and differences between them. Focus on changes in performance metrics
(such as accuracy, recall, etc.) and how the model performs on different datasets or tasks.
(5) External validation: attempt to validate the results of other studies using similar datasets
and tasks. Through repeated experiments, the model’s generalization ability and reliability
can be assessed. (6) Collaborative communication: collaborate and communicate with
other researchers to discuss their experimental results with the same methods and datasets.
Through communication, the reproducibility of the results can be further verified, and
potential issues can be addressed collaboratively.

In summary, the comprehensive overview provided by Table 1 offers valuable insights
for researchers in the field of microseismic event waveform recognition and classifica-
tion. For example, spectral analysis methods are suitable for extracting frequency domain
features but may overlook temporal information. Statistical methods provide rich data
distribution information when dealing with microseismic waveforms, but they may face
challenges in classifying complex waveforms. Traditional machine learning methods, such
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as logistic regression, perform well in specific contexts but require manual feature engi-
neering. In contrast, deep learning methods possess powerful automatic feature learning
capabilities, enabling them to adapt to diverse waveforms. However, deep learning meth-
ods require a substantial amount of labeled data and computational resources. Researchers
can leverage these findings to make informed decisions about which methods are best
suited to their specific research goals.

The analyses have yielded a comprehensive understanding of the suitability of various
methods in the domain of microseismic event waveform recognition and classification.
These analyses effectively inform our choice of research methodology and shed light on
the existing challenges and potential research avenues within this field. Consequently, this
literature review serves as a pivotal resource, furnishing essential background informa-
tion and invaluable guidance for researchers engaged in microseismic event waveform
recognition and classification.

2.3. Identification Methods

This section discusses a range of methods used for microseismic event waveform
identification, including traditional statistical methods, spectral analysis methods, and
more advanced deep learning methods.

2.3.1. Statistical Analysis and Spectral Analysis

Statistical analysis and spectral analysis are traditional methods for microseismic event
identification [52]. These methods aim to extract meaningful information by quantitatively
analyzing specific attributes in microseismic event waveform data. In statistical methods,
researchers typically focus on the statistical distribution, mean, variance, and other statis-
tical characteristics of the signals to differentiate between different types of microseismic
events. However, spectral analysis methods emphasize the frequency characteristics of the
signals, such as spectral density and power spectral density, to distinguish the frequency
domain features of microseismic events [53]. Although these techniques are simple and
intuitive, they frequently require careful selection and feature extraction, which can be
cumbersome when dealing with complicated and diverse waveforms.

Statistical analysis plays an important role in the recognition and classification of
microseismic waveforms. Common statistical analysis methods include (1) mean and
standard deviation: calculating the average and standard deviation of microseismic signals
provides information about the overall level and variability of the signals; (2) correlation
analysis: by calculating the correlation coefficient or correlation matrix between micro-
seismic signals, the mutual relationship between the signals can be revealed, helping to
determine their similarity or correlation; (3) probability distribution analysis: analyzing the
probability distribution of microseismic signals, such as normal distribution, exponential
distribution, etc., can provide insights into the distribution characteristics within differ-
ent ranges, facilitating classification and discrimination; (4) statistical feature extraction:
extracting statistical features of microseismic signals, such as kurtosis, skewness, energy,
etc., can capture specific statistical patterns of the signals, assisting in identification and
classification; (5) hypothesis testing: utilizing statistical hypothesis testing methods like
t-test, analysis of variance, etc., to compare microseismic signals of different categories and
examine if significant differences exist between them; and (6) cluster analysis: applying
cluster analysis methods to group microseismic signals based on their features, thereby
achieving waveform classification and recognition. Statistical analysis methods provide
an overall description and summary of microseismic signal data, aiding in understanding
the distribution patterns and features of the signals and providing a basis for subsequent
recognition and classification. Furthermore, combining statistical methods with other
techniques like machine learning and deep learning can further enhance the accuracy and
reliability of waveform recognition and classification.

