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Abstract: Laser cutting is a widely used manufacturing process, and the quality of the resulting
cuts plays a crucial role in its success. This research employed the Design of Experiments (DOE) to
investigate the impact of input process parameters on kerf quality during the laser cutting of 5 mm
polymethyl methacrylate (PMMA) sheets. Response surface methodology (RSM) was utilized to
model the relationship between the input parameters and the kerf quality, with regression equations
developed for each response using the Design Expert software. A statistical analysis revealed
the significant effects of high laser power, cutting speed, and focal plane position on kerf quality.
Optimization, guided by the desirability function, identified optimal parameter combinations that
offered the most favorable tradeoff among various responses. Optimal conditions were found to
involve a high laser power, a cutting speed ranging from 4 to 7 mm/s, and a focal plane position at
the center. Experiments indicated the suitability of the models for practical applications. An overlay
plot analysis revealed a weak negative correlation between the laser power and the cutting speed,
while the focal plane’s position could be adjusted independently.

Keywords: laser cutting; statistical investigation; modeling and optimization; polymethyl methacrylate;
design of experiments

1. Introduction

In recent years, laser processing techniques have gained significant attention in various
industrial applications, including laser cutting, welding, drilling, brazing, and surface
modification [1–4]. Laser cutting, which is a “subtractive” digital manufacturing method,
employs a laser to focus a considerable amount of energy onto an extremely small region
in order to cut or engrave a material [5,6]. Laser cutting can be used on a wide range of
materials, such as cardboard, wood, plastic, and textiles [7], and it uses optics to concentrate
the output of a powerful laser on a small portion of the workpiece. As a result, the material
is melted, burned, vaporized, impressed using a jet of gas, or otherwise removed, leaving
behind a superior surface polish. Laser cutting can cut through materials up to 20 mm
thick, depending on the laser’s power [7–9].
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One polymer that has recently received considerable attention due to its superior
chemical, physical, and mechanical properties is polymethyl methacrylate (PMMA), a
synthetic thermoplastic polymer that is reasonably priced [10]. PMMA has been widely
used in various applications, such as automotive, dental equipment, bone tissue, sensors,
electronics, solar cells, and photodetectors [11]. The laser cutting of polymers, including
PMMA, has attracted a lot of interest due to its high product quality, fast cutting speed, and
high reliability [12]. The three main process variables in laser cutting are laser beam power,
transverse laser speed, and supporting gas pressure. PMMA sheets have been previously
sliced with a CO2 laser (with a wavelength of 10.64 µm) [13,14], as the molecular structure
of PMMA works as an opaque medium with a high absorption of laser energy.

The low thermal diffusivity (7 × 10−7 m2/s) and low sublimation point (300 ◦C) of
PMMA, in addition to its superior absorptivity, improve the cutting process’s precision and
shorten the cutting time. A PMMA sheet absorbs energy, which is transformed into heat,
causing the material to sublimate instantly. The material then evaporates and is evacuated
using an aiding gas. Due to the short heating cycle and limited thermal diffusivity of
PMMA during the laser cutting process, the temperature in the irradiated zone rises
quickly, forming a heat-affected zone (HAZ) with altered mechanical characteristics in and
around the cutting zone.

Laser technology has shown promise in various manufacturing processes, such as
metal deposition, welding, and cutting [15–17]. Laser cutting offers several advantages
over other conventional and unconventional cutting processes, such as turning, wire
cutting, abrasive fluid jet, plasma, and ultrasonic, in cutting metallic and non-metallic
materials [18,19]. These advantages include a high rate of speed, a good cut quality, a
suitable kerf width and HAZ, and the absence of tool wear [20]. Laser cutting has even
been successfully used to cut dangerous materials like the uranium dioxide pellets used in
nuclear reactors [21].

Previous studies have explored the precision of the HAZ and kerf geometry when
cutting different materials using laser cutting technology. For instance, Joshi et al. [22]
studied the impact of pulse frequency and width, lamp current, cutting speed, and four
other distinct laser cutting process parameters on the HAZ and kerf geometry when
cutting 6061-T6 aluminum sheets using a Nd-YAG laser. The pulse frequency was found
to have the greatest impact on the cutting process out of all the process variables studied.
Nguyen et al. [23] examined the kerf width fluctuation in the CO2 laser cutting of steel 304
and found that the percentage of contribution of input parameters like laser power has
more effects on the angle of the kerf.

