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Abstract: Chronic kidney disease is a long-term condition with significant implications for quality
of life and health care costs. To uncover the etiology in selected cases suspected of monogenicity, a
genomic approach can be employed. There are multiple technologies available, but there is currently
no consensus on the most effective diagnostic approach. This review provides a comparison of
currently available diagnostic methods in terms of diagnostic yield. However, the heterogeneity
of patient cohort inclusion criteria limits direct comparisons. Our review identified three studies
which compared a targeted gene panel and whole-exome sequencing for the same patient population.
However, the results are inconclusive due to the different sizes and specificity of the targeted panels
employed. The contribution of a whole-genome sequencing approach is highly debated. It is
noteworthy that a large number of data are generated by these sequencing technologies. This allows
for rapid analysis of coding and non-coding regions. However, the interpretation of variants is
a significant burden, and the reporting of incidental findings is still challenging. Therefore, the
identification of the most efficient technology is pivotal but still controversial. To conclude, an
objective comparison of the three methods for the same population could overcome the limits of these
studies’ heterogeneity and highlight the weaknesses and the strengths of individual approaches.
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1. Introduction

Chronic kidney disease (CKD) is a global public health problem with the adverse
outcomes of kidney failure, cardiovascular disease and premature death. Kidney failure
(KF), which is the final stage of CKD, affects approximately 9–13% of the world’s population,
corresponding to 800 million individuals [1–3]. In 2010, approximately 2618 million people
worldwide received renal replacement therapy (RRT) [4]. This is predicated to increase
to 5.4 million people by 2030 [5]. RRT impacts quality of life and life expectancy [6] and
results in substantial health care costs [7].

To address this issue, the implementation of screening and medical investigation
strategies for individuals at high risk of developing KF is believed to be crucial [8]. The
main reported causes of KF are diabetic nephropathy (19%) [9], glomerulonephritis (17%)
and hypertensive nephropathy (16%), but in 20% of RRT cases, the etiology remains
undetermined [10].

Recent studies have shown that a genomic approach can detect the underlying cause
of CKD in approximately 30% of pediatric and 5–30% of adult cases [11–13]. More than
600 monogenic genes correlated to kidney diseases [14] can be identified. Among the
population with early-onset CKD (before 25 years of age), 70% of the diagnoses are congen-
ital anomalies of the kidneys and urinary tracts, cystic diseases, glomerulonephritis and
steroid-resistant nephrotic syndrome (SRNS) [15].
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A genetic diagnosis has important implications for the diagnostic and therapeutic
pathways of a nephropathic patient. More precise prognoses and therapies can be achieved
whilst avoiding unnecessary and potentially harmful invasive medical investigations
(e.g., renal biopsy) and futile therapies (e.g., immunosuppression). Additionally, genetic
diagnosis allows genetic counseling, especially in the family planning stages.

There are several approaches to genomic analysis, each with different diagnostic
sensitivities and cost-effectiveness [16]. The most common approaches are based on three
main technologies, including targeted gene panels, whole-exome sequencing (WES) and
whole-genome sequencing (WGS). Sanger technology remains a validation system for
next-generation sequencing (NGS) and for the analysis of small specific genes.

However, there is a lack of consensus in the scientific community on the best
diagnostic approach.

Studies reporting the diagnostic yield of genomic diagnostic technologies vary con-
siderably because of methodological inter-study heterogeneity. The target patients range
from those with specific clinical presentations, such as SRNS, renal stones, or polycystic
kidney disease, through to non-specific CKD clinical presentation and high suspicion of
genetic conditions. Further, most studies are retrospective, and very few present direct
comparisons of the diagnostic technologies for equivalent target populations. As a result, a
conclusive evaluation of the best approach remains elusive.

We aimed to review and evaluate the diagnostic yields of currently employed genomic
testing technologies in the field of genetic kidney disease to assist professionals in selecting
the best precision medicine approach.

2. Genetic Testing: The Current Framework

A review, including original studies and reviews reporting the diagnostic yield of the
genomic approach for kidney diseases, was performed. A Pubmed advanced search was
conducted, which identified a total of 102 studies published from 2000 to July 2023. The
MESH keywords used in the search were kidney disease, diagnostic yield and genetic test.
Seven articles were additionally identified and included.