On the other hand, spectrum analysis reveals the frequency characteristics of signals
by transforming them into the frequency domain. It involves key concepts and methods
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such as (1) Fourier transform: Fourier transform is the foundation of spectrum analysis,
converting signals from the time domain to the frequency domain, representing them as
functions of frequency and amplitude. (2) Power spectral density: power spectral density
describes the energy distribution of a signal across different frequencies, which can be
obtained through the Fourier transform. It displays the intensity or energy distribution of
the signal in different frequency bands, helping to identify the frequency components of the
signal. (3) Fast Fourier transform (FFT): FFT is commonly used for efficient computation
of signal spectra. It allows for the fast calculation of the frequency spectrum of discrete
signals, improving computational efficiency. (4) Spectrogram: a spectrogram is a visual
representation of the signal’s frequency spectrum, with frequency on the horizontal axis and
amplitude or energy on the vertical axis. It provides an intuitive display of the frequency
components and energy distribution of the signal, aiding in observing spectral features.
(5) Band energy features: by dividing the spectrum into different frequency bands and
calculating the energy or power in each band, band energy features can be extracted. These
features reflect the strength or energy distribution of the signal in different frequency
ranges, facilitating the identification and classification of different types of microseismic
signals. Spectrum analysis methods reveal the frequency characteristics of microseismic
signals, helping to identify different frequency components and energy distributions,
thus enabling waveform identification. It has widespread applications in microseismic
monitoring, seismology, structural health monitoring, and other fields.

The processing workflow involved in statistical and spectral analysis methods is
clearly depicted in Figure 4. Manual recognition methods typically rely on the expertise
and intuition of domain experts to judge the event type by manually selecting and extracting
waveform features. Traditional machine learning methods automate this process by training
models to learn the features of different event types and then classify new waveform data.
These methods perform well in some cases but still depend on manually designed features,
which may have limitations in the classification and recognition of complex waveforms. In
contrast, deep learning methods, as emerging technologies, possess powerful automatic
feature learning capabilities and can directly extract features from raw waveform data, thus
having greater potential in microseismic event recognition.

Figure 4. Workflow for recognizing different microseismic events using statistical and spectral
analyses. (a) Statistical method (b) Spectral method.
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2.3.2. Deep Learning Methods

Deep learning has emerged as a powerful tool in the field of microseismic event
waveform image recognition [17]. Figure 5 illustrates the workflow for image recognition
tasks using both traditional machine learning methods and deep learning techniques. In
particular, CNNs are employed as the deep learning model, where multiple convolutional
layers and pooling layers are stacked to extract local and global features from waveform
data. These features capture important information such as the shape, frequency, and
temporal characteristics of the waveforms. Subsequently, the extracted features are fed into
fully connected layers for the purpose of microseismic event recognition and classification.

Figure 5. Image detection and classification using various machine learning models. (a) Traditional
machine learning method (b) Deep learning.

Traditional machine learning methods have the following characteristics: (1) they
require manual feature engineering, which involves selecting and designing relevant fea-
tures for the problem at hand; (2) they have lower data requirements and are prone to
overfitting when dealing with small datasets; (3) they offer faster computation speed
and relatively simpler training processes; (4) in cases in which feature expression capa-
bility is limited, traditional machine learning methods may struggle to capture complex
nonlinear relationships.

In contrast, deep learning methods exhibit distinct advantages in microseismic event
image recognition. Firstly, they can automatically learn complex patterns and features from
waveform data without the need for manual feature engineering. Secondly, deep learning
models can hierarchically abstract features by extracting low-level local characteristics and
high-level global features, enabling a more accurate understanding and representation of
semantic information in microseismic event waveforms. Thirdly, deep learning benefits
from large-scale dataset training, providing enhanced accuracy and generalization capa-
bilities when dealing with noise and variability in microseismic event recognition tasks.
However, it should be noted that deep learning methods may require more computational
resources and time due to the training involved with multiple layers of neural networks.

Deep learning technology has shown promising potential for microseismic event
image detection. It is not only capable of handling complex and diverse waveform data
but also has the ability to learn features automatically, which brings great potential to the
field of microseismic monitoring. This presents opportunities for achieving more precise
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recognition and categorization of distinct types of microseismic events, contributing to
improving security in subterranean engineering and mining operations.