Response surface methodology (RSM) serves as a powerful statistical and mathemati-
cal framework in the realm of experimental design and optimization [24,25]. Originating
from the field of the design of experiments, RSM efficiently navigates complex parameter
spaces, elucidating the intricate relationships between input variables and responses [26,27].
Widely adopted in diverse disciplines, RSM empowers researchers and engineers to sys-
tematically explore, model, and optimize processes, ensuring efficiency and precision. By
providing a structured approach to experimentation, RSM significantly contributes to ad-
vancing scientific understanding and technological innovation, making it an indispensable
tool for optimizing complex systems and processes. RSM facilitates a comprehensive un-
derstanding of the intricate relationships between FDM [28] and EDM [29,30] parameters,
such as raster angle, air gap, raster width, current, pulse on time, and pulse off time, and
critical performance measures like compressive stress, percentage deformation, breaking
stress, material removal rate, tool wear rate, and surface roughness. The utilization of
RSM not only aids researchers in uncovering the optimal combinations of parameters for
enhanced outcomes but also contributes to advancing the efficiency and effectiveness of
these advanced manufacturing techniques [31,32].

In this study, the authors employed response surface methodology (RSM), a well-
established Design of Experiments (DOE) technique, to explore the impact of three input
variables—laser power (LP), focal plane position (FPP), and cutting speed (CS)—on the
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kerf wall’s geometry and quality in 5 mm thick polymethyl methacrylate (PMMA) sheets.
Utilizing the Design Expert v17 software, the study extensively measured and statistically
analyzed top and bottom kerf width, the ratio of the upper kerf to the lower kerf, and
the cut angle of the kerf wall. An optimization process was undertaken to identify opti-
mal laser cutting parameters that yield the desired geometrical characteristics of the cut
kerf. Seventeen cutting experiments were conducted at the optimal settings to validate
the optimization results, comparing the outcomes with the software optimization results.
The primary objectives were directed at enhancing kerf quality by determining the most
effective combination of the input parameters—laser power, cutting speed, and focal plane
position. The optimization method employed in this study was centered around the de-
sirability approach, a well-established technique in the field of Design of Experiments
(DOE). Desirability functions are utilized for the systematic and comprehensive evaluation
of multiple responses simultaneously, enabling the determination of optimal process condi-
tions. By assigning desirability values to different levels of each response, the approach
facilitates the identification of parameter combinations that collectively meet the desired cri-
teria [33]. This methodology is particularly advantageous in laser cutting processes, where
multiple factors influence the quality and geometry of the kerf. Through the desirability
approach, this research aims to not only enhance specific aspects of the kerf, such as width
and angle, but also find a balance that maximizes the overall cutting performance. This
investigation leveraged Design of Experiments (DOE) and response surface methodology
(RSM) to model the intricate relationship between the input parameters and the kerf’s
quality. The optimization process, guided by a desirability function, sought parameter
values maximizing the desirable outcomes, such as a minimized kerf width, an improved
cut angle, and a specific ratio of upper to lower kerf dimensions.

2. Experimental Design and Methodology
2.1. Laser Cutting Process

The material of interest for this investigation is polymethyl methacrylate (PMMA),
which is a transparent thermoplastic with a high molecular weight and excellent optical
properties. The PMMA utilized in this study was in the form of sheets with a thickness of
5 mm supplied by Perspex (Brønderslev, Denmark). The properties of the PAMM are listed
in Table 1. The main objective of this research was to analyze the kerf properties of the
5 mm PMMA sheets during the CO2 laser cutting process. The study primarily focused on
examining the width at the top and bottom of the kerf (mm), the ratio of the top to bottom,
the cut kerf angle, and the potential correlations between these parameters and the process
variables of laser power, cutting speed, and focal plane position.

Table 1. PMMA thermal and physical properties. Extracted with permission from [34], Elsevier, 2023.

