
Citation: Zhang, Y.; Yang, S.; Xu, L.;

Li, X.; Zhao, D. A Malware Detection

Framework Based on Semantic

Information of Behavioral Features.

Appl. Sci. 2023, 13, 12528. https://

doi.org/10.3390/app132212528

Academic Editor: Ugo Vaccaro

Received: 18 October 2023

Revised: 8 November 2023

Accepted: 16 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Malware Detection Framework Based on Semantic
Information of Behavioral Features
Yuxin Zhang 1,2, Shumian Yang 1,2, Lijuan Xu 1,2, Xin Li 1,2 and Dawei Zhao 1,2,*

1 Key Laboratory of Computing Power Network and Information Security, Ministry of Education,
Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology
(Shandong Academy of Sciences), Jinan 250014, China; 10431210661@stu.qlu.edu.cn (Y.Z.);
yangshm@sdas.org (S.Y.); xulj@sdas.org (L.X.); lixin@sdas.org (X.L.)

2 Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for
Computer Science, Jinan 250014, China

* Correspondence: zhaodw@sdas.org

Abstract: As the amount of malware has grown rapidly in recent years, it has become the most
dominant attack method in network security. Learning execution behavior, especially Application
Programming Interface (API) call sequences, has been shown to be effective for malware detection.
However, it is troublesome in practice to adequate mining of API call features. Among the current
research methods, most of them only analyze single features or inadequately analyze the features,
ignoring the analysis of structural and semantic features, which results in information loss and thus
affects the accuracy. In order to deal with the problems mentioned above, we propose a novel method
of malware detection based on semantic information of behavioral features. First, we preprocess
the sequence of API function calls to reduce redundant information. Then, we obtain a vectorized
representation of the API call sequence by word embedding model, and encode the API call name by
analyzing it to characterize the API name’s semantic structure information and statistical information.
Finally, a malware detector consisting of CNN and bidirectional GRU, which can better understand
the local and global features between API calls, is used for detection. We evaluate the proposed model
in a publicly available dataset provided by a third party. The experimental results show that the
proposed method outperforms the baseline method. With this combined neural network architecture,
our proposed model attains detection accuracy of 0.9828 and an F1-Score of 0.9827.

Keywords: network security; dynamic analysis; API sequences; deep learning; malware detection

1. Introduction

A boom in computers and Internet technology has given rise to a growing amount of
malware being developed. According to AV-TEST statistics (https://portal.av-atlas.org,
accessed on 11 January 2022), over 120 million new malware samples were identified
in 2021, a 36.5% surge from the previous year. As of 2022, the total amount of malware
had reached a billion, and the quantity of new malware was growing and accelerating
year by year, which made the network security situation more and more severe. In today’s
era, the construction of new infrastructure, such as artificial intelligence, 5G networks,
and industrial Internet, has gradually become a hot spot for innovation (Zhao et al. [1];
Xu et al. [2]). Therefore, malware detection, especially for new variants that emerge, is
essential in system and network security to prevent further threats to users (Han et al. [3],
Korczynski et al. [4]; Xu et al. [5]).

The mainstream approach to detecting malware is divided into two main categories:
static analysis, which analyzes the program directly, and dynamic analysis, which requires
running the program before starting the analysis (Cesare et al. [6]; Galal et al. [7]). Static
analysis methods usually refer to identifying malicious samples by examining the architec-
ture or bytecode files of the program without running them (Ijaz et al. [8]; Zhao et al. [9]).

Appl. Sci. 2023, 13, 12528. https://doi.org/10.3390/app132212528 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132212528
https://doi.org/10.3390/app132212528
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1812-1316
https://portal.av-atlas.org
https://doi.org/10.3390/app132212528
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132212528?type=check_update&version=1

Appl. Sci. 2023, 13, 12528 2 of 19

Normally, static analysis requires tools like IDA Pro and Stud_PE to extract static features,
such as byte or opcode sequences, string information, etc. The characteristics obtained
by static analysis can be compared with existing signatures saved in the database with
malicious intent (Moser et al. [10]; Ye et al. [11]) or by machine learning models. However,
those approaches can easily bypass fuzzing techniques (Burnap et al. [12]; Ucci et al. [13])
and are susceptible to interference in packing and deformation, leading to a decrease in
accuracy. In addition, pattern matching methods can effectively and accurately detect
known malware. However, they require a lot of manual experience for sample analysis and
rule extraction, and require continuous updating of the signature database, which greatly
limits the ability to detect new malware.

An approach to dynamic analysis uses data on the behavior of malware throughout
its execution to address the shortcomings of static analysis. Dynamic analysis methods
obtain behavior characteristics like file, network, registry, and process activities by running
examples in a secure virtual environment known as a sandbox, which can capture some
attributes that reflect behavioral intent. Those approaches can be used to identify similarities
in the dynamic behavior of undiscovered malware (Bazrafshan et al. [14]). Therefore, it
enables unknown malware detection, which is a capability that signature based approaches
lack. Several studies (Cesare et al. [15]; Egele et al. [16]; Ki et al. [17]) have demonstrated
in recent years that dynamic analysis can provide greater insight into how malware is
generated and implemented than static analysis (Pektaş et al. [18]; Palumbo et al. [19]), and
to a certain extent, can provide more reliable detection performance and is more resilient.

Behavioral features, especially Application Programming Interface (API) call se-
quences, can hold relevant information about programs and behaviors, because it of-
fers access information to the primary resources in the kernel system. A large number
of researchers have extracted patterns in API call sequences for malware detection and
classification. Some research attempts to identify malware by association rule mining
(Galal et al. [7]; Ding et al. [20]; Miao et al. [21]). However, with the growing quantity of
malware and the emergence of new types of malware in recent eras (Shalaginov et al. [22];
Xu et al. [23]), the traditional approach to high-volume malware detection consumes a
lot of human and computing resources and limits detection efficiency. Thus, more and
more researchers are focusing on Machine Learning and Deep Learning. Some studies,
for instance, have extracted characteristics from sequences of API calls and used Machine
Learning algorithms that include Random Forests, K-Nearest Neighbors, and Support
Vector Machines (Tran et al. [24]; Kim et al. [25]; Salehi et al. [26]), and Deep Learning
algorithms, like Convolutional Neural Networks (Huang et al. [27]; Pascanu et al. [28];
Zhang et al. [29]) for malware detection. Deep learning algorithms have the advantage of
being faster and more accurate than Machine Learning methods in automatically extracting
malware features for detection, dramatically improving detection efficiency and increasing
detection accuracy while promoting the development of malware detection technology.
Moreover, inspired by the Natural Language Processing (NLP) techniques, which are also
applied to detect malware (Kang et al. [30]; Amer et al. [31]; Wang et al. [32]), programs can
be understood by the sequence of API calls representing the context of the calling program.
Although there are many studies based on natural language processing, there are still some
problems. For example, most studies only analyze semantic information and ignore the
analysis of structural and statistical features.

In this paper, we propose an approach to detect malware with natural language
processing and behavioral features, which uses word embedding techniques and feature
weighting to learn the the characteristic patterns of API calls in malware. The API sequence
feature that describes the context relationship between consecutive API calls and the name
feature modeled according to the API name semantic structure information and statistical
features. We implement the approach with a deep neural network, namely CNNs-BiGRU.
Results illustrate that our proposed work better than other machine learning and deep
learning models, achieving an accuracy of 0.9828 and an F1-Score of 0.9827 on the test set.