3. Results and Discussion

In this section, we evaluate and discuss the major research achievements in using
deep learning methods for microseismic event waveform image detection and classification.
To comprehensively assess their effectiveness, we will explore the strengths, weaknesses,
opportunities, and threats of existing research methods from four perspectives, known as
SWOT analysis.

3.1. Classification of Methods

Based on existing studies, we further summarized the methods used in the field of mi-
croseismic event waveform recognition and classification. Specifically, we categorized these
methods into seven categories: time domain analysis methods, frequency domain analysis
methods, statistical feature analysis methods, machine learning methods, deep learning
methods, cluster analysis methods, and hybrid methods. The explanations and analysis
regarding the advantages and limitations of different types of methods are presented in
Table 2, aiming to help readers better understand the characteristics and applicability of
these methods.

Table 2. Classification and comparison of commonly used methods for microseismic signal identifica-
tion and classification.

Method Description Advantage Disadvantage

Time domain
analysis [54]

Classification based on time domain
features such as the amplitude and
duration of the waveform.

Simple and intuitive Limited information richness,
cannot capture complex patterns

Frequency domain
analysis [55]

Extracts frequency features using
spectrum analysis, such as
dominant frequency and
bandwidth, for classification.

Captures frequency-related
information

Ignores time domain information,
not suitable for non-stationary
signals

Statistical feature
analysis [56]

Extracts statistical features like
mean, variance, skewness, etc., to
describe waveform characteristics.

Simple computation, low
resource consumption

Limited information richness,
difficulty in capturing complex
patterns

Machine learning
methods [18]

Includes SVM, Random Forests,
etc., mapping waveform features to
a feature space for classification.

Suitable for complex
relationships, handles
high-dimensional data

Relies heavily on feature
engineering, may require
significant labeled data

Deep learning
methods [57]

Uses deep learning models like
CNNs for feature learning and
classification, suitable for complex
image information.

Automatically learns features,
high adaptability

Requires large amounts of data,
complex model parameter tuning,
high computational resource
consumption

Clustering
analysis [58,59]

Clusters waveforms based on
similarity, discovering natural
groupings in the data.

Can identify unknown
categories

Results are highly dependent on
the choice of distance measure,
clustering algorithm, etc.

Hybrid methods [43]

Combines multiple methods, e.g.,
integrating machine learning with
deep learning, or combining
time–frequency analysis with
statistical feature analysis.

Considers multiple aspects,
improves classification
accuracy

Requires more data and
computational resources,
increased algorithm complexity

Time domain analysis focuses on the variations in time and waveform characteristics
of a signal. By observing the amplitude, duration, periodicity, and other characteristics
of the signal, intuitive perceptions and time-related information about the signal can be
obtained. This information is very useful for the identification and location of microseis-
mic events. Common time domain analysis methods include waveform plots, envelope
analysis, autocorrelation functions, and cross-correlation functions. Time domain analysis
methods are suitable for detecting transient events, impulse signals, and time correlations.
On the other hand, frequency domain analysis is concerned with the components and
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spectral characteristics of a signal in terms of frequency. By converting the signal to a
frequency domain representation, the frequency distribution, frequency components, and
corresponding energy distribution of the signal can be analyzed. Common frequency do-
main analysis methods include Fourier transform, power spectral density, and spectrogram.
Frequency domain analysis methods are suitable for analyzing the frequency characteristics
of signals, the interrelationships between frequency components, etc. Therefore, time
domain and frequency domain analyses are two commonly used methods in microseismic
signal processing. Time domain analysis focuses on the temporal variations and waveform
characteristics of the signal, providing intuitive time-dependent information, whereas
frequency domain analysis focuses on the frequency components and energy distributions
of the signal, revealing the frequency characteristics of the signal. These two methods
complement each other and together provide a comprehensive description and understand-
ing of the signal, which helps to identify microseismic events and study their frequency
characteristics and time correlation.