Property Value

Molecular Formula (C5O2H8)n
Molecular Weight (g/mol) ~100,000–500,000

Melting Point (◦C) 105–160
Glass Transition Temperature (Tg) (◦C) 105–165

Density (g/cm3) 1.17–1.20
Refractive Index (at 589 nm) 1.49–1.50

Thermal Conductivity (W/(m·K)) 0.17–0.19
Specific Heat Capacity (J/(g·K)) 1.4–1.9

Coefficient of Thermal Expansion (◦C) 70–90 × 10−6

Tensile Strength (MPa) 50–100
Young’s Modulus (GPa) 2.7–3.3
Elongation at Break (%) 2–6

Transparency Excellent

During the experiment, a Carbon Dioxide (CO2) laser machine operating at a wave-
length of 1060 nm was employed to cut the PMMA plastic material. The laser power was
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applied on the surface of the sheets, and the machine used a continuous CO2 laser to
examine the thermophysical properties of the PMMA sheet’s surface. A continuous laser
beam was selected to ensure a stable and uniform energy delivery, which was essential
for assessing the cut quality reliably. The laser beam was focused through a lens with a
specific focal length, and the laser cutter used had a nominal output laser power of 60 W,
which was verified using a laser power probe for the laser cutting machine. Compressed
air was supplied to the cutting zone via a 1 mm diameter nozzle, and the distance between
the nozzle and the object was set to 4 mm (Figure 1). Each consecutive cut was 50 mm in
length, spaced 20 mm apart.
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Figure 1. Schematic of the laser cutting process with all the parameters of this study.

Several methods exist for determining the focal position. In this study, a method
involving an acrylic sheet placed at an 80-degree angle with respect to the horizontal plane
was employed. By horizontally traversing the sheet across the vertical beam, the imprint of
the beam on the sheet provided the location of the focal point (Figure 2) [35].
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Figure 2. The focal point of the laser beam can be determined with the following steps: (a) analyzing
its position before passing through the laser and (b) observing the impact of the laser beam on the
acrylic sheet, which reveals the precise location of the focal point [35].

2.2. Response Surface Methodology (RSM)

In order to investigate the causes of changes in the response variable, the input
variables were systematically altered in each experiment. The aim was to develop a
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mathematical model that accurately represented the relationship between the response and
input variables with the least amount of error [25]. There are various Design of Experiments
(DOE) methods available, depending on the type of input variable parameters studied [36].
The current study used Response Surface Methodology (RSM) as the design method, which
combines statistical methods and applied mathematics to analyze output variables that
are influenced by multiple independent input variables. The experiment was designed
to determine the optimal values for three key parameters that initiate the cutting process:
laser power, laser speed, and focal plane position (with a maximum laser power of 60 W).
A test material made of acrylic in a rectangle shape with 17 different lines was used for the
cutting test, using a fixed step between the lines. In Table 2, three independent parameters
(laser power, cutting speed, and focal plane position) are considered for the laser cutting
test, with variable values ranging from −2 to 2. For each parameter, five coded values are
taken, with a laser power ranging from 40 W to 60 W with a 5 W interval, a laser speed
ranging from 4 mm/s to 16 mm/s, and focal plane positions from −2 to 2 mm (Figure 3).

Table 2. Independent process parameters with design levels.

Variable Notation Unit −2 −1 0 1 2

Laser power LP W 40 45 50 55 60
Cutting speed CS mm/s 4 7 10 13 16

Focal plane position FPP mm −2 −1 0 +1 +2
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Figure 3. Variation of the focal plane position on the work piece.

To establish the operational boundaries of each parameter for laser cutting, test samples
were fabricated by altering one of the process variables while maintaining a narrow kerf
width. The experimental design adopted was the matrix scheme of DOE, as shown in
Table 3, with the gas pressure set at a fixed value of 3 bars. The geometrical properties of
the kerf width at the top and bottom were measured using an optical microscope from
Graticules Ltd. (Kent, UK) at a 70× magnification, and the acquired images were evaluated
using the ImageJ v1.3 software.

Figure 4a displays the 17 experiments of laser cutting on a PMMA sheet with a
thickness of 5 mm. The effect of the input parameter variations for the minimum and
maximum kerf geometry of the chosen experiments mentioned in Table 3 is depicted in
Figure 4b–e. The term “bulges” in Figure 4b refers to the sputters and materials flow-out
from the cut kerf.
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Table 3. Experimental layout and multi-performance results.