In summary, the following contributions are given in this paper.

Appl. Sci. 2023, 13, 12528 3 of 19

• We propose an approach to malware detection that is based on natural language
processing and behavioral features, which can achieve high accuracy just by analyzing
API call sequences;

• We design a feature vectorization representation method based on the Skip-Gram
algorithm for better learning of contextual behavior information. We demonstrate the
results of the experiments and validate the experimental effect of the feature method
for word vector representation;

• We design a method that combines API calls’ semantic information and statisti-
cal characteristics. Numerous experiments verify the effectiveness of the approach
we propose;

• We propose a CNNs-BiGRU based deep learning approach to implement malware
detection and evaluate it. The results demonstrate that our model superior to other
malware detection models.

The rest of this article is organized as follows: Existing research works related to
malware detection is discussed in Section 2. Section 3 delineates the proposed approach.
Section 4 gives the datasets and the obtained empirical results. Section 5 concludes this
article and analyzes the limitations of this framework and future work.

2. Related Work

This section discusses studies of malware detection techniques based on static, dy-
namic, and natural language processing and deep learning-based techniques. The summary
of malware detection systems are included in Table 1.

2.1. Static Analysis

The static analysis method has the advantages of high detection security, fast detec-
tion, and low detection overhead, because no samples are executed, but it is sensitive to
obfuscation techniques.

Moskovitch et al. [33] proposed a malicious code classification methodology on the
basis of opcode sequences, using N-gram sequences with different dimensions, 1-g, 2-g, ...
and 6-g, to construct feature sets. Using different methods, document frequency, informa-
tion gain and Fisher Score, they finally determined that the 2-g-based opcode sequences
obtain better classification performance. This method solved the problem of low accuracy
when the data were unbalanced. Shabtai et al. [34] focused on a detection method based
on extracting static feature of malicious codes, then classified them by a machine learning
model, achieved high accuracy while keeping a low false positive rate. The method ex-
tracted the instruction layer and byte-level features of malicious codes through the N-grams
algorithm, trained them with multiple classifiers. An active learning mechanism, as well
as a weighting algorithm, were used for the classification results of these classifiers to
retain a high detection accuracy. However, this method was the result of combining several
simple machine learning classification models, and the accuracy of detection needed to be
improved. Chai et al. [35] proposed a dynamic prototype network (DPNSA) that can learn
adaptively based on samples to detect malware. The method took images from fixed-size
malware binaries and used them as input to the embedding module. Then, introduced the
dynamic convolutional neural network, which employed the SE module in the convolution.
They proposed a new activation function based on the dynamic activation function, i.e.,
the dual-sample dynamic activation. The distance between malware and query samples
was calculated using a metric approach to achieve malware detection. Sami et al. [36] intro-
duced data mining into malware detection. The method analyzed and extracted the API
calls of PE files, then selected the most distinguishing API calls by Fisher score to improve
the classification accuracy. Random forest was used for classification, which achieved an
accuracy of 0.983. Although the method achieved good performance in an unbalanced
dataset, handling unreachable code and fake API calls needed further improvement.

Appl. Sci. 2023, 13, 12528 4 of 19

2.2. Dynamic Analysis

The dynamic analysis approach entails running the test program in a secure simulation
environment as a way to capture the behavior of the program’s execution. Activities like
registry, API call, and network communications are examined to identify if the program
is malicious.

Christodorescu et al. [37] used a data mining algorithm to capture the difference
between malicious and benign programs from the dependency graph. This method was
able to detect the obfuscated malware, but it was time consuming. Tobiyama et al. [38] used
Long Short Term Memory (LSTM) to construct a behavioral model to transform APIs into
feature vectors and generate feature images and then used Convolutional Neural Network
(CNN) to perform malware detection. It was observed that API call sequences could cause
performance loss if they were too long. However, the dataset used in this method is too
small, and the model tends to be overfitted. Ndibanje et al. [39] dynamically obtained API
calls in a virtual environment and performed similarity calculations on API sequences to
distinguish different malware with similar behavioral contexts. Zhang et al. [40] obtained
API-Graph to characterize the internal relations among entities by constructing API re-
lationship diagrams. Then, they transformed the API in the relationship graph into the
embeddings of Random Forests, Support Vector Machine (SVM), and Deep Neural Net-
works (DNNs), so that the semantic feature similarity was preserved even if the malware
evolves. Rosenberg et al. [41] separated the original API sequence into several subsequences
and used Recurrent Neural Network (RNN) to detect each subsequence separately. The
whole sequence would be identified as malicious whenever a subsequence was marked as
malicious. Zhang et al. [29] extracted features from API names and runtime parameters,
used a hashing method to encode API names, categories, and parameters separately, and
set different dimension sizes based on the feature characteristics. Then, these characteristics
were further connected and fed into the CNN model and applied Bi-LSTM to capture the
connections between APIs. The results showed that the method achieved an accuracy of
over 0.96 with an AUC of 0.99, which is higher than other similar methods. Chen et al. [42]
suggested a DNN-based detection of malware for learning parameter-enhanced API calls.
For part of the API, a set of empirical rules containing four categories totaling more than
100 were constructed manually, together with statistical rules to identify if the parameter is
malicious. Different categories were classified based on the GSDMM clustering algorithm
for the rest of the calls to obtain their sensitivity labels.

2.3. Natural Language Processing and Deep Learning for Malware Detection

Recently, many studies have combined natural language processing with deep learning
to apply it to feature processing of malicious code, using word embedding to vectorize
the features.

David et al. [43] implemented malware classification by using deep belief networks
(DBN) through a deep stack of denoising autoencoders. The sandbox-generated log files
were transformed into fixed-size strings using the most common method in natural lan-
guage processing, the 1-g approach. The commonly used 20,000 words were extracted to
form a dictionary, and then a binary vector was produced by checking which of these words
existed for each text sample. Arzu et al. [44] designed a framework that used a weighted
random walk method to obtain a sequence of opcodes and performed feature learning on
the opcode graph. After that, a vectorized representation was performed using Word2Vec.
By applying the random walk method for edge and node selection to avoid handling
lengthy operation code sequences, a vector space consisting of low-dimensional sequen-
tial opcode embeddings was constructed with extremely high accuracy. Kang et al. [30]
employed an LSTM-based word embedding method, combining the strengths of signature-
based and heuristic approaches, to analyze opcode and API names in fewer dimensions
and to made an evaluation of malware detection and differentiation. Experimental results
show that the time for learning was about 10 min faster and the performance was improved
by about 0.5% compared to the One-Hot encoding method when Word2Vec was used.

