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Abstract: Dextran, a microbial metabolite of diverse molecular configurations, can be biosynthesized
employing selected strains of characterized species of bacteria. Dextran molecules are secreted as
an extracellular polysaccharide in the culture medium of the bacterial fermentation system. This
microbially produced polymer of glucose possesses multi-faceted characteristics such as its solubility
in different solvents and formation of dextran solutions of needed viscosity. Several preparations
can be formulated for the desired thermal and rheological properties. Due to such multifunctional
characteristics, dextran with different structural specifications is a desired polysaccharide for clinical,
pharmaceutical, and food industry commercial applications. Dextran and its derivative products with
various molecular weights, in a range of high and low, have established their uses in drug delivery
and in analytical devices using columns packed with polysaccharide gel. Therefore, being a neutral
raw material, the resourcefulness of dextran preparations of different molecular weights and linkages
in their polymer configuration is important. For this purpose, several studies have been performed to
produce this commercially important polysaccharide under optimized bacterial cultivation processes.
This article aims to overview recently published research reports on some significant applications of
dextran in the pharmaceutical and food industries. Studies conducted under optimized conditions in
fermentation processes for the biosynthesis of dextran of diverse molecular configurations, which are
responsible for its multifunctional properties, have been summarized. Concise information has been
presented in three separate tables for each group of specific bacterial species employed to obtain this
extracellular microbial polysaccharide.

Keywords: polysaccharide; dextran; clinical; drug delivery; dextranase; food; pharmaceutical;
sucrose; Leuconostoc; Lactobacillus; bacteria

1. Introduction

Dextran has been regarded as one of the very significant exo-polysaccharides (EPS)
with several established applications in various industrial interests. EPS are important
metabolites generally synthesized by some bacteria in bioprocesses. Although not all
EPS are useful, beneficial polysaccharides are produced by certain bacteria characterized
as probiotics in nature. Therefore, the selection of appropriate strain/s to perform a
fermentation process is of utmost importance to synthesize extracellular polysaccharide
products suitable for commercial application/s. EPS are widely studied, and their valuable
effects correlate with the sustainability of gut health and wellness by alleviating certain
ailments [1]. Food products containing EPS produced by probiotic bacteria are reported
as dietary therapeutic representatives to re-establish the weakened gut microbiota, which
is necessary to ease inflammation in the gastrointestinal tract, IBD, or IBS, and can avert
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the initiation of colon cancer [2]. EPS produced in fermented milk beverages have been
studied in detail for their properties of improving shelf-life and boosting nutrition with
functional properties in dairy products [3,4]. Furthermore, exopolysaccharides produced
as the secondary metabolites of bacteria, employed in food fermentation, have many
potential and well-established functions in products that are classified as nutraceuticals.
These products have been studied for their therapeutic activity, improving gut health in
certain consumers who experience allergy and discomfort responses to some foods or their
ingredients and additives used in products [5]. Valuable polysaccharides are produced
by probiotic cultures in the GI tract through the support of dietary fibers, ingested as
diet ingredients that are prebiotic in nature, and available in functional beverages and
foods [6,7].

Polymeric carbohydrate structures are high molecular weight polysaccharides that
are formed of monosaccharide units linked by glycosidic bonds. Dextran is one of those
polysaccharides of commercial importance. A bacterial strain of Leuconostoc mesenteroides
has been studied for its potential to produce its extracellular metabolite, a glucose polymer,
which is biodegradable in nature. This EPS, characterized as dextran, has been reported as
a value-added product useful in a range of industrial applications [8].

The aim of this article is to review a few important applications of dextran, a significant
material used in different sectors such as blood transfusion, clinical, pharmaceutical, and
food. Hence, the requirement of dextran preparations of diverse molecular weights and
structural configurations has become essential for their specialized utility in each industry.
For that purpose, the studies conducted for the biosynthesis of a diverse range of dextran
products, employing specific microbial species as efficient and productive biocatalysts,
have been presented in this article.

2. Description of Dextran Polysaccharide

Dextran polymer is a homo-polysaccharide of α-d-glucopyranosyl units through
α-(1,6) links with α-(1,2), α-(1,3) or α-(1,4) branches. Shingle determined structural pe-
culiarities of dextran molecules by Fourier-transform IR spectroscopy [9]. Particularly
due to variable branching in its molecular configuration, delivery systems based on dex-
tran have been widely studied for a diverse range of applications in food, nutraceuticals,
pharmaceuticals, and medicine. Deng et al. investigated a green preparation process of
doxorubicin–BSA–dextran nanoparticles, their characterization, and antitumor effects [10].
On a commercial scale, the most widely employed bacterial strain as the producer of
dextran is standard strain NRRL B-512F of Leuconostoc mesenteroides, which is capable of
synthesizing a polysaccharide, particularly with its linear structure. The molecular configu-
ration of EPS synthesized by L. mesenteroides has been characterized as consisting of α-(1,6)
linkage in glucose polymer up to the level of 95%, and the remaining polymer chain of 5%
includes the α-(1,3) and α-(1,4) branches. The varied application of this type of molecular
structure EPS is due to its possession of adequate rheological properties, which are required
for several applications in industries. Dextran has been widely studied for its structure and
characteristics [8–11]; hence, its structure is not graphically presented in this article.