Experiment No. Input Variables
(Coded Values) Output Responses
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#1 45 13 −1 10.916 ± 0.91 0 - 1.924 ± 0.23 3.461
#2 60 10 0 8.400 ± 0.61 3.056 ± 0.22 2.748 0.591 ± 0.12 6.000
#3 50 10 0 10.946 ± 0.88 4.323 ± 0.32 2.531 0.779 ± 0.18 5.000
#4 50 10 0 10.270 ± 0.98 5.710 ± 0.35 1.798 0.490 ± 0.11 5.000
#5 50 10 −2 4.436 ± 0.35 9.653 ± 0.54 0.459 0.574 ± 0.17 5.000
#6 50 10 2 6.696 ± 0.61 6.440 ± 0.78 1.039 0.025 ± 0.03 5.000
#7 55 7 1 10.243 ± 0.75 0 - 1.644 ± 0.29 7.857
#8 55 7 −1 7.600 ± 0.47 3.086 ± 0.33 2.462 0.484 ± 0.12 7.857
#9 45 7 1 8.103 ± 0.58 2.696 ± 0.29 3.004 0.600 ± 0.22 6.428
#10 45 7 −1 9.556 ± 0.79 3.926 ± 0.21 2.433 0.631 ± 0.25 6.428
#11 55 13 −1 7.393 ± 0.54 0 - 0.911 ± 0.11 4.230
#12 50 10 0 13.453 ± 0.1.13 4.890 ± 0.42 2.751 1.152 ± 0.32 5.000
#13 50 16 0 9.953 ± 0.94 0 - 1.541 ± 0.13 3.125
#14 55 13 1 10.023 ± 0.86 5.590 ± 0.56 1.793 0.474 ± 0.28 4.230
#15 40 10 0 6.510 ± 0.66 5.066 ± 0.44 1.284 0.145 ± 0.22 4.000
#16 50 4 0 4.720 ± 0.53 3.506 ± 0.63 1.346 0.121 ± 0.15 12.500
#17 45 13 1 10.910 ± 0.87 0 - 1.921 ± 0.16 3.461
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3. Results and Discussion

In this experiment, the responses measured were the top and bottom kerf width, the
ratio of the upper kerf to lower kerf, and the cut kerf angle. The data obtained from the
experiment were analyzed using an analysis of variance (ANOVA) to identify significant
factors affecting the laser cutting process. The full quadratic polynomial function was
employed in the analysis.

3.1. Top Kerf Width

Table 4 presents the results of the analysis of variance for the top kerf width, which
revealed that the laser’s focal plane position (FPP) has a significant linear and quadratic
effect on the response variable. Additionally, all parameter interactions are significant, as
shown in Figure 5. The regression equation obtained is significant, while the lack of fit is
not significant. A regression equation is considered good if it is significant and the lack of
fit is insignificant. Hence, based on the analysis, the final regression equation in terms of
the coded parameter values can be expressed as Equation (1).

(Top ker f width)1.19 = −182.25 + 7.06 × LP + 4.49 × CS + 0.89 × FPP − 0.07 × LP2 − 0.19 × CS2 − 2.56 × FPP2 (1)

Table 4. Revised analysis of variance of the top kerf width.

Source of Variation Degree of Freedom Sum of Squares Mean Squares F Value p Value

Model 200.63 6 33.44 3.62 0.0357
A-LP 0.071 1 0.071 7.667 × 10−3 0.9320
B-CS 39.06 1 39.06 4.23 0.0669

C-FPP 12.78 1 12.78 1.38 0.2668
AB 60.73 1 60.73 6.57 0.0282
BC 61.93 1 61.93 6.70 0.0270
C2 127.75 1 127.75 13.82 0.0040

Residual 92.43 10 9.24
Lack of Fit 72.00 8 9.00 0.88 0.6318
Pure Error 20.43 2 10.22