Appl. Sci. 2023, 13, 12528 5 of 19

Liu et al. [45] considered that consecutive repetitive API calls were unnecessary, so the
same APIs that appeared more than twice in a row in the collected API sequences were
culled, and the API sequences were sorted according to the process call time to extract the
valid API sequences. Then, each API call is transformed into a unique binary vector using
Word2Vec, and here they set the vector length to 50. Finally, by comparing the detection
accuracy of GRU, BGRU, LSTM, BLSTM, and SimpleRNN, the highest accuracy of malware
detection is determined by using BLSTM neural network. Amer and Zelinka [31] used a
Markov chain approach to the detection of malware. The semantic similarity of each API
in benign and malicious software was calculated in the initialization phase, and the APIs
were clustered using K-means. After setting the API to its cluster index, a sequence of
transfer matrices was constructed. They determined whether the sequence was malicious
by calculating the API sequence’s transfer probability. Wang et al. [32] presented a SIMPLE
model to identify novel malware families with limited samples, which significantly solved
the problems of sample scarcity and dynamic identification. They took the original API
sequence using N-gram to enhance the local feature representation, and word embedding
was applied to initialize the embedding matrix.

Table 1. Summary of malware detection systems.

Paper Year Analysis Type Feature Info Method

Moskovitch et al. [33] 2008 Static N-grams ML
Shabtai et al. [34] 2009 Static N-gram ML
Sami et al. [36] 2010 Static frequency characteristic ML
Kang et al. [30] 2019 Static semantic information DL
Chai et al. [35] 2022 Static malware images DL
Arzu et al. [44] 2022 Static semantic information DL
Christodorescu et al. [37] 2007 Dynamic dependency graph Data Mining
David et al. [43] 2015 Dynamic 1-g DL
Tobiyama et al. [38] 2016 Dynamic relationship between API calls DL
Kolosnjaji et al. [46] 2016 Dynamic One-Hot DL
Rosenberg et al. [41] 2018 Dynamic frequency characteristic DL
Ndibanje et al. [39] 2019 Dynamic statistical information ML
Liu et al. [45] 2019 Dynamic semantic information DL
Amer and Zelinka [31] 2020 Dynamic Markov DL
Zhang et al. [40] 2020 Dynamic API-Graph DL
Wang et al. [32] 2021 Dynamic semantic information DL
Zhang et al. [29] 2020 Dynamic hash encoding DL
Catak et al. [47] 2020 Dynamic relationship between API calls DL
Chen et al. [42] 2022 Dynamic semantic clustering DL
Li et al. [48] 2022 Dynamic intrinsic features DL

It is known from previous work that word vectors generated by malware can be
used for malware detection, thus providing crucial insights for malware analysis. As
far as we know, most deep learning-based malware detection methods work with static
features, and only a few studies consider dynamic features. Moreover, most existing
dynamic analysis methods only analyze a single feature or analyze the feature insufficiently,
resulting in information loss and affecting accuracy. Therefore, our approach exploits
CNNs using dynamic features to discover malware. Experimental findings demonstrate
that the proposed detection method based on CNNs-BiGRU can efficiently detect malware.

3. Methodology

API calls usually describe the semantic execution of a program. The program’s
behavior can be described by analyzing the relationships between API calls and determining
whether a file is malicious. Therefore, in this article, we represent the semantics of the
procedure on the basis of API calls. In this section, a description of the working principle
of our proposed malware detection method is presented. The system we propose is
shown in Figure 1 and has three phases: data preprocessing phase, feature extraction

Appl. Sci. 2023, 13, 12528 6 of 19

and generation phase, and model detection phase. We shall describe these phases in the
following subsections in detail.

Figure 1. Overview of proposed model.

3.1. Data Preprocessing

Firstly, extract API call sequences from the datasets. After obtaining the API sequences, we
find that there are many consecutive repetitive APIs, because a program usually calls some of
the same APIs repeatedly when performing some loops or some file-related work. To improve
performance, we remove those same call subsequences, which are considered redundant, and
only keep those most distinguishing features. Since the convolutional neural network needs to
guarantee that the input matrix has the same dimensionality while the length of API sequences
in every sample are different, API sequences are treated uniformly for all samples. Here, the
API sequence length is set to a fixed length, the APIs exceeding this length are truncated, and
those with insufficient length are complemented by ‘0’.

3.2. Feature Extraction and Generation
3.2.1. Sequence-Based Embedding

Word embedding [49] is the representation of a word in an n-dimensional vector space.
Within the context of malware detection, the sequence of calls to API in malware is not
arbitrarily present. It reflects some contextual pattern of malicious activity. These patterns
have similar manifestations across different malware. We can identify the contextual
relationships among API function sequences by learning these patterns from a mount of
malicious sequences.

Since the possible contextual relationships between API calls cannot be captured by
statistical methods alone, inspired by word embeddings used in NLP, we initialize the
embedding matrix with pre-trained word embeddings rather than random initialization
to give semantic meaning to the word vectors. There are various models used in Word
Embeddings, one of them is the Word2Vec model, which represents words as vectors based
on several features they have, such as window size and vector size. Word2Vec captures
the similarity values between words from the training of a large corpus. The resulting
similarity values are computed from the word vector values then using the cosine similarity
formula. Thus, similar words tend to have the same vector values and are grouped into
the same block. Word2Vec is considered to be one of the most commonly used forms of
word embeddings (Rezaeinia et al. [50]; Alami et al. [51]; Martinčić-Ipšićet al. [52]), which
contains both CBOW and Skip-Gram models. The core idea of the CBOW model is to use

Appl. Sci. 2023, 13, 12528 7 of 19

the context before and after a keyword to predict the probability of the occurrence of that
keyword, as shown in Equation (1). Skip-Gram model is just the opposite; it is the use of a
keyword to predict the probability of the words that appear before and after the keyword,
and the model’s target formula is shown in Equation (2). Unlike the CBOW model, the
Skip-Gram will output multiple probability distributions from the hidden layer to the
output layer.

P(ωc|ωo1 , . . . , ωo2m) =
exp

(
1

2m u>c (νo1 + . . . + νo2m)
)

∑i∈ν exp
(

1
2m u>i (νo1 + . . . + νo2m)

) (1)

P(ωo|ωc) =
exp

(
u>o νc

)
∑i∈ν exp

(
u>i νc

) (2)

where ωo, ωc represent context words and center words, respectively, and uo, νc repre-
sent context word vectors and center vectors. Here, the window size is m and V is the
whole lexicon.

In this paper, we use the Skip-Gram model (as shown in Figure 2), a shallow single-
layer neural network, to capture the connection of hidden contexts between features and to
efficiently model API sequence patterns. In this study, the pre-processed API call sequences
are used as a corpus for training, which is trained by predicting the C words of the word’s
context by the target word to obtain the encoding of all APIs.

First, each API call is vectorized using the One-Hot algorithm, and each vector’s length
V is the amount of unique APIs counted. Row number of the element corresponding to
the index position of a word in the vocabulary is 1, and other elements are 0. Then, word
embedding is performed. According to the index mapping, each word is mapped to the
N-dimensional space so that all words can be mapped to the matrix W ∈ RV×N , where
every column in the matrix matches a word. Finally, the output is multiplied with the
weight matrix W ′ ∈ RN×V , to acquire a probability distribution. The ultimate goal of model
training is to obtain a weight matrix W, in which each row represents a lower dimensional
vector of different APIs. In this way, the sequence r in which each API is expressed as
a lower dimensional vector Φ(Vi). And for out-of-vocabulary (OOV) words, we use ‘0’
as padding.

Figure 2. Word embedding model based on API sequence.