Screening criteria specified the exclusion of studies not reporting the diagnostic yield
of the genomic test (30 studies), including <20 patients (20 studies), focused on population
screening (3 studies) or renal cancer (8 studies) or reporting on patients already included
in previous studies (1 study). Selection based on inclusion and exclusion criteria was
performed using the platform Rayyan.

A total of 47 studies were considered and analyzed. Each study’s chosen technology,
patient cohort characteristics and diagnostic yield were recorded in a dedicated spread-
sheet (Table 1). According to the patient cohort age, studies were grouped as pediatric,
pediatric/adult or adult only, and as specific or non-specific CKD clinical presentations. A
subset of three studies, which included direct comparisons between two different sequenc-
ing approaches, was created. Fisher’s exact test was used to evaluate the incremental rate
of the diagnostic yield for each technology.

The most frequently discussed specific clinical presentations were cystic diseases, focal
segmental glomerulosclerosis and SRNS, and tubulopathies. Technologies identified in this
review included Sanger sequencing (2 studies), targeted gene panel testing (20 studies),
WES (16 studies) and WGS (1 study). A total of 8 retrospective studies included assessments
performed using a targeted gene panel and WES but did not provide separate outcomes.

Figure 1 shows the heterogeneity of the diagnostic yield distribution for the different
technologies. No formal statistical analysis could be performed, due to the wide differences
and variety of the studies collected.
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Table 1. Summary of included studies, grouped according to specific and non-specific chronic kidney
disease (CKD) clinical presentations, age of the included cohort and reported technologies (Sanger;
Targeted panel; WES—whole-exome sequencing; Mixed; WGS—whole-genome sequencing). Mixed
considers results from targeted panel and WES.

CKD Clinical Technologies Pediatric Pediatric/Adult Adult
Presentation N◦ Cases Yield (%) N◦ Cases Yield (%) N◦ Cases Yield (%)

Specific

Sanger [17,18] 35 14 - - 2034 2
Targeted panel [19–30] 31–1554 24–78 34–859 18–81 81–236 7–22
WES [31–34] 24–60 42–58 - - 24–193 11–36.5
Mixed [35] - - 45 64 - -
WGS [36] 144 70

Non-specific

Sanger - - - - - -
Targeted panel [37–44] 188–832 28–40 50–1007 21–65 135–416 12–56
WES [45–56] 104–1000 32.5–52 80–174 30–51 92–3315 9.3–34
Mixed [57–63] 158 51 74–309 31–57 231 42
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2.1. Sanger Technology

Sanger technology is a rapid and cost-effective method, allowing for population
screening for a single disease [16,64]. It has high coverage and high sensitivity for detecting
single-nucleotide polymorphisms. However, this analysis is limited to single DNA frag-
ments of up to 1000 base pairs and is not efficient for large or multi gene analyses. Sanger
is useful for the validation of variants identified in NGS, gap-filling in WES technology and
analysis of small genes correlated to targeted diseases [16]. It is used for the identification
of GLA gene (Galactosidase Alpha, 429 amino acid) in suspected Fabry’s disease, specifically
for the identification of the variant position, thereby determining the best therapeutical
approach. In Fabry disease, the diagnostic yield is reported to be approximately 14% in
pediatric and 2% in adults [17,18] (Table 1).

2.2. Targeted Panel Technology

Targeted panel can assess multiple genes in parallel, saving time and reducing costs.
Targeted panels focus on a selected set of genes with known or suspected associations
with the disease under study. Employing panel technology is an effective approach to
establishing a genetic diagnosis, in case of a clearly defined phenotype, to define the molec-
ular diagnosis between phenocopies [52]. In the case of a defined phenotype and limited
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genes to test, the approach is more simple than WES or WGS approaches. Furthermore,
employing a specific genes panel helps prevent the discovery of incidental findings, as
there is currently no consensus on how to report them.

On the other hand, the targeted panel cannot be easily extended to include new
genes. This means that the panel’s content might quickly become outdated over time as
new genetic associations are identified. Updating panels to include new genes associated
with the disease or phenotype, requires a new design and validation of the modified
panel [65]. Furthermore, in consideration of the multitude of clinical presentations, a
significant number of different panels should be maintained by the analytical laboratory,
thereby increasing the complexity and cost of this solution.