Statistical feature analysis involves extracting and calculating various statistical features
from a signal. These statistical features include mean, standard deviation, peak, energy, etc.,
and can be used to characterize the signal as a whole by analyzing its statistical properties.
Statistical feature analysis methods are usually based on mathematical–statistical theory, can
be computed quickly, and do not require a large number of training samples. These features
can be used to construct rule- or threshold-based classification models. Machine learning
methods are a data-driven approach that learns signal features and performs classification
using training models. Common machine learning methods include SVM, RF, and naive
Bayes. These methods typically require manual feature design and use the extracted
features to train classification models. Machine learning methods are suitable for moderate-
sized datasets and relatively simple problems, but they may have limitations in dealing
with complex signal patterns. Deep learning methods, on the other hand, are based on
neural networks and can automatically learn features and patterns through multilayered
networks for classification. The core of deep learning methods is ANN [60], such as CNNs
and RNNs. These methods optimize network weights using large-scale training data and
backpropagation algorithms to automatically extract complex signal features and perform
advanced classification. Deep learning methods excel in handling large-scale datasets and
complex problems.

The difference between machine learning and deep learning methods lies in the former
requiring manual design of feature extraction processes and using the extracted features
to train classification models, whereas the latter automatically learns to signal features
and patterns through multilayer neural networks without the need for manual feature
definition. Deep learning methods typically require more training data and computational
resources, but they can handle more complex signal patterns and have stronger generaliza-
tion capabilities. Therefore, in microseismic signal recognition and classification, machine
learning methods are suitable for moderate-sized datasets and relatively simple problems,
whereas deep learning methods are suitable for large-scale datasets and complex prob-
lems. Researchers can choose the appropriate method based on the dataset size, problem
complexity, and available resources.

Clustering analysis is an unsupervised learning method that divides data samples into
different groups or clusters, grouping similar samples together. It focuses on discovering
inherent patterns and structures in the data without the need for prior labels or category
information. Common clustering algorithms include k-means, hierarchical clustering,
and DBSCAN. Clustering analysis can help identify similar patterns and clusters within
microseismic signals for further investigation and classification. Hybrid methods combine
multiple techniques or methods to leverage their respective strengths. In microseismic
signal recognition and classification, hybrid methods often integrate multiple techniques
or methods, such as combining clustering analysis with machine learning methods or
combining clustering analysis with statistical feature analysis. The goal of hybrid methods is
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to obtain more comprehensive features from multiple perspectives and fuse the advantages
of different methods to improve recognition and classification performance.

By categorizing and evaluating these methods, we found that each method has its
advantages and limitations. Researchers can choose the appropriate method or combine
multiple methods according to their specific research objectives and data characteristics to
achieve accurate and efficient identification and classification.

3.2. SWOT Analysis of Deep Learning

Here is a concise overview of the SWOT analysis results for using deep learning meth-
ods in the research of microseismic event waveform image recognition and classification:

• Strengths

(1) Sensitivity to subtle changes: Deep learning excels at capturing intricate patterns
and subtle variations in microseismic waveform images, enabling precise event recognition
and classification. For example, Huang et al. [61] successfully identified and located
microseismic events using CNN.

(2) Feature extraction: Deep learning techniques effectively extract complex features
from waveform images, thereby enhancing the differentiation of various microseismic
events. For instance, Li et al. [15] achieved high accuracy in microseismic waveform
classification using DCNN.

(3) Scalability: Deep learning’s capacity to handle large datasets aligns well with
the data-intensive nature of microseismic monitoring, thus leading to improved accuracy.
Wang et al. [47] applied deep learning methods to process a large volume of microseismic
waveform data, resulting in good classification results.

• Weaknesses

(1) Limited labeled data: The scarcity of labeled microseismic waveform data can
hinder model training and validation, potentially limiting the algorithm’s performance.
For example, Wang et al. [47] noted a rapid decline in classification accuracy when the
number of training samples was less than 512.

(2) Resource demands: Complex deep learning models may require substantial com-
putational resources, which poses challenges in resource-constrained environments. For
instance, Dong et al. [51] mentioned that training deep convolutional neural networks
requires more time and computational resources than traditional classification methods.

(3) Expertise requirement: Implementing and fine-tuning deep learning models re-
quires expertise in both microseismic domain knowledge and machine learning. For
example, Bi et al. [38] demonstrated that the parameter tuning and debugging of deep
learning models require machine learning expertise, while the interpretability of results
also relies on knowledge in the microseismic domain.