3.2.2. Name-Based Embedding

Since operating system developers usually adopt a semantic based naming approach
for APIs (Hart et al. [53]), each API name string contains certain semantic information. In
this chapter, an encoding method for feature representation on the basis of API names
is defined.

An efficient way to describe the semantic information of API names was presented by
Li et al. [48], who designed an ‘action’ dictionary to extract its operations from each call, and

Appl. Sci. 2023, 13, 12528 8 of 19

the remaining part after extraction is used as the ‘object’ of its operations. We improve this by
redescribing the API based on the feature representation of Li. Each API name consists of mul-
tiple words, and we extract from the API name the string that reflects the API operation and the
object of the operation. The cuckoo sandbox
(https://github.com/cuckoosandbox/cuckoo/wiki/Hooked-APIs-and-Categories, accessed
on 11 January 2022) tracks a total of 312 API calls belonging to 17 categories. We obtain their
categories based on the API classification criteria offered by the cuckoo sandbox, and divide
the API calls into 18 categories, as shown in Equation (3). In this way, the action, object, and
category for each API name are sequentially arranged to form a sequence, which is used as
input to generate API name features with the same idea as API sequence embedding. Thus,
the name embedding will be closed for APIs that exhibit related behaviors in the sequence.

categoryi ∈ { ‘noti f ication’, ‘certi f icate’, ‘crypto’, ‘exception’, ‘ f ile’, ‘iexplore’, ‘misc’,

‘netapi’, ‘network’, ‘ole’, ‘process’, ‘registry’, ‘resource’, ‘services’,

‘synchronisation’, ‘system’, ‘ui’, ‘other’}
(3)

TF-IDF, a statistical method, is a weighting technique frequently employed in text
mining and information retrieval to estimate the significance of a word for documents in
a corpus. If a word or phrase frequently appears in one document and seldom in others,
it is deemed to possess excellent category differentiation ability and is appropriate for
classification. We also analyze the TF-IDF values of each API, as shown in Equation (4), to
incorporate statistical characteristics into the name embeddings.

TF− IDF = TF× IDF =
ni,j

∑k nk,j
× log

|D|∣∣j : ti ∈ dj
∣∣ (4)

where ni,j represents the occurrences of the word in document dj, nk,j represents the overall
number of occurrences of all words in document dj. D refers to the overall count of
documents included in the corpus, and j is the count of documents that contain the word.

We combine the word vectors of API name features obtained from the word embedding
model with their statistical features, and they provide a vectorized representation of
API names. Finally, we link the sequence-based embedding long with the name-based
embedding into a complete embedding, which is illustrated in Figure 3. In this way, the
embeddings generated for sequence-related APIs or name-related APIs are close, which
enables the CNNs-BiGRU model to perceive the feature information of the APIs.

Figure 3. API embedded module.

3.3. CNNs-BiGRU Model

We apply the CNNs-BiGRU model to build a malware detection model, which includes
a deep learning architecture consisting of convolutional layers with multiple convolutional

https://github.com/cuckoosandbox/cuckoo/wiki/Hooked-APIs-and-Categories

Appl. Sci. 2023, 13, 12528 9 of 19

kernels of different sizes and bidirectional GRUs. Figure 4 shows a detailed description of
the CNN-BiGRU layers used for malware detection.

Figure 4. CNNs-BiGRU model architecture.

Input layer: This layer has malware or benign software samples for training and
testing, it consists of a sample set of datasets with length varying between 0 and L as input.
We select 80% of the dataset as training set in a randomized manner and keep the remaining
20% as test set with a data size of 20,000. The preprocessing block is a part of the input
layer, where the length of the sequence of all the samples is uniformly processed. Here,
it is set to a fixed length of 1000 to improve performance and reduce training time while
maximizing the inclusion of useful data.

Embedding layer: The embedding layer converts each call in the API sequence into
a vector representation. We determine the embedding vectors based on the word vector
model with semantic information of the API sequence and the feature vector model consist-
ing of API name features processed into the Skip-Gram model in Section 3.2. The output
dimensions of the embedded layers are 200 and 10 to represent API calls of malware or
benign files, respectively.

Convolution 1D layer: The convolution layer is the main building block of the CNN.
We use multiple convolution kernels of different scales in parallel. Multi-layer convolution
applies several convolution layers with different filter sizes to extract API calls of different
lengths, where different lengths of sequences represent different granularity of behavioral
features. The API sequence module sets up three parallel convolution layers with filter
sizes of 3, 4, and 5, respectively, and the API name module applies an embedding layer and
a convolution layer with filter size 4. The API name module applies an embedding layer
and a convolutional layer with a filter size of 4. “Relu” is used as the activation function of
the layer.

Bidirectional GRU layer: after concatenating all the outputs of the convolutional layer,
the BiGRU module is applied to process the data in both the forward and reverse directions
to capture the relationship between the API calls.

A gated recurrent neural network is a simplified and improved neural network for
LSTM (Tang et al. [54]). For the gated recurrent unit, in order to reduce the parameters and
tensor of the model and improve the information processing efficiency, the gated recurrent
unit will replace the three gating units of the LSTM with the Reset gate (rt) and the Update
gate (zt); thus, it is more concise and efficient than LSTM. The gates are formalized as
Formulas (5) and (6). The GRU unit is shown in Figure 5.

Appl. Sci. 2023, 13, 12528 10 of 19

The GRU obtains the information of the two gates through a current input xt and the
hidden state ht−1 passed down from the previous node.

Reset gate : rt = σ(Wr · [ht−1, xt]) (5)

Update gate : zt = σ(Wz · [ht−1, xt]) (6)

After the GRU model obtains the gating information, it needs to splice the reset data
and the input xi, and then use the tanh function to complete the activation task, so that the
output from the hidden node can be obtained. The formula is shown in Equation (7).

h̃t = tanh(W · [rtht−1, xt]) (7)

Finally, in the “update” stage, the expression is shown in Equation (8).

ht = (1− zt)ht−1 + zt h̃t (8)

In the above formulas, Wr, Wz, W represent the corresponding weight matrix.

Figure 5. Gated Recurrent Unit (GRU).

The bidirectional GRU consists of two GRUs for processing sequential data. One of
the GRU receives input sequence forward and the other receives backward, so that the
bidirectional GRU is able to have the previous and future features in the sequence data
learned. Bidirectional GRUs can be applied to data sequences to solve problems related to
natural language processing. The advantage of the bidirectional model is that they produce
greater accuracy while reducing the quantity of parameters necessary to train the model.
The BiGRU network has fewer parameters than the Bi-LSTM, and the computation process
is relatively simple and takes less time.

Dense layer: By using a dense connected layer, the features are further downscaled
to 64 and 32 dimensions sequentially. The dense layer considers all the values in the
bi-directional GRU output, applies the “Relu” activation function, and generates the output.
We further use a dropout layer for regularization purposes.

Dropout layer: The dropout layer reduces the overfitting of the model to the training
data by randomly deactivating some neurons with a certain probability. And, it makes
the network more robust by forcing the model not to depend on specific neurons. We use
multiple dropout layers in the proposed model to reduce the overfitting problem. Each
dropout layer drops 20% (0.2) of the output of the previous layer.