Currently, targeted panels vary in the number of genes included in the analysis, with
the largest panels able to analyze approximately 2000 genes. The clinical impact largely
depends on the genes included and therefore, whether a differential diagnosis can be made.

Table 1 reports diagnostic yields for targeted panels which are disease-specific, ranging
from 6.8% for patients with renal stones [28] to 81% for patients with a clinical diagnosis of
Autosomal Dominant Polycystic Kidney Disease (ADPKD) [26]. In the case of non-specific
CKD clinical presentations, diagnostic yield from panels range from 28 to 40% for pediatric
cases [37,38], 21 to 65% for pediatric/adult cases [39–41] and 12 to 56% for adult cases.

Most disease specific studies have used small panels (genes < 100), reporting an
average yields of 36%. Only two targeted studies used a larger panel [20,22], both on cystic
populations, with an average yield of 75%.

The difference in yield, however, is largely related to the clinical presentation investi-
gated: three studies on cystic patients observed an overlapping yield (70–80%) independent
of whether the study was conducted on a small or a broad-spectrum panel. In contrast,
there are disorders, such as hypophosphatemia, in which a panel of 13 genes leads to a
yield of 63% [25] and renal stones disorders in which a panel of 45 has a yield of 7% [28].

Small panels have not been employed in case of non-specific clinical presentations.

2.3. Whole-Exome Sequencing

The WES approach captures the majority of genomic coding regions. It is estimated
that up to 85% of all pathogenic mutations fall within this region. WES is mainly applied
in cases of unclear clinical suspicion. This technology enables the analysis of targeted
genes, whilst maintaining information for future “virtual panel” analyses as new genomic
components are identified. The employment of a WES based virtual panel reduces the
computational burden and restricts the occurrence of incidental findings, while preserving
data for reanalysis as additional genetic discoveries emerge [56]. WES exhibits low coverage
compared to other methods and often requires Sanger sequencing to increase the depth
of analysis [16]. WES does not achieve a complete coverage of the exome in some areas,
such as GC-rich regions and homology sequences [66]. The GC content can reduce the
efficiency of nucleotide hybridization, causing lower sequencing coverage [67,68] and
requiring modified Polymerase Chain Reaction (PCR) conditions and the design of exon-
specific primers. However, the employment of long-read sequencing technology in the
WES approach (third-generation sequencing), may overcome the low coverage challenge
and enhance sensitivity, especially in high-homology regions [69].

WES technology remains a cost-effective option compared to WGS [70], with simplified
data analysis and storage. Jayasinghe et al. reported that, compared to kidney biopsy, WES
is a lower risk and more cost-effective approach for children with a glomerular disease [31].

Table 1 highlights the heterogeneous diagnostic yield. For pediatric populations with
specific CKD clinical presentation, yields range from 42 to 58% [31,32], and in adults the
yields range from 11 to 36.5% [31,33,34].

The corresponding diagnostic yield for non-specific CKD clinical presentations range
from 32 to 52% for pediatric cases [45–48], 30 to 51% for pediatric/adult [49–52] and 9.3 to
34% for adult cases [53,54,63].
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Several retrospective studies did not provide separate outcomes from targeted panel
or WES. In these cases, the yield for non-specific clinical presentation patients is 51% in
pediatric [57], 31–57% in pediatric/adult [55,58–60] and 42% in adult cohorts [56,61].

Studies Including Direct Comparisons of 2 Technologies

We identified three studies [54,71,72] that directly compared the diagnostic yield of
two different technologies for the same population (Table 2).

One study [71] reported no statistical differences between an enlarged panel (2703 genes,
ClearSeq Inherited Disease Panel-Agilent, Santa Clara, CA, USA) and WES. The other
two studies [54,72] show a significant incremental rate (5% and 10%) of WES compared to
targeted panel.

The main difference between the 3 studies is expressed by the type of targeted panels
used. Rao et al. [71] conducted analyses on a large panel of 2703 genes, whereas Wilson
et al. [72] and Groopman et al. [54] employed smaller, selected phenotype-specific tar-
geted panels. Wilson et al. and Groopman et al. both reported significant differences in
diagnostic yield between targeted panels and WES. However, diagnostic yield is directly
associated with the correct selection of a targeted panel based on clinical presentation.
Therefore, incorrect initial diagnostic suspicion can lead to the selection of an incorrect
targeted panel, which a broader WES analysis can correct. In the Wilson et al. [72] study,
the diagnoses identified through WES analysis only, are on genes included in several “ex-
panded panels”. Notably, all but 1 are found in the expanded targeted panel employed by
Rao et al. [71].