Total 293.06 16

R-Sq = % 68.46 R-Sq (adj) = % 49.54

In Figure 6, the response surface plot for the top kerf width is shown with respect to
the input variables. In Figure 6, it can be observed that decreasing the laser focal plane
position (FPP) leads to a decrease in the top kerf width. This indicates that, when the
laser spot point is located deeper in the specimen, the upper kerf width is reduced. On
the other hand, when the focused laser beam is used at the zero level of the FPP, the laser
power spreads over a wider surface area, resulting in more heat energy interacting with the
specimen and increasing the top kerf width. The figure clearly shows that the maximum
top kerf width occurs in the middle (level 0) of the FPP and in the middle level of the
cutting speed. The observation of the laser power and cutting speed can be explained with
the heat input value mentioned in Equation (4) and Table 3, as follows:

Heat input = Laser power/Cutting speed (2)

The increase in laser power and decrease in cutting speed lead to an increase in the
heat input and a wider kerf width due to the larger area of material being melted and, also,
more bulges. It is important to note that in samples NO. 1, 11, 7, and 17 complete cutting
was not achieved, and, therefore, none of the responses could be measured (Table 3). This
can be explained using the heat input concept in Equation (2). In these samples, the laser
power was too low, the cutting speed too high, and the focal plane position was on or
near the top surface, which resulted in insufficient energy from the laser beam for effective
cutting. A comparison of the samples No. 11 and No. 14 indicates that, although the laser
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power and cutting speed were the same, the only difference was the focal plane position. In
sample No. 14, the FPP was located 1 mm below the top surface, while, in sample No. 11,
the FPP was located −1 mm below the top surface (Figure 6).
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Figure 7 depicts the residual plot for the top kerf width, where the normal probability
diagram shows that the response of the top kerf width is randomly scattered around the
diagonal line and follows a normal distribution in comparison to the other responses.
As a result, the final regression model obtained is a suitable model for predicting and
investigating the effects of the parameters in proportion to the other responses. Therefore,
the mathematical equation derived from the model is a desirable tool for predicting and
investigating the effects of the experimental parameters.
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From the residuals plot, it appears that there is a moderate negative correlation
between the heat input and the top kerf width, as the points tend to cluster in a downward-
sloping pattern. To confirm this, the Pearson correlation coefficient was calculated, which
measured the strength and direction of the linear relationship between the two variables.
The Pearson correlation coefficient for these data was −0.589, which indicated a moderate
negative correlation. A simple linear regression analysis to create a mathematical model
that predicts the top kerf width based on the heat input was performed. This indicated that,
as the heat input increased, the top kerf width decreased. During the process of CO2 laser
cutting through a 5 mm thick PMMA sheet, the intense heat generated by the focal point
vaporizes the material, leading to the formation of a plasma plume that is expelled from
the kerf. This technique induces a turbulent flow of gas that can eject some of the molten
material, resulting in irregularities and deformations on the cut edges. Moreover, the high
temperature of the laser generates thermal stress within the material, causing localized
melting and the re-solidification of the PMMA. This phenomenon can lead to the formation
of slight protrusions or bulges around the cut edges of the material’s surface. Consequently,
the formation of bullet-like debris after cutting PMMA is a result of the molten material
being expelled by the gas flow and the localized melting and re-solidification induced by
the laser’s heat. The presence of these bullet pieces can have a significant impact on the
precision and quality of the cut, especially when tight tolerances are necessary.

The expulsion of molten PMMA during laser cutting is a multifaceted phenomenon
intricately linked to various factors. While laser parameters play a pivotal role, the hydro-
dynamic properties of the PMMA melt and the thickness of the sample are equally critical
contributors. The interaction of these elements influences the dynamics of material ejection,
shaping the characteristics of the cut. The hydrodynamic parameters, including viscosity
and flow behavior of the molten PMMA, intricately intertwine with the laser-induced ther-
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mal effects. Furthermore, the thickness of the sample introduces additional complexities,
influencing the distribution and dissipation of heat within the material.

3.2. Bottom Kerf Width

Table 5 displays the results of the analysis of variance (ANOVA) conducted on the
bottom kerf width, revealing that the cutting speed (CS) is the primary significant factor.
The quadratic term of the laser cutting speed (CS2) was found to have a significant effect
among the quadratic terms, and the interaction effect of the laser power and cutting speed
(LP × CS) was also significant. The lack-of-fit test indicated that the analysis performed was
appropriate. The regression equation for the bottom kerf width, based on the significant
parameters using coded values, can be represented using Equation (3).