The last dense layer of the activation function of the proposed model is adapted
according to the classification of the expected results of the model. For malware detection,

Appl. Sci. 2023, 13, 12528 11 of 19

the Sigmoid function is used and the output dimension 2 is chosen to predict whether a
given file is malware or not.

4. Dataset and Evaluation Methods

Throughout this section, a description of the dataset and experimental setup employed
in the experiment are given, and the results of our experiments are presented. We also
show the comparison results with baseline models and the ablation studies to verify that
each part of our method is effective in improving detection.

4.1. Experimental Design
4.1.1. Dataset

To verify our approach, we use a dataset generated through Sandbox and openly avail-
able in Github (https://github.com/kericwy1337/Datacon2019-Malicious-Code-DataSet-
Stage1, accessed on 11 January 2022) provided by a third party. It contains execution traces
of PE files with 20K entries in total. Among them, 10K are from malicious Windows PE
files and the rest are benign. Figure 6 displays a snippet extracted from the XML file output
generated after subjecting an executable (exe) file to the sandbox environment.

Figure 6. Example sample snippet.

Figure 7 shows the distribution of the extracted API sequence length for each file. The
API sequence length of approximately 60% of all files was less than 1000, and the other
lengths are scattered over a wide range and memory overflow occurs during training as
the API sequence length increases. Therefore, in this study, the maximum length of API
sequences was limited to 1000.

Figure 7. Distribution of API sequence lengths extracted from each file.

https://github.com/kericwy1337/Datacon2019-Malicious-Code-DataSet-Stage1
https://github.com/kericwy1337/Datacon2019-Malicious-Code-DataSet-Stage1

Appl. Sci. 2023, 13, 12528 12 of 19

4.1.2. Experimental Setup

The proposed model is on a system with Intel Core i5-10210U. The experimental
program is written in Python language and uses PyTorch 1.10.0 as the backend. The hyper-
parameters in experiments are listed in Table 2. The experiment batch is to 64, and the
training period is 80.

Table 2. Hyper-parameters in experiments.

Hyper-Parameter Value

Window sizes in Skip-Gram model 5
The minimum count in Skip-Gram model 3
Units of embedding layer in Sequence-based model 200
Units of embedding layer in Name-based model 10
Activation function of convolution layers Relu
Bi-GRU layer 1
Units of Bi-GRU layer 100
Units of the first dense layer 64
Units of the second dense layer 32
Activation function of dense layers Relu
Dropout Ratio 0.2
Learning rate 10−3

Table 3 shows the accuracy and F1-Score of detection with different embedding models
and embedding vector size settings. We performed a comparison of multiple word embed-
ding models with embedding vector sizes set to 100, 128, and 200, respectively. From the
tabular data, it can be seen in the table that the accuracy of detection using the Skip-Gram
model is always higher than the accuracy obtained with the CBOW model. In addition, the
highest accuracy and F1-Score are obtained when the embedding vector size is set to 128.

Table 3. Various architectures’ performance comparison based on the embedding model.

Embedding Model Embedding Vector Size Accuracy Precision Recall F1-Score

CBOW
100 0.9770 0.9793 0.9743 0.9780
128 0.9720 0.9724 0.9715 0.9719
200 0.9715 0.9709 0.9719 0.9714

Skip-Gram
100 0.9775 0.9843 0.9706 0.9773
128 0.9828 0.9870 0.9789 0.9827
200 0.9755 0.9827 0.9680 0.9754

4.2. Evaluation Metrics

In our experiments, we select 80% data from the dataset for training, while keeping the
remaining 20% for testing. We assess the performance of our proposed model depending
on the following metrics, including accuracy, precision, recall, F1-Score, and Receiver
Operating Characteristic (ROC) curves. The assessment indicators are calculated as shown
in Equations (9)–(12).

Accuracy=
TP+TN

TP+FP + TN+FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1− Score =
2× Precision× Recall

Precision + Recall
(12)

Appl. Sci. 2023, 13, 12528 13 of 19

4.3. Experimental Results
4.3.1. Comparison with Baselines

We assess the performance of three traditional Machine Learning algorithms, which
are Naïve Bayes (NB), K-Nearest Neighbors (KNN), and Decision Tree (DT), and three
Deep Learning models, which include BiLSTM, Text-CNN, and BiGRU. All algorithms
measure results using accuracy, precision, recall, and F1-Score metrics.

As shown in Table 4, the performance of deep learning models is generally superior to
that of the machine learning model, indicating that the features of API sequences cannot be
fully exploited based on frequency features alone. The accuracy of the model proposed
in this paper, namely CNNs-BiGRU, is 0.9828, precision is 0.9870, recall is 0.9789, and
F1-Score is 0.9827 on the test dataset, which is the best performance among all models of
machine learning and deep learning. This indicates multiple CNN networks can extract
local features at different scales, local and higher-order features of the call can be better
captured, and BiGRU models can use contextual information more effectively to increase
the detection performance on the model.

Table 4. Comparison with baseline models.

Accuracy Precision Recall F1-Score

NB 0.8198 0.8518 0.7768 0.8126
KNN 0.9175 0.9556 0.8767 0.9145
DT 0.9178 0.9184 0.9180 0.9182
Text-CNN 0.9443 0.9587 0.9298 0.9440
BiLSTM 0.9743 0.9766 0.9723 0.9758
CNNs-BiGRU 0.9828 0.9870 0.9789 0.9827

Figure 8 plots the ROC curves [55] of various approaches over the test dataset, which
represents the false positive rate (FPR) on the x-axis and the true positive rate (TPR) on
the y-axis. Area under ROC curve is defined as AUC; the larger its value, the better the
classifier works. It can be observed that our model obtains the best AUC score among all
the baseline models of the test dataset, and the proposed model obtains a high TPR even
with a low FPR.

Figure 8. Comparisons of ROC curves of different models.

4.3.2. Ablation Studies

The proposed model is made up of several components that can be flexibly tuned, such
as feature processing, CNNs, and BiGRU. To explore the effects of different configurations,
we conduct several groups of comparative experiments by fixing other structures and

Appl. Sci. 2023, 13, 12528 14 of 19

changing only the test components. The results of these experiments are the foundation for
determining the structure of the final model.

• Feature processing: a set of experiments is used to verify the detection effectiveness
of various feature processing methods, networks only the contextual semantic infor-
mation about the sequence of API calls, networks only the semantic structure for the
names of API calls and statistical features, and networks with both.

• CNNs: by a set of experiments to observe the model effects of API sequences of
different lengths, two convolutional layers with the first filter stride of 3 and the
second filter stride of 5; three convolutional layers with kernel strides of 3, 4, and 5;
three convolutional layers with kernel strides of 3, 5, and 7; and four convolutional
layers with kernel strides of 3, 4, 5, and 6.

• BiGRU: a set of experiments are to understand the impact of the pact of the BiGRU
layer, the model has no BiGRU, only one unidirectional GRU, and BiGRU.

As shown in Figure 9, the absence of any part causes the model’s performance to
degrade, indicating that each feature we deal with has a will impact on our test model.
The model that combines both features achieves the highest performance, especially with
respect to accuracy and F1-Score, significantly better than the other two sets of experiments.
It is significant to note that the module lacking information regarding the semantics of
the API sequence obtained the worst performance, indicating the importance of semantic
information about API call context.

Figure 9. Comparison analysis of accuracy, precision, recall, and F1-Score of processing methods.