A clinical misdiagnosis or genetic heterogeneity of some conditions can consequently
result in the utilization of inappropriate disease-specific panels and misdiagnosis. With the
selection of broad panels or genome-wide approaches, this risk is minimized. As reported
in several studies, following genetic testing, between 10 and 45% of cases [22,42,54,55,73],
undergo a reclassification of the original clinical diagnosis. A WGS approach maximizes
diagnostic potential, although this strategy does not yet have immediate applicability in
routine diagnostics.

Table 2. Comparison of technologies’ yield in the same population setting. WES, whole-exome sequencing.

Technology N◦ Cases Diagnostic Yield (%) Incremental (%) References

Panel (2703 genes) 482 42.6 No statistical
differences
(p > 0.05)

[71]Singleton-WES 196 36.2
Trio-WES 317 44.8

Panels (virtual analysis) 3315 4.1 5
(p < 0.01) [54]

WES 3315 9.3

Panels (disease specific) 324 20.0 10
(p < 0.01) [72]

WES 324 30.0

2.4. Whole-Genome Sequencing

The most advanced technological approach is WGS, which allows for the investigation
of the entire genome, including regulatory regions and non-coding variants via short- or
long-read technology.

It has good coverage, an improved mappability compared to WES and no GC-bias,
reducing rates of false-negative variant calls [67]. Table 3 summarizes the list of advantages
and disadvantages of applying WES or WGS.

The WGS approach overcomes the pseudogene sequence similarity and duplicate
regions [36]. These characteristics are especially important for some diagnoses, such
as ADPKD [74]. The PKD1 (Polycystin-1) gene shows six pseudogenes with a sequence
similarity of 97%. Mallawaarachchi et al. [36] report a diagnostic yield of WGS in ADPKD
patients of 80%. A similar yield was reported by Bullich et al. [20] in a cohort of clinically
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diagnosed ADPKD patients. In this study, patients were screened with a panel of 140 genes.
The only limitation of this approach is the redesigning and revalidating of the setting, each
time a new gene is discovered.

The WGS short-read technology approach, still largely adopted in next-generation sys-
tems, is struggling to detect complex structural variants such as large inversions, deletions,
or translocations. The technology advancement of long-read technology could overcome
this limitation [75].

Despite its potential, WGS is still not widely used in clinical practice due to its higher
costs and less developed analytical tools compared to more established sequencing methods,
such as WES. However, with ongoing advancements and cost reductions, WGS may become
more commonly employed in the future, especially for cases where its unique benefits are
crucial, such as diagnosing complex genetic conditions like PKD.

Nevertheless, the requirement of dedicated infrastructures, trained specialists, func-
tional studies for uncertain significance variants (VUS) interpretation is a challenge for
clinical centers and for large-scale implementation of these approaches [76]. An exten-
sive application of WES would lead to the multiplication of the VUS to be documented.
The problem is exacerbated by WGS where huge portions of the non-coding genome
are effectively uninterpretable. From a research perspective, the availability of large
amounts of data has led to the establishment of large-scale WGS projects, such as the
European program Beyond 1 Million Genomes [77]. However, in a routine clinical context,
a panel approach is a more effective and manageable implementation. These data will
contribute to the advanced identification of rare pathogenic variants in the coding and non-
coding domain.

Currently, studies reporting the diagnostic performance of WGS in the field of kidney
diseases are few and none met our study’s inclusion criteria. Various non-nephrological
studies have reported an increase in the effectiveness of WGS, but results are conflicting.
Bertoli-Avella [78] et al. in a study including 1007 patients with neurological diseases,
demonstrated that 30% of the unsolved WES cases could benefit from WGS. However, the
interpretation of these data is not unique. Biskup et al. [79], in a responding letter to the
Bertoli-Avella et al. study, reported that the genomic variants identified by WGS can also
be identified using a well-established WES technology, suggesting that only 1.4%, and not
30%, of the genomic variants can be identified by the WGS approach.