• Opportunities

(1) Continuous advancements: The ongoing development of deep learning method-
ologies promises enhanced accuracy and performance in microseismic event recognition
and classification. For example, Dong et al. [51] demonstrated the successful application of
pretrained models in microseismic event recognition, indicating that advancements in deep
learning methods bring better opportunities in this field.

(2) Versatile applications: The adaptability of deep learning methods opens doors
to broader applications beyond microseismic monitoring, offering potential insights into
related domains. For instance, Mousavi et al. [4] explored the possibility of applying deep
learning methods to seismic data processing and achieved promising results.

• Threats

(1) Data privacy concerns: The sharing and utilization of sensitive microseismic data
could be constrained by privacy and security considerations.

(2) Noise interference: The presence of noise within microseismic waveform images
might challenge the robustness and effectiveness of deep learning models. For instance,
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Xu et al. [62] pointed out that noise interference may lead to performance degradation in
waveform classification tasks.

This SWOT analysis underlines the potential of deep learning techniques in micro-
seismic event waveform image recognition and classification, while also acknowledging
challenges related to data availability, resource demands, and the need for domain expertise.

3.3. Comparison of Deep Learning Models

Deep learning methods play a crucial role in microseismic data analysis. By auto-
matically learning and extracting features from waveform data, these methods provide
powerful tools for seismologists and engineers to understand subsurface structures and seis-
mic activities. However, having a clear understanding of the advantages and disadvantages
of different deep learning methods is essential when choosing the appropriate approach.
Table 3 provides descriptions, advantages, and disadvantages analysis for several common
deep learning methods. From CNNs that capture spatial features to LSTM networks that
handle temporal dependencies, each method has its own characteristics and application
scope. Additionally, transfer learning, attention mechanisms, and ensemble methods have
been introduced to further enhance the classification performance and information extraction
capabilities of microseismic data. A comprehensive evaluation of these deep learning methods
can assist researchers in selecting the most suitable approach for their research objectives and
drive the development and innovation in the field of microseismic data analysis.

Table 3. A summary and comparison of commonly used deep learning methods for microseismic
event waveform recognition and classification.

Deep Learning Method Description Advantage Disadvantage

Convolutional neural
networks (CNNs)

Utilizes convolutional layers to
automatically learn hierarchical
features from raw
waveform images.

Captures spatial features,
strong in image data

Requires large labeled datasets,
complex model architectures

Recurrent neural
networks (RNNs)

Suited for sequential data,
processes waveforms in a time
series manner, capturing
temporal patterns.

Captures temporal
dependencies, adaptable

Vulnerable to
vanishing/exploding gradient
problem, less suitable for
complex spatial patterns

Long short-term
memory (LSTM)

A type of RNN designed to avoid
long-term dependency issues that
effectively captures long-range
temporal information.

Handles long-range
dependencies, suitable for
time series

More complex to implement,
and requires careful tuning
and training

Gated recurrent units
(GRUs)

Another type of RNN that
balances complexity and
performance and is similar to
LSTM but with fewer parameters.

Efficient memory
usage, adaptable

May struggle with very long
sequences, less expressive
than LSTM

Transfer learning

Utilizes pretrained models on
large datasets to extract general
features and then fine-tunes for
specific microseismic data.

Requires less labeled data,
faster convergence

Depending on the availability of
relevant pretrained models,
potential domain gap issues

Attention mechanisms

Enhances feature extraction by
assigning different weights to
different parts of the input
waveform, focusing on
important details.

Improves information
retention, interpretable

May introduce additional
model complexity, require more
computational resources

Ensemble methods

Combines multiple deep learning
models to improve classification
performance and reduce
individual model bias.

Increases robustness, balances
model shortcomings

Requires additional
computational resources, may
be complex to implement

Taking CNNs as an example, we have summarized the advantages and disadvantages
of commonly used classical image classification models (AlexNet, GoogLeNet, ResNet)
and the standard CNN model. Specific details can be found in Table 4. This analysis
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complements the findings in Table 3 and provides a more in-depth discussion. Overall,
these classical image classification models have all solved the challenges in deep convo-
lutional neural networks to varying degrees, and have achieved remarkable results in
image classification tasks. Selecting a suitable model requires weighing the advantages and
disadvantages according to the requirements of the task and the available resources.