For the application of the number of convolutional layers, Figure 10 illustrates the
performance for each configuration. The convergence is slower and the final performance
is poorer when the convolutional layer size is 2. The model performance is higher when
the number of convolutional layers is 3 than when it is 2. Among them, the patterns with
filter sizes of 3, 4, and 5 have higher performance than those with filter sizes of 3, 5, and 7.
In addition, the performance does not bring improvement as the convolution layer count
grows from 3 to 4. Therefore, we chose a three-layer convolutional layer structure in our
model with applied filter sizes of 3, 4, and 5.

Appl. Sci. 2023, 13, 12528 15 of 19

Figure 10. Comparison analysis of accuracy, precision, recall, and F1-Score of the number of convolu-
tional layers.

Figure 11 illustrates a comparison of various numbers of GRUs. It is clear that BiGRU
model has significantly better accuracy, recall, and F1-Score than the other two models,
which indicates the importance of BiGRU for this detection model. It is noticeable that
as the quantity of GRUs grows, the convergence of the model gradually accelerates and
the performance improves, reflecting that learning the contextual relationship of API calls
helps improve the model’s performance.

Figure 11. Comparative analysis of accuracy, precision, recall, and F1-Score of BiGRU model.

Appl. Sci. 2023, 13, 12528 16 of 19

4.3.3. Model Evaluation

We compare the performance of the algorithms in this experiment with the perfor-
mance of other state-of-the-art malware detection methods in the existing literature to better
evaluate the method proposed in this work. Kolosnjaji et al. [46] built a detection model
based on a sequence of system calls, transferring the deep learning over. A unique binary
vector was encoded for each API from the dataset using One-Hot coding. A deep neural
network with two convolutions and one recursive neural network were used for malware
classification. Liu et al. [45] proposed a BLSTM-based malware detection method. The
same APIs that appear more than twice in a row are removed and sorted by call time. Then,
Word2Vec is transformed into a unique binary vector for each API call, and finally a BLSTM
neural network is used to implement malware detection. Catak et al. [47] built a malware
detection model using deep learning methods. The sequences of API calls they collected
were detected with an embedding layer and a two-layer LSTM. Li et al. [48] presented an
architecture for malware detection basing on the intrinsic features with API sequences.
They designed a feature encoder consisting of three modules to express and assemble the
inherent characteristics of API sequences. On the basis of the encoder, they implemented a
deep learning model as a means of detecting whether a program is malware or not.

We replicate the above methodology and conduct experiments using the same dataset.
We mainly consider four metrics including accuracy, precision, recall, and F1-Score.

As shown in Table 5, the model we proposed scores the highest in all metrics compared
to all the other detection models. In comparison to the models based on the traditional
approaches (Kolosnjaji et al. [46] and Catak et al. [47]), our proposed approach learns
more features and the model performance is significantly more efficient, which shows the
importance of learning both semantic and structural information of APIs through word
embedding models. Liu et al. [45], using only semantic features, and Li et al. [48], using only
structural features, both obtain good results, but neither is the best-performing method,
suggesting that a combination of structural semantic information and statistical features of
APIs can be used to learn API features more adequately.

Table 5. Various architectures’ performance comparison based on the embedding model.

Accuracy Precision Recall F1-Score Structure Semantic

Kolosnjaji et al. [46] 0.9660 0.9569 0.9775 0.9671
Liu et al. [45] 0.9668 0.9763 0.9575 0.9668 X

Catak et al. [47] 0.9685 0.9720 0.9642 0.9681
Li et al. [48] 0.9738 0.9774 0.9712 0.9743 X

Proposed Model 0.9828 0.9870 0.9789 0.9827 X X

5. Conclusions and Future Work

Malware has grown to be a common problem in computer security. Therefore, it is
crucial to have an effective malware detection method to detect malware precisely. While
many malware detection techniques have decent performance, some still need to improve in
semantic information analysis. This work introduces a new approach to dynamic malware
detection on the basis of behavioral features. First, a vectorized representation is performed
on the basis of API call sequences, which is trained with the Skip-Gram model to acquire
the contextual semantic information of APIs. Then, the API call names are encoded by
analyzing the semantic information of the name structure and the statistical features. Finally,
the embedded API sequences are fed into the CNNs-BiGRU network to train the detector
for malware. Multiple sets of experiments demonstrate that this proposed model superior
to all the proposed baselines and can effectively achieve malware detection, reaching an
accuracy of 0.9828 and an F1-Score of 0.9827.

There are some potential problems with our framework, which may limit its practical
application. For example, encoding API names manually suffers from a lack of flexibility. In
order to improve the ability to learn semantic information with a high degree of flexibility,
there is an urgent need to work on developing a more automated way of encoding API

Appl. Sci. 2023, 13, 12528 17 of 19

names. This will help the system understand the semantic meaning of APIs more accurately.
In addition, many recent studies have shown that API parameters can effectively improve
malware detection. In the next step, we plan to analyze API parameters and further modify
our approach to analyze malware more comprehensively. Some new malware variants
emerge as new loopholes are discovered, which lead to concept drift, a phenomenon where
the incoming test distribution deviates from the original training distribution [56]. That
will result in the classifier’s performance to start degrading over time. In the future, we
will modify our model to develop a more robust feature space and adapt to the drift.

Author Contributions: Conceptualization, S.Y. and D.Z.; methodology, Y.Z.; software, Y.Z.; validation,
S.Y. and L.X.; formal analysis, L.X. and X.L.; writing—original draft preparation, Y.Z.; writing—review
and editing, D.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Natural Science Foundation of Shandong Province
(ZR2021MF132 and ZR2020YQ06), in part by the National Natural Science Foundation of China
(62172244), in part by the National Major Program for Technological Innovation 2030-New Generation
Artifical Intelligence (2020AAA0107700), in part by the Taishan Scholars Program (tsqn202211210),
in part of by the Graduate Education and Teaching Reform Research Project of Shandong Province
(SDYJG21177), in part by the Education Reform Project of Qilu University of Technology (2021yb63).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from Github and are available from the authors with the permission of Github.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, D.; Xiao, G.; Wang, Z.; Wang, L.; Xu, L. Minimum dominating set of multiplex networks: Definition, application, and

identification. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 7823–7837. [CrossRef]
2. Xu, L.; Wang, B.; Wu, X.; Zhao, D.; Zhang, L.; Wang, Z. Detecting Semantic Attack in SCADA System: A Behavioral Model Based

on Secondary Labeling of States-Duration Evolution Graph. IEEE Trans. Netw. Sci. Eng. 2021, 9, 703–715. [CrossRef]
3. Han, W.; Xue, J.; Wang, Y.; Huang, L.; Kong, Z.; Mao, L. MalDAE: Detecting and explaining malware based on correlation and

fusion of static and dynamic characteristics. Comput. Secur. 2019, 83, 208–233. [CrossRef]
4. Korczynski, D.; Yin, H. Capturing malware propagations with code injections and code-reuse attacks. In Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017;
pp. 1691–1708.

5. Xu, L.; Wang, B.; Yang, M.; Zhao, D.; Han, J. Multi-Mode Attack Detection and Evaluation of Abnormal States for Industrial
Control Network. J. Comput. Res. Dev. 2021, 58, 2333–2349.