Table 3. Advantages and disadvantages of whole-exome sequencing and whole-genome sequencing.

Advantages Disadvantages

Whole-Exome Sequencing
Detection of the coding-region variants.

Low coverage, mainly in GC rich and
homology sequences.

Applicability in unclear CKD case. Need for gap filling with Sanger.

Cost effective options compared to WGS. Burden of incidental findings.

Possibility to create virtual panel of analysis to reduce
the burden of VUS variants detected.

Whole-Genome
Sequencing Detection of the coding-region and non-coding variants. Higher costs compared to WES.

Detection of structural variants. Need for dedicated infrastructure and
trained specialists.

Applicability in unclear CKD case. Relevant burden for VUS variants and
incidental findings.

Ability to detect CNVs and variants in high-homology
regions (PKD1): one strategy for all the detections.

The superiority in diagnostic yield is
debated (from 2% to 30%).
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In other studies, the incremental rate between WES and WGS varies from 2 to
9% [69,80]. Ewans et al. [69] reported an additional 9% yield of WGS with 13 new diagnoses
in cases previously unresolved by WES analyses. These additional detected diagnoses were
related to unknown gene-disease associations, insufficient sequencing coverage and copy
number variations (CNVs).

WGS offers advantages, including high coverage and the ability to detect CNVs. In
the context of genetic kidney disease, where genes such as PKD1 and MUC1 (Mucin 1) pose
challenges due to high-homology regions and variable-number tandem repeats (VNTR) [81],
WGS allows for comprehensive screening of all genes and associated variants. However,
the routine implementation is hindered by challenges such as the need for expertise,
infrastructure, variant interpretation and cost, making it a significant burden.

2.5. Ethical Implications of Genetic Testing

The increased amount of genomic data to be analyzed brings risks [14]. Potential
incidental findings, now referred to as “secondary findings” by ACMG [82], require a
reanalysis of clinical investigations and close clinical follow up, initiating a new “diagnostic
odyssey” for the patient. The lack of consensus on reporting these findings limits the
widespread use of WES and WGS approaches.

In 2013, the ACMG released a list of 59 genes (updated to 73 [83]) that should be dis-
closed as secondary findings to mitigate the risks associated with specific highly penetrant
genetic disorders [82].

The increasing amount of genetics data raises ethical and privacy issues [84]. Returning
diagnostic genetic data and secondary findings may cause patient anxiety, interpretation
challenges for the clinician and may carry ethical responsibility.

In the United States, the patient often has the option to request the exclusion of
secondary findings. The European Society of Human Genetics recommends reporting
of secondary findings, whilst emphasizing the importance of patient autonomy and the
inclusion of options for expressing individual preferences in the informed consent. Other
states have kept a more conservative approach. However, it is crucial that the patient is
aware that secondary results may be returned.

Patients may also face discrimination in employment and insurances [65]. Europe and
the U.S. have taken measures to address this issue, such as the publication of the Recom-
mendation CM/Rec(2016)8 [85] and Genetic Information Nondiscrimination Act (GINA).

It is essential for researchers, geneticists, clinicians, governments and society to address
these ethical concerns to ensure that genomic sequencing benefits individuals and society
while respecting individual rights and privacy.

3. Discussion

This review highlights a heterogeneity of diagnostic performance within the single
technologies, rendering any comparison of technologies difficult to make.

A targeted gene panel is a convenient and largely available technology in the clinical
setting. It is mainly used to evaluate patients who are clinically well characterized and can
assess from 10 to over 2000 genes. The diagnostic yield of the targeted panel can reach 80%
in ADPKD patients [26].

However, targeted panels can become quickly outdated as new genes linked to specific
clinical presentation are continuously identified, especially in the case of heterogeneous or
not well clinically defined phenotypes. Initial clinical indication is not always confirmed by
genetic testing, and diagnoses are changed or reclassified after genetic testing in up to 45%
of cases [22]. These limitations have encouraged numerous centers around the world to
adopt the WES approach, filtering for genes of interest. This makes it possible to update
the list of genes to be filtered or, when appropriate, to analyze in the future.