(Bottom kerf width)0.32 = +13.31 − 0.27 × LP − 0.89 × CS + 0.02 × LP × CS − 0.02 × CS2 (3)

Table 5. Revised analysis of variance of the bottom kerf width.

Source of Variation Degree of Freedom Sum of Squares Mean Squares F Value p Value

Model 4.89 4 1.22 2.98 0.0637
A-LP 4.093 × 10−3 1 4.093 × 10−3 9.966 × 10−3 0.9221
B-CS 1.97 1 1.97 4.79 0.0491
AB 1.30 1 1.30 3.16 0.1007
B2 1.62 1 1.62 3.95 0.0701

Residual 4.93 12 0.41
Lack of Fit 4.92 10 0.49 88.35 0.0112
Pure Error 0.011 2 5.565 × 10−3

Total 9.82 16

R-Sq = % 49.82 R-Sq (adj) = % 33.10

Figure 8 illustrates the response surface analysis for the bottom kerf width as a function
of the input parameters. Figure 8a reveals that the effect of the cutting speed changes
direction based on the focal plane position. Specifically, the impact of the cutting speed
on the bottom kerf width is more pronounced at the minimum level of the FPP than at the
maximum level of the FPP, and vice versa. This phenomenon is attributed to the interaction
effect of these two parameters. Additionally, Figure 8b demonstrates that decreasing the
laser power and increasing the cutting speed leads to a reduction in the bottom kerf width.
This observation can be explained with Equation (3), where a decrease in heat input results
in less material being melted and heated, leading to a narrower kerf width.
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3.3. Ratio of the Upper Kerf to Lower Kerf

Table 6 presents the results of the variance analysis conducted on the ratio of the upper
kerf to the lower kerf. The analysis indicated that the linear parameters of the laser power
(LP) and the laser cutting speed (CS) were significant factors. Furthermore, the quadratic
term of the cutting speed (CS2) and the focal plane position (FPP2) were also determined
to have a significant effect. The final regression equation for the ratio of the upper kerf to
the lower kerf, which considers the significant parameters and coded values, is given with
Equation (4).

(Ratio)0.87 = +13.76 − 0.30 × LP − 0.89 × CS + 0.12 × FPP + 0.03 × LP × CS − 0.06 × CS2 − 0.30 × FPP2 (4)

Table 6. Revised analysis of the variance of the ratio of the top kerf to the bottom kerf.

Source of Variation Degree of Freedom Sum of Squares Mean Squares F Value p Value

Model 3.87 6 0.65 3.75 0.0840
A-LP 1.04 1 1.04 6.03 0.0575
B-CS 1.38 1 1.38 8.04 0.0365

C-FPP 0.16 1 0.16 0.93 0.3787
AB 0.79 1 0.79 4.59 0.0851
B2 1.51 1 1.51 8.76 0.0315
C2 2.06 1 2.06 12.00 0.0180

Residual 0.86 5 0.17
Lack of Fit 0.55 3 0.18 1.21 0.4831
Pure Error 0.31 2 0.15

Total 4.73 11

R-Sq = % 81.84 R-Sq (adj) = % 60.04

Figure 9 displays the response surfaces for the ratio of the upper kerf to the lower kerf.
As shown in Figure 9a, the focal plane position (FPP) has an effect on this response in the
middle position at its maximum value. Moreover, both Figure 9a and 9b demonstrate that
the minimum ratio is observed at the lowest laser power. It is worth noting that the linear
effect of the laser power changes, which can be attributed to the interaction effect of the
laser power and the focal plane position.
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3.4. Cut Kerf Angle

Table 7 summarizes the results of the analysis of variance conducted on the cut kerf
angle. The study revealed that both the linear effect of the laser power (LP) and the cutting
speed (CS) had a significant impact on the response. Moreover, the interaction between
the laser power and the cutting speed was also a significant term. Using the Design
Expert software 12v, a regression equation (Equation (5)) was developed to establish the
relationship between the cut kerf angle and the various process parameters.

Cut kerf angle = −13.72 + 0.27 × LP + 1.49 × CS − 0.02 × LP × CS (5)

Table 7. Revised analysis of variance of the cut kerf angle.