6. Cesare, S.; Xiang, Y.; Zhou, W. Control flow-based malware variantdetection. IEEE Trans. Dependable Secur. Comput. 2013,
11, 307–317. [CrossRef]

7. Galal, H.S.; Mahdy, Y.B.; Atiea, M.A. Behavior-based features model for malware detection. J. Comput. Virol. Hacking Tech. 2016,
12, 59–67. [CrossRef]

8. Ijaz, M.; Durad, M.H.; Ismail, M. Static and dynamic malware analysis using machine learning. In Proceedings of the 2019
16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019;
pp. 687–691.

9. Zhao, Z.; Yang, S.; Zhao, D. A New Framework for Visual Classification of Multi-Channel Malware Based on Transfer Learning.
Appl. Sci. 2023, 13, 2484. [CrossRef]

10. Moser, A.; Kruegel, C.; Kirda, E. Limits of static analysis for malware detection. In Proceedings of the Twenty-Third Annual
Computer Security Applications Conference (ACSAC 2007), Miami Beach, FL, USA, 10–14 December 2007; pp. 421–430.

11. Ye, Y.; Li, T.; Adjeroh, D.; Iyengar, S.S. A survey on malware detection using data mining techniques. ACM Comput. Surv. (CSUR)
2017, 50, 1–40. [CrossRef]

12. Burnap, P.; French, R.; Turner, F.; Jones, K. Malware classification using self organising feature maps and machine activity data.
Comput. Secur. 2018, 73, 399–410. [CrossRef]

13. Ucci, D.; Aniello, L.; Baldoni, R. Survey of machine learning techniques for malware analysis. Comput. Secur. 2019, 81, 123–147.
[CrossRef]

14. Bazrafshan, Z.; Hashemi, H.; Fard, S.M.H.; Hamzeh, A. A survey on heuristic malware detection techniques. In Proceedings of
the 5th Conference on Information and Knowledge Technology, Shiraz, Iran, 22–24 May 2013; pp. 113–120.

15. Cesare, S.; Xiang, Y. Software Similarity and Classification; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.

http://doi.org/10.1109/TSMC.2020.2987163
http://dx.doi.org/10.1109/TNSE.2021.3130602
http://dx.doi.org/10.1016/j.cose.2019.02.007
http://dx.doi.org/10.1109/TDSC.2013.40
http://dx.doi.org/10.1007/s11416-015-0244-0
http://dx.doi.org/10.3390/app13042484
http://dx.doi.org/10.1145/3073559
http://dx.doi.org/10.1016/j.cose.2017.11.016
http://dx.doi.org/10.1016/j.cose.2018.11.001

Appl. Sci. 2023, 13, 12528 18 of 19

16. Egele, M.; Scholte, T.; Kirda, E.; Kruegel, C. A survey on automated dynamic malware-analysis techniques and tools. ACM
Comput. Surv. (CSUR) 2008, 44, 1–42. [CrossRef]

17. Ki, Y.; Kim, E.; Kim, H.K. A novel approach to detect malware based on API call sequence analysis. Int. J. Distrib. Sens. Netw.
2015, 11, 659101. [CrossRef]

18. Pektaş, A.; Acarman, T. Classification of malware families based on runtime behaviors. J. Inf. Secur. Appl. 2017, 37, 91–100.
[CrossRef]

19. Palumbo, P.; Sayfullina, L.; Komashinskiy, D.; Eirola, E.; Karhunen, J. A pragmatic android malware detection procedure. Comput.
Secur. 2017, 70, 689–701. [CrossRef]

20. Ding, Y.; Yuan, X.; Tang, K.; Xiao, X.; Zhang, Y. A fast malware detection algorithm based on objective-oriented association
mining. Comput. Secur. 2013, 39, 315–324. [CrossRef]

21. Miao, Q.; Liu, J.; Cao, Y.; Song, J. Malware detection using bilayer behavior abstraction and improved one-class support vector
machines. Int. J. Inf. Secur. 2016, 15, 361–379. [CrossRef]

22. Shalaginov, A.; Franke, K. Automated intelligent multinomial classification of malware species using dynamic behavioural
analysis. In Proceedings of the 2016 14th Annual Conference on Privacy, Security and Trust (PST), Auckland, New Zealand,
12–14 December 2016; pp. 70–77.

23. Xu, L.; Wang, B.; Wang, L.; Zhao, D.; Han, X.; Yang, S. PLC-SEIFF: A programmable logic controller security incident forensics
framework based on automatic construction of security constraints. Comput. Secur. 2020, 92, 101749. [CrossRef]

24. Tran, T.K.; Sato, H. NLP-based approaches for malware classification from API sequences. In Proceedings of the 2017 21st Asia
Pacific Symposium on Intelligent and Evolutionary Systems (IES), Hanoi, Vietnam, 15–17 November 2017; pp. 101–105.

25. Kim, C.W. Ntmaldetect: A machine learning approach to malware detection using native api system calls. arXiv 2018,
arXiv:1802.05412.

26. Salehi, Z.; Sami, A.; Ghiasi, M. MAAR: Robust features to detect malicious activity based on API calls, their arguments and return
values. Eng. Appl. Artif. Intell. 2017, 59, 93–102. [CrossRef]

27. Huang, X.; Ma, L.; Yang, W.; Zhong, Y. A method for windows malware detection based on deep learning. J. Signal Process. Syst.
2021, 93, 265–273. [CrossRef]

28. Pascanu, R.; Stokes, J.W.; Sanossian, H.; Marinescu, M.; Thomas, A. Malware classification with recurrent networks. In
Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
QLD, Australia, 19–24 April 2015; pp. 1916–1920.

29. Zhang, Z.; Qi, P.; Wang, W. Dynamic malware analysis with feature engineering and feature learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 1210–1217.

30. Kang, J.; Jang, S.; Li, S.; Jeong, Y.S.; Sung, Y. Long short-term memory-based malware classification method for information
security. Comput. Electr. Eng. 2019, 77, 366–375. [CrossRef]

31. Amer, E.; Zelinka, I. A dynamic Windows malware detection and prediction method based on contextual understanding of API
call sequence. Comput. Secur. 2020, 92, 101760. [CrossRef]

32. Wang, P.; Tang, Z.; Wang, J. A novel few-shot malware classification approach for unknown family recognition with multi-
prototype modeling. Comput. Secur. 2021, 106, 102273. [CrossRef]

33. Moskovitch, R.; Feher, C.; Tzachar, N.; Berger, E.; Gitelman, M.; Dolev, S.; Elovici, Y. Unknown malcode detection using
opcode representation. In Proceedings of the European Conference on Intelligence and Security Informatics, Esbjerg, Denmark,
3–5 December 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 204–215.

34. Shabtai, A.; Moskovitch, R.; Elovici, Y.; Glezer, C. Detection of malicious code by applying machine learning classifiers on static
features: A state-of-the-art survey. Inf. Secur. Tech. Rep. 2009, 14, 16–29. [CrossRef]

35. Chai, Y.; Du, L.; Qiu, J.; Yin, L.; Tian, Z. Dynamic prototype network based on sample adaptation for few-shot malware detection.
IEEE Trans. Knowl. Data Eng. 2022, 35, 4754–4766. [CrossRef]

36. Sami, A.; Yadegari, B.; Rahimi, H.; Peiravian, N.; Hashemi, S.; Hamze, A. Malware detection based on mining API calls. In
Proceedings of the 2010 ACM Symposium on Applied Computing, Sierre, Switzerland, 22–26 March 2010; pp. 1020–1025.