Table 4. Comparison of classical image classification models.

Model Advantages Disadvantages

Standard CNN
(1) Intuitive and easy to understand.
(2) Suitable for small-scale image classification tasks.
(3) Faster training speed compared to deeper models.

(1) Misses advanced model optimizations.
(2) May struggle with complex tasks or
large datasets.

AlexNet
(1) First successful deep learning model on ImageNet.
(2) Introduced ReLU activation for faster convergence.
(3) Used Dropout to mitigate overfitting.

(1) Large number of parameters, prone
to overfitting.
(2) Deeper architecture leads to longer
training times.

GoogLeNet
(1) Utilized inception modules to reduce parameters.
(2) Achieved good performance with fewer layers.
(3) Balanced depth and performance.

(1) Complex architecture, hampers
module interpretation.
(2) Longer training time due to
increased complexity.

ResNet
(1) Introduced residual blocks to address gradient vanishing.
(2) Enabled extremely deep networks with good results.
(3) Can increase depth without degradation in performance.

(1) Increased complexity demands more
computational resources.
(2) Potential overfitting on small datasets.

3.4. Opportunities and Challenges

Deep learning models face numerous opportunities and challenges in their future
development, which will directly impact their applications and performance in the field
of microseismic monitoring. Here are some key opportunities and challenges for deep
learning models in their future development:

• Opportunities

(1) Availability of large-scale datasets: As monitoring technologies advance, the vol-
ume and diversity of seismic waveform and microseismic event data will increase. This
will provide deep learning models with more training data, enhancing their performance
and generalization capabilities in the recognition and classification of microseismic event
waveform images.

(2) Advancements in computational power: Rapid developments in hardware tech-
nologies, particularly graphics processing units (GPUs) and specialized deep learning chips
like TPUs, will significantly boost the training speed and efficiency of deep learning models.
This will enable the handling of large-scale data and more complex models.

(3) Transfer learning and pretrained models: Pretrained models and transfer learning
methods have achieved tremendous success in various fields. These techniques allow mod-
els trained in one domain to be transferred to another, thereby reducing data requirements
and training time. For microseismic monitoring, this means that existing deep learning
models can be more easily applied and fine-tuned for specific problems.

(4) Automation and tools: Evolving automation tools and platforms, such as AutoML
and deep learning frameworks, enable a broader audience to utilize deep learning tech-
niques without delving deep into the underlying details. This will drive the proliferation
and wider application of deep learning.

(5) Interdisciplinary Collaboration: In navigating the intricacies of integrating ma-
chine learning with Earth science, several potential interdisciplinary collaboration models
emerge, bolstered by successful partnerships in analogous domains: (a) joint research
projects: Forming collaborative research teams comprising both machine learning experts
and Earth science specialists to jointly undertake specific projects. For instance, in earth-
quake prediction, machine learning experts collaborate with seismologists, employing
machine learning algorithms to analyze and forecast seismic data, thereby enhancing earth-
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quake early warning capabilities. (b) Data sharing and integration: facilitating collaboration
through data-sharing platforms, enabling machine learning experts to access real-world
Earth science data. Earth science experts, in turn, leverage machine learning techniques to
decipher and extract latent information from these datasets. In climate change research,
for example, machine learning experts utilize extensive meteorological observation data
to improve and optimize climate models using machine learning algorithms. (c) Institu-
tional collaboration and resource sharing: establishing collaborative relationships between
institutions for the shared use of laboratory equipment, datasets, and research resources. In
geological exploration and resource development, collaboration between machine learning
experts and geologists improves exploration efficiency and accuracy by sharing geological
data and machine learning algorithms. (d) Interdisciplinary research centers: creating
specialized centers that bring together experts from machine learning and Earth science
domains for cutting-edge research. This model facilitates in-depth interdisciplinary collab-
oration, offering a robust platform for addressing complex problems.

In short, the integration of machine learning with Earth science in microseismic
monitoring is driven by factors such as the availability of large-scale datasets, advancements
in computational power, transfer learning and pretrained models, automation tools, and
interdisciplinary collaboration. These factors enhance model performance, enable efficient
training, reduce data requirements, facilitate wider application, and foster collaborative
research. This integration has great potential for advancing microseismic monitoring
capabilities.