However, WES technology has a low coverage in GC-rich and homology regions,
requiring an adjustment of PCR conditions. WGS overcomes this limitation, identifying
structural and non-coding variants. The employment of a single method to screen patients
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for single or copy number variations and structural variants on genes, such as MUC1 or
HNF1b [81,86], enables the identification of the main causes of disease. However, the high
costs of WGS technology and the difficulty of data analysis make it less likely to be adopted
outside of research settings [87].

The adoption of genomic methods has significantly increased the number of variants
to be evaluated, raising the issue of secondary findings [82]. Currently, there is no global
consensus on the management of secondary findings.

A feasible, current solution involves the inclusion of panels or virtual panels focused
exclusively on known diagnosis-related genes. In the case of negative results, research can
then be extended [35,56]. The integration of multiple analytical methods seems to show a
better average yield (Figure 1). In the scenario of increasing prevalence and demand for
genomic sequencing, the identification of the most efficient and cost-effective technology is
pivotal. However, the heterogeneity of the studies and the absence of direct comparison
between available technologies in similar study settings, limits comparative evaluations.

Table 1 reports the range of diagnostic yields reported among studies included in this
review. There are no correlations between the yield and the technology used or patient
age. However, no formal statistical analysis could be performed, due to the important
heterogeneity of the studies meeting our inclusion criteria, type of population tested and
the number of cases. Among studies of direct comparison of two technologies, WES
was superior to targeted panels. However, these data may be confounded by the use of
inappropriately selected disease-specific panels. Had a much broader panel, including
2700 genes been used, misdiagnoses due to heterogeneous phenotypes, phenocopies or
misclassification of pathology, may have been avoided [71].

Despite the high heterogeneity and inconclusive, single study comparison of two
technologies, we hypothesize that the highest diagnostic yield can be found in a well
selected targeted panel strategy adopted for patients with specific clinical presentation,
such as ADPKD [20,26]. Conversely, in patients with non-ADPKD clinical presentation,
such as renal stones and Bartter disease, the diagnostic yield is lower, ranging from 6.8%
and 17.7% [27,28].

In the case of WES technology, the results are extremely variable. The diagnostic yield
reaches 42% in pediatric/adult setting in a study of 102 patients affected by CKD [50], but
it is only 9.3% in a study that involved 3315 adults [54].

It is possible that new technologies, such as single-molecule sequencing, which relies
on longer-read sequencing (>10 kb vs. less than 1000 bp in short-read), may overcome the
limitations associated with gap filling in WES and faster determination of CNVs. These
emerging technologies hold significant promise. They not only offer improved accuracy
in identifying structural variants but also extend the ability to analyze regions that were
previously inaccessible using short reads. It will be interesting to assess the applicability of
these technologies and whether their diagnostic performance can exceed that of WGS and
WES [88].

4. Conclusions and Future Prospections

The lack of consensus in the scientific community about the best diagnostic algorithm
for genetic kidney disease is mainly due to the heterogeneity of patient selection, study
settings and technological methodology within reported studies, therefore restricting any
viable comparisons.

Two studies directly employed two technologies for the same patient population in
the same design setting, and they reported the superiority of WES compared to targeted
gene panels in terms of diagnostic yield. The advantage of future analysis of data and,
therefore, reclassification of diagnosis, is a major advantage of exome and genome-wide
approaches that cannot be performed with targeted panels.

However, the huge amount of data produced by WES and WGS can lead both to the
discovery of new disease-associated pathways and new disease genes, but also to genetic
misdiagnosis and unnecessary referrals.



Appl. Sci. 2023, 13, 12733 9 of 13

This review provides the current level of evidence and narrative comparison of di-
agnostic yields of the technologies currently employed in genomic diagnoses of kidney
diseases. Future research should be conducted in homogeneous patient populations, con-
sidering well clinically characterized patients. It would be helpful to analyze the same
large population with the three approaches; a targeted panel containing the main genes
related to genetic kidney disease, WES and WGS to enable an objective comparison of
the methodologies. However, the substantial costs associated with such a study design
continue to pose a prohibitive barrier to realization.

Currently, technologies that enhance performance and increase the potential to detect
genetic variants increase the chances of correctly referring patients toward new therapies
and counseling services. However, technologies that investigate the human genome, will
increasingly face ethical and potential discrimination issues.
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