37. Christodorescu, M.; Jha, S.; Kruegel, C. Mining specifications of malicious behavior. In Proceedings of the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Dubrovnik, Croatia, 3–7 September 2007; pp. 5–14.

38. Tobiyama, S.; Yamaguchi, Y.; Shimada, H.; Ikuse, T.; Yagi, T. Malware detection with deep neural network using process behavior.
In Proceedings of the 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Atlanta, GA, USA,
10–14 June 2016; Volume 2, pp. 577–582.

39. Ndibanje, B.; Kim, K.H.; Kang, Y.J.; Kim, H.H.; Kim, T.Y.; Lee, H.J. Cross-method-based analysis and classification of malicious
behavior by api calls extraction. Appl. Sci. 2019, 9, 239. [CrossRef]

40. Zhang, X.; Zhang, Y.; Zhong, M.; Ding, D.; Cao, Y.; Zhang, Y.; Zhang, M.; Yang, M. Enhancing state-of-the-art classifiers with
api semantics to detect evolved android malware. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual, 9–13 November 2020; pp. 757–770.

41. Rosenberg, I.; Shabtai, A.; Rokach, L.; Elovici, Y. Generic black-box end-to-end attack against state of the art API call based
malware classifiers. In Proceedings of the International Symposium on Research in Attacks, Intrusions, and Defenses, Crete,
Greece, 10–12 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 490–510.

http://dx.doi.org/10.1145/2089125.2089126
http://dx.doi.org/10.1155/2015/659101
http://dx.doi.org/10.1016/j.jisa.2017.10.005
http://dx.doi.org/10.1016/j.cose.2017.07.013
http://dx.doi.org/10.1016/j.cose.2013.08.008
http://dx.doi.org/10.1007/s10207-015-0297-6
http://dx.doi.org/10.1016/j.cose.2020.101749
http://dx.doi.org/10.1016/j.engappai.2016.12.016
http://dx.doi.org/10.1007/s11265-020-01588-1
http://dx.doi.org/10.1016/j.compeleceng.2019.06.014
http://dx.doi.org/10.1016/j.cose.2020.101760
http://dx.doi.org/10.1016/j.cose.2021.102273
http://dx.doi.org/10.1016/j.istr.2009.03.003
http://dx.doi.org/10.1109/TKDE.2022.3142820
http://dx.doi.org/10.3390/app9020239

Appl. Sci. 2023, 13, 12528 19 of 19

42. Chen, X.; Hao, Z.; Li, L.; Cui, L.; Zhu, Y.; Ding, Z.; Liu, Y. CruParamer: Learning on Parameter-Augmented API Sequences for
Malware Detection. IEEE Trans. Inf. Forensics Secur. 2022, 17, 788–803. [CrossRef]

43. David, O.E.; Netanyahu, N.S. Deepsign: Deep learning for automatic malware signature generation and classification. In
Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–8.

44. Kakisim, A.G.; Gulmez, S.; Sogukpinar, I. Sequential opcode embedding-based malware detection method. Comput. Electr. Eng.
2022, 98, 107703. [CrossRef]

45. Liu, Y.; Wang, Y. A robust malware detection system using deep learning on API calls. In Proceedings of the 2019 IEEE 3rd
Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 March
2019; pp. 1456–1460.

46. Kolosnjaji, B.; Zarras, A.; Webster, G.; Eckert, C. Deep learning for classification of malware system call sequences. In
Proceedings of the Australasian Joint Conference on Artificial Intelligence, Hobart, TAS, Australia, 5–8 December 2016; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 137–149.

47. Catak, F.O.; Yazı, A.F.; Elezaj, O.; Ahmed, J. Deep learning based Sequential model for malware analysis using Windows exe API
Calls. PeerJ Comput. Sci. 2020, 6, e285. [CrossRef]

48. Li, C.; Lv, Q.; Li, N.; Wang, Y.; Sun, D.; Qiao, Y. A novel deep framework for dynamic malware detection based on API sequence
intrinsic features. Comput. Secur. 2022, 116, 102686. [CrossRef]

49. Ketkar, N.; Santana, E. Deep Learning with Python; Springer: Berlin/Heidelberg, Germany, 2017; Volume 1.
50. Rezaeinia, S.M.; Rahmani, R.; Ghodsi, A.; Veisi, H. Sentiment analysis based on improved pre-trained word embeddings. Expert

Syst. Appl. 2019, 117, 139–147. [CrossRef]
51. Alami, N.; Meknassi, M.; En-nahnahi, N. Enhancing unsupervised neural networks based text summarization with word

embedding and ensemble learning. Expert Syst. Appl. 2019, 123, 195–211. [CrossRef]
52. Martinčić-Ipšić, S.; Miličić, T.; Todorovski, L. The influence of feature representation of text on the performance of document

classification. Appl. Sci. 2019, 9, 743. [CrossRef]
53. Hart, J.M. Windows System Programming; Pearson Education—Addison-Wesley Professional: San Francisco, CA, USA, 2010.
54. Tang, C.; Xu, L.; Yang, B.; Tang, Y.; Zhao, D. GRU-Based Interpretable Multivariate Time Series Anomaly Detection in Industrial

Control System. Comput. Secur. 2023, 127, 103094. [CrossRef]
55. Invernizzi, L.; Miskovic, S.; Torres, R.; Kruegel, C.; Saha, S.; Vigna, G.; Lee, S.J.; Mellia, M. Nazca: Detecting malware distribution

in large-scale networks. In Proceedings of the NDSS, San Diego, CA, USA, 23–26 February 2014; Volume 14, pp. 23–26.
56. Moreno-Torres, J.G.; Raeder, T.; Alaiz-Rodríguez, R.; Chawla, N.V.; Herrera, F. A unifying view on dataset shift in classification.

Pattern Recognit. 2012, 45, 521–530. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIFS.2022.3152360
http://dx.doi.org/10.1016/j.compeleceng.2022.107703
http://dx.doi.org/10.7717/peerj-cs.285
http://dx.doi.org/10.1016/j.cose.2022.102686
http://dx.doi.org/10.1016/j.eswa.2018.08.044
http://dx.doi.org/10.1016/j.eswa.2019.01.037
http://dx.doi.org/10.3390/app9040743
http://dx.doi.org/10.1016/j.cose.2023.103094
http://dx.doi.org/10.1016/j.patcog.2011.06.019

	Introduction
	Related Work
	Static Analysis
	Dynamic Analysis
	Natural Language Processing and Deep Learning for Malware Detection

	Methodology
	Data Preprocessing
	Feature Extraction and Generation
	Sequence-Based Embedding
	Name-Based Embedding

	CNNs-BiGRU Model

	Dataset and Evaluation Methods
	Experimental Design
	Dataset
	Experimental Setup

	Evaluation Metrics
	Experimental Results
	Comparison with Baselines
	Ablation Studies
	Model Evaluation

	Conclusions and Future Work
	References