• Challenges

(1) Real-time and accuracy: Real-time identification and classification of microseis-
mic events pose significant challenges, especially when dealing with large volumes of
data. Models must make accurate decisions within extremely short timeframes, which
requires improvements in model design and computational efficiency. Balancing real-time
requirements with model complexity and computational demands is crucial.

(2) Generalization of models to novel events: Generalizing models to novel event
types is a major challenge because models often have limited exposure to certain event
categories during training. This necessitates further research into transfer learning and
data augmentation methods to adapt to evolving monitoring environments.

(3) Model interpretability: In the domain of microseismic events, the interpretability
of models is essential for ensuring decision transparency and credibility. Currently, deep
learning models are often considered “black-box” models, making it difficult to explain
their decision-making processes. Therefore, future research should focus on enhancing the
interpretability of deep learning models.

(4) Imbalanced data: Microseismic event data frequently suffer from class imbalance,
where some event categories have fewer samples. This can lead to performance degradation
in minority classes and requires targeted solutions such as oversampling or generative
adversarial networks (GANs).

(5) Sustainability and resource efficiency: Deep learning models typically require
substantial computational resources, which poses sustainability and resource-related chal-
lenges. Therefore, research efforts should focus on improving model resource efficiency,
including the development of more energy-efficient hardware and algorithms.

Based on the aforementioned opportunities and challenges, the field of microseismic
monitoring can further promote the development and application of deep learning through
the following aspects: (1) data processing and model optimization: to address the limited
labeled data issues, techniques such as semi-supervised learning, active learning, and trans-
fer learning can be explored to reduce the reliance on a large amount of labeled data. This
will help improve model performance and generalization capabilities. To mitigate noise
interference, research should focus on noise removal techniques, waveform restoration
methods, and data augmentation strategies to enhance the robustness of deep learning
models against noise. (2) Model interpretability and credibility: in the development of
deep learning models, emphasis should be placed on improving their interpretability.
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Researchers can explore the use of interpretable deep learning architectures, introduce
attention mechanisms, or employ explainable models to elucidate the decision-making
process. Additionally, establishing uncertainty estimation methods for models is crucial
as it helps evaluate the confidence of model outputs and provides more reliable decision-
making support. (3) Heterogeneous dataset and class imbalance issues: strategies such as
oversampling, undersampling, and GANs can be employed to address these challenges.
These methods assist in tackling the problem of insufficient samples in minority classes and
improve model performance across all categories. (4) Model deployment and real-time ca-
pabilities: to tackle the challenges of real-time requirements and accuracy, research should
focus on optimizing the inference speed and computational efficiency of deep learning
models. Techniques like model compression, quantization, and hardware acceleration can
be explored to meet real-time monitoring needs. (5) Interdisciplinary collaboration and
knowledge integration: cross-disciplinary collaboration is essential when facing challenges
and opportunities. Collaborating with experts from computer science, seismology, geology,
physics, and other fields facilitates the fusion and exchange of knowledge, thus contributing
to the advancement of the microseismic monitoring field.

In summary, by focusing on data processing and model optimization, model in-
terpretability and credibility, heterogeneous datasets and class imbalance issues, model
deployment and real-time capabilities, and fostering interdisciplinary collaboration and
knowledge integration, the field of microseismic monitoring can provide more accurate,
efficient, and reliable solutions. This will drive advancements in science and technology
within this domain.

4. Conclusions

This study aims to explore the application of machine learning techniques in the
field of microseismic event waveform image recognition and classification, as well as their
potential and limitations. Through a comprehensive analysis and discussion of the relevant
literature, we have drawn the following conclusions:

1. Early spectrum analysis methods in microseismic event recognition relied heavily
on domain knowledge and expertise, requiring experts to engage in time-consuming
manual analysis and interpretation. Another common statistical analysis method classified
microseismic events based on statistical features, but it required manual definition and
selection of appropriate features, as well as manual extraction and analysis. Moreover,
traditional manual recognition methods suffer from heavy workloads and low efficiency.