Clinical Derivatives from Dextran

Dextran has been considered a multifunctional biopolymer starting material for de-
signing varied molecular configurations that are suitable for wide-ranging applications.
Its molecular weight range with substantial availability of active hydroxyl groups in the
polymer chain are favorable characteristics for dextran’s modifications. Since dextran
is a neutral material, it has been illustrated as a promising macromolecular vehicle and
carrier for drug chemicals [12]. Hence, numerous glycol-conjugates have been prepared
as derivatives of dextran in suitable reactions selected for the required product, such as a
relevant process of oxidation, esterification, or etherification [13].

Li et al. reported the effect of the reaction of esterification on structural, physico-
chemical, and flocculation characteristics of dextran, which could be useful in different
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applications. Researchers suggested that esters of dextran can be prepared by adding an
alkaline amino acid, lysine, onto the dextran polymer chain [14]. Dextran-ester demon-
strated remarkable flocculation characteristics at low pH, caused by its extended polymer
chain with amino groups, which can interact with substances having points with negative
charges. In a different study conducted by Liebert et al., a long-chain fatty ester of dextran
was prepared through in situ activation of carboxylic acid using iminium chloride [15].
Meltable dextran esters with significant melting behavior and biocompatibility are good
functional coating materials. The dextran esters have the ability to form durable layers of
films on several materials, for instance, glass and nitrided titanium implants, to facilitate
the prevention of persistent inflammatory stimulus. This ester as a dextran derivative
extends applications of a useful polysaccharide in the biomedical sciences. Dextran has
also been applied in the spray-drying method of preparing powders that are used for the
encapsulation of drugs and additives used in the pharmaceutical and food industries [11].

Dextran is a bacterial polysaccharide that has exceptional biodegradability, biocom-
patibility, and non-toxicity characteristics. Dextran molecules meet critical requirements of
nanomaterials for their applications in pharmaceutics. Therefore, distinct derivatives of
dextran have been developed through its modification because of the presence of a substan-
tial number of reactive hydroxyl groups in its chain [12,13]. Unique delivery systems based
on dextran, for example, micelles, magnetic nanoparticles, mini emulsions, hydrogels, and
spray-dried powders, have been the subject of research and development. Their physic-
ochemical properties, release mechanisms, and therapeutic effects performed in in vivo
animal experiments have been studied in detail to establish their extensive applications in
medicine and formulations of pharmaceutical compounds. Jin et al. have testified that the
use of amphipathic prodrug micelles of dextran-doxorubicin is suitable for the treatment of
solid tumors [16]. Table 1 presents some of the useful dextran derivatives.

Table 1. Dextran derivatives and their application and functions *.

Derivatives of Dextran Product Known as Applications Functions

Dextran magnetite:
Hydrophilic colloidal solution
of superparamagnetic iron
oxide coated with various
dextran derivative

DM
Magnetic iron oxide-dextran
complex

Magnetic particle imaging for
diagnostic imaging;
Tracer for sentinel lymph node
biopsy, safer than radioisotope
tracer;
Reagent;
A contrast medium used for
magnetic resonance imaging

Various functionalities
obtained by changing the
structure of the coating
material around the magnetic
core of iron oxide

Iron dextran complex DFe Iron supplement for animals Prevention and treatment of
anemia in piglets

Cationic dextran:
Raw material for cosmetics
added for a superior
conditioning effect for hair and
skin. A desired conditioning
effect is achieved by choosing
its molecular weight.

CDCL (MW 10K);
CDC (MW 40K);
CDCH (MW 500K)

Cosmetic ingredient for hair
care and skin care products

Conditioning, moisturizing and
protective effect, wave
retention

Dextran sulfate sodium:
Sodium salt of sulfate ester that
is prepared by sulfation of
partial decomposition products
of dextran

DSS

Drug substance;
Additive;
Medical device;
to induce colitis in mice and
rats

Treatment of hyperlipidemia;
Cosmetic ingredient;
Laboratory reagent for
biochemistry;
The raw material of medical
devices

Sodium carboxymethyl dextran CMD Cosmetic ingredients for hair
care and skin care products

Conditioning, moisturizing,
and thickening effect, smooth
feeling
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Table 1. Cont.