Source of Variation Degree of Freedom Sum of Squares Mean Squares F Value p Value

Model 2.82 3 0.94 4.03 0.0314
A-LP 0.028 1 0.028 0.12 0.7347
B-CS 1.39 1 1.39 5.94 0.0300
AB 1.41 1 1.41 6.03 0.0290

Residual 3.04 13 0.23
Lack of Fit 2.82 11 0.26 2.32 0.3393
Pure Error 0.22 2 0.11

Total 5.86 16

R-Sq = % 48.17 R-Sq (adj) = % 36.21

Figure 10 illustrates the response surface plots for the cut kerf angle based on the
process parameters. Consistent with the ANOVA in Table 6, Figure 10a demonstrates
that the focal plane position (FPP) has a negligible impact on the cut kerf angle, while the
cutting speed has a significant and direct proportional influence. By utilizing the regression
equation (Equation (5)), the behavior of the cutting speed and laser power in Figure 10b can
be explained. The maximum cut kerf angle occurs at the minimum laser power and at the
maximum cutting speed. In this situation, the heat input decreases, as shown in Equation
(5), and less laser energy interacts with the material. Conversely, when the laser power is
high and the cutting speed low, the cut kerf angle decreases. The trend for the correlation
between the laser power and the focal plane position is similar to Figure 10a: the focal
plane position is insignificant, and the laser power in all conditions has a similar effect.
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The correlation between the cut kerf angle and the heat input can be analyzed using
a scatter plot and by calculating the correlation coefficient. The correlation coefficient
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between the cut kerf angle and the heat input is approximately −0.2, indicating a weak
negative correlation. This suggests that, as the heat input increases, the cut kerf angle
decreases slightly.

The surface morphologies before laser cutting significantly influence the kerf quality
in the laser cutting processes. These morphologies impact factors like light absorption,
heat distribution, and material removal, shaping the interaction between the laser beam
and the material. Understanding the initial surface conditions is crucial, affecting the
consistency of the laser–material interaction and the subsequent results. Variations in
surface morphologies, such as roughness or impurities, may lead to heterogeneous energy
absorption during laser cutting, causing non-uniformities in the kerf geometry. Surface
irregularities can also affect heat dissipation and material ejection dynamics.

4. Optimization

The experimental data were analyzed statistically to develop regression equations that
could explain the relationship between the input variables and the responses. The study
utilized the response optimizer option, available within the DOE module of the statistical
software package Design Expert v17, to optimize the input parameter combinations that
yielded the most favorable tradeoff among the different responses. The optimization was
carried out using the desirability function. The criteria for optimization, as outlined in
Table 7, included achieving a minimum top kerf width, a minimum bottom kerf width, a
minimum cut kerf angle, and a ratio of the top kerf width to the bottom kerf width equal to
one.

The optimization process in Table 8 assigned weight and importance values to the
responses, and the optimal input parameter combinations were determined using the
desirability function. The experiments were conducted at the optimal settings to compare
the actual responses with those obtained from the optimization. The results are shown in
Table 9. The errors were low and indicated a good suitability for engineering applications.

Table 8. Constraints and criteria of the input parameters and responses.

Constraints

Parameters/
Responses Name Goal Lower

Limit
Upper
Limit

Lower
Weight

Upper
Weight Importance

Param
e-

ters
A: LP is in range 40 60 1 1 3
B: CS is in range 4 16 1 1 3

C: FPP is in range −2 2 1 1 3

R
esponses

Top Average Width minimize 4.436 13.453 1 1 3
Bottom Average Width minimize 0 9.653 1 1 3

Ratio is target = 1 0.459 3.004 1 1 3
Cut Kerf Angle minimize 0.025 1.924 1 1 3

Table 9. Output responses’ solutions for finding the optimum laser cutting parameters ordered by
desirability.