2. In contrast, adopting machine learning methods such as deep learning can improve
recognition efficiency and accuracy by automatically learning features and pattern recog-
nition, thereby reducing the burden of manual involvement. These methods are more
effective in handling large-scale datasets and enhancing the automation of microseismic
event recognition.

3. Combining machine learning algorithms with computer vision techniques provides
a direct solution for analyzing microseismic event waveform images, with the ability to
handle large-scale datasets and enhance the precision and speed of event recognition and
classification.

4. However, in the field of microseismic event recognition, deep learning algorithms
face challenges such as insufficient annotated data, high computational resource require-
ments, and the need to improve generalization performance. Addressing these difficulties
requires interdisciplinary collaboration and ongoing research efforts.

5. Future directions include several aspects: firstly, establishing strategies to improve
the robustness of models, thereby enhancing the stability and reliability of microseismic
event waveform recognition and classification models. This can be achieved through the use
of more complex network structures, introducing regularization techniques, or integrating
multiple models. Secondly, creating diverse datasets is crucial. These datasets should con-
tain abundant samples of microseismic events, covering various geological environments
and working conditions. Training and evaluating models using diversified datasets can im-
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prove their generalization ability and adaptability. Thirdly, data augmentation techniques
can effectively increase the diversity and quantity of training data, thereby enhancing
model performance. For example, data augmentation can be achieved through operations
such as rotation, scaling, and translation to expand the dataset, allowing the model to better
adapt to variations and differences among microseismic events. Furthermore, exploring
transfer learning and self-supervised learning is a promising research direction in microseis-
mic event recognition using deep learning. Transfer learning can leverage existing models
and knowledge to quickly adapt to new microseismic event recognition tasks, thereby
improving model performance and generalization ability. Self-supervised learning can
use appropriate methods to generate labels automatically, utilizing unsupervised data
for training and further enhancing model performance. Through continuous exploration
and improvement, deep learning will provide more reliable safety guarantees for mining
engineering in the field of microseismic monitoring.

In conclusion, deep learning approaches provide effective instruments for micro-
seismic event identification, with the potential to increase the accuracy and efficiency of
microseismic event categorization, as well as provide more dependable security guarantees
for underground engineering and mining activities. However, further study and effort are
required to solve the current problems and ensure the long-term implementation of deep
learning approaches in microseismic monitoring.
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Appendix A

Table A1. Glossary of abbreviations.

Abbreviation Full Name Abbreviation Full Name

CNN Convolutional Neural Network XTF-CNN Time–Frequency Convolutional
Neural Network

SWOT Strengths, Weaknesses, Opportunities,
and Threats LSTM Long Short-Term Memory

IoT Internet of Things RNN Recurrent Neural Network
AI Artificial Intelligence FCN Fully Convolutional Neural Networks
MS Microseismic Signal ResNet Residual Network

MMS Microseismic Monitoring System PSO Particle Swarm Optimization
DT Decision Tree SSA Singular Spectrum Analysis

SVM Support Vector Machine BP Back Propagation
DCNN Deep Convolutional Neural Network LDA Linear Discriminant Analysis

SPP Spatial Pyramid Pooling WSD Wavelet Scattering Decomposition
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Table A1. Cont.

Abbreviation Full Name Abbreviation Full Name

DAS Distributed Acoustic Sensing VGG Visual Geometry Group
STA/LTA Short-Term Average/Long-Term Average ECNN Enhanced Convolutional Natural Network

RF Random Forests GAN Generative Adversarial Networks
KNN K-Nearest Neighbors ACGAN Auxiliary Classifier Gan

EEMD Ensemble Empirical Mode Decomposition WPD Wavelet Packet Decomposition
SVD Singular Value Decomposition STFT Short-Time Fourier Transform
ELM Extreme Learning Machine NB Naive Bayes
DBN Deep Belief Network ANN Artificial Neural Networks

CapsNet Capsule Network DBSCAN Density-Based Spatial Clustering of
Applications with Noise

PCA Principal Component Analysis GRU Gated Recurrent Unit

CEEMDAN_SE
Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise
Sample Entropy

GPU Graphics Processing Unit
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