# LP
(W)

CS
(mm/s)

FPP
(mm) Desirability Top Kerf Width

(mm)
Bottom Kerf Width

(mm) Ratio Cut Kerf Angle
(Degree)

1 50.661 4.000 −1.016 0.896 4.012 2.201 1.000 0.341
2 51.025 4.017 −0.950 0.894 4.269 1.966 1.000 0.400
3 49.966 4.000 −1.155 0.892 3.430 2.751 0.998 0.230

The desirability plots of the input parameters are shown in Figure 11. The desirability
plot for the laser power and the cutting speed showed that the optimal amount, with the
highest desirability value, was 0.892. This indicated that the highest laser power values
were preferred in the process to achieve the desired responses. Similarly, the desirability
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plot for the cutting speed and the focal plane position showed that the optimal range for
the cutting speed was between 4 and 7 mm/s, with the highest desirability values located
at the higher end of this range. This indicated that higher cutting speeds were preferred in
the process to achieve the desired responses. On the other hand, the desirability plot for
the focal plane position showed that the optimal range for the FPP was between −1 and
1 mm, with the highest desirability values located at the center of this range. This indicated
that a neutral or central focal plane position was preferred in the process to achieve the
desired responses.
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and blue color: less desirability).

To investigate the correlation between these input parameters, the overlay plots in
Figure 12 were generated. The overlay plot for the laser power and the cutting speed
showed a weak negative correlation, indicating that higher laser power values are associ-
ated with lower cutting speeds, and vice versa. However, the overlay plot for the FPP and
the laser power showed a significant correlation, indicating that the FPP can be adjusted on
the middle level.



Appl. Sci. 2023, 13, 12601 15 of 17Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 19 
 

 

Figure 12. Overlay plots for the comparison of the correlation among all the input parameters. 

5. Conclusions 

In this study, laser cutting experiments were conducted on a 5 mm thick PMMA sheet 

using a CO2 laser. The input parameters considered were LP, CS, and FPP, while the out-

put responses focused on the dimensions of the kerf geometry. The data obtained from 

the experiments were subjected to a DOE analysis, leading to the following conclusions: 

1. A decrease in the FPP results in a notable reduction in the top kerf width, while an 

increase in the LP and a decrease in the CS contribute to a substantial widening of 

the kerf. 

2. The bottom kerf width is significantly influenced by the quadratic term of the CS2 

and the interaction effect between the CS and the FPP (CS × FPP). 

3. CS, FPP, and the quadratic term of the laser LP2 are identified as significant factors 

affecting the ratio of the upper kerf to the lower kerf. 

4. The cut kerf angle exhibits noteworthy linear effects of the LP and the FPP, accompa-

nied by a significant quadratic effect of the LP2. 

5. Optimal conditions for the LP, CS, and FPP fall within the ranges of 48–60 W, 4–7 

mm/s, and −1 to 1 mm, respectively. 

Author Contributions: All the authors contributed to this study’s conception and design. Material 

preparation, data collection, and analysis were performed by M.A.I., S.H., Z.T., O.R., M.A.M. and 

S.M. The first draft of the manuscript was written by M.R. and all the authors commented on previ-

ous versions of the manuscript. The editing and reviewing of the manuscript was carried out by 

M.M., A.M. and M.K. The conceptualization and administration of this project were performed un-

der the supervision of M.M. and G.C. All authors have read and agreed to the published version of 

the manuscript. 

Figure 12. Overlay plots for the comparison of the correlation among all the input parameters.

5. Conclusions

In this study, laser cutting experiments were conducted on a 5 mm thick PMMA sheet
using a CO2 laser. The input parameters considered were LP, CS, and FPP, while the output
responses focused on the dimensions of the kerf geometry. The data obtained from the
experiments were subjected to a DOE analysis, leading to the following conclusions:

1. A decrease in the FPP results in a notable reduction in the top kerf width, while an
increase in the LP and a decrease in the CS contribute to a substantial widening of
the kerf.

2. The bottom kerf width is significantly influenced by the quadratic term of the CS2 and
the interaction effect between the CS and the FPP (CS × FPP).

3. CS, FPP, and the quadratic term of the laser LP2 are identified as significant factors
affecting the ratio of the upper kerf to the lower kerf.

4. The cut kerf angle exhibits noteworthy linear effects of the LP and the FPP, accompa-
nied by a significant quadratic effect of the LP2.

5. Optimal conditions for the LP, CS, and FPP fall within the ranges of 48–60 W, 4–7 mm/s,
and −1 to 1 mm, respectively.
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