Derivatives of Dextran Product Known as Applications Functions

Dextran ester:
Acyl groups substitution with
different carbon numbers from
acetate to laurate

Dextran valerate, Dextran
hexanoate

Transparent coating for various
materials, including polyvinyl
alcohol (PVA) films, wood,
glass, and aluminum

Hot-melt-type adhesives

Diethyl-aminoethyl-dextran:
Polycationic derivative of
dextran

DEAE Nanocarrier of
chemotherapeutic drugs In pharmaceutical functions

Fluorescent dextran derivatives Derivatives labeled with FITC,
TRITC, ATTO-dyes

Mainly used for studies of
permeability and
microcirculation in cells and
tissues

For studies of drug delivery,
as molecular size markers.

Dextran methacrylate:

1. Propionyl dextran
mixture ester

2. Isobutyryl dextran
mixture ester

1. PDME
2. IDME

Contact lenses

Doxorubicin–BSA–dextran Nanoparticles carrier for
pharmaceutical chemicals Drug delivery Antitumor effects

Amphipathic
dextran-doxorubicin Prodrug
micelles

Carrier for drug delivery to the
site Therapy for solid tumors

Phenyl-dextran Used in the preparation of gels
and coatings Hydrophobic material

Meltable dextran esters Significant melting behavior
and biocompatibility

Good functional coating
material

Dextran spray-dried powders Required for the encapsulation
of drugs and food additives

Used in the pharmaceutical
and food industry

* Source of information References [11–16]; https://www.labonline.com.au/content/consumables/product/tdb-
labs-dextran-and-dextran-derivatives-483479682 (accessed on 14 September 2023).

3. Functions of Dextran and Its Derivatives

Several industries use dextran molecules in different processes or in several products
due to the accessibility of a diverse range of dextran products with various molecular
weights and configurations. The following sections have summarized a few notable func-
tions of dextran and its derivatives.

3.1. Dextran Preparations Used as a Blood Plasma Substitute

Dextrans are used as blood volume expanders, as they have an inhibitory effect
on coagulation factors and thrombocyte aggregation. Clinical grade dextrans of 40, 60,
and 70 kDa molecular weights in 6 or 10% aqueous solutions are available for use as
substitutes for blood plasma. These function by restoring blood plasma lost through
severe bleeding. Dextran can replace blood proteins like albumin to present colloid osmotic
pressure so that the fluid is pulled into the plasma from the interstitial space. Dextran-40 can
improve the flow of blood by lowering its viscosity and also inhibiting the accumulation
of erythrocytes. An early report available on the use of dextran for the prevention of
postoperative thromboembolic complications is available [17]. Klotz and Kroemer reported
on the clinical pharmaco-kinetic importance and issues in the use of plasma expanders. An
intravenous solution of dextran-60 is generally used as the expander of blood volume, and
the parenteral nutrition provides an osmotically neutral fluid after it is digested into glucose
and water [18]. Clinical forms, dextran-40 and dextran-70, are related to anaphylactoid
reactions, which are initiated by dextran-reactive immunoglobulin G antibodies. A low-
MW dextran-1 of 1K Da molecular weight is a fraction of a dextran polysaccharide. If it
is used for infusion immediately before the clinical dextrans, it can reduce the incidence
of severe anaphylactoid reactions. Hence, to moderate the probability of anaphylactoid

https://www.labonline.com.au/content/consumables/product/tdb-labs-dextran-and-dextran-derivatives-483479682
https://www.labonline.com.au/content/consumables/product/tdb-labs-dextran-and-dextran-derivatives-483479682
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reactions, a regular administration of dextran-1 was suggested before a clinical dextran of
higher MW was used for the infusion [19].

Dextran molecules have high water-binding capacity; for example, 1.0 g of dextran-40
holds up to 30 mL volume of water, while 1.0 g of dextran-70 is able to take up to 20–25 mL
of water. The unique property of dextran is that after dissolving it in normal saline to form
a solution of 6%, w/v, it demonstrates colloidal osmotic pressure and viscosity, which are
identical to human blood. The isotonic versions of dextran solutions are prepared at 6.0 and
10%. Dextran has been applied as a plasma volume expander. Two products of molecular
weights of 40 and 70 kDa, dextran-40 and 70, are used in cases of shock or impending shock
after hemorrhage, burns, and trauma [20].

In an investigation, dextran-40 was used to accomplish an in vitro evaluation of haemo-
dilution affecting the coagulation profile. The analytical assays were performed using
thrombo-elastometry and multiple electrode aggregometry [21]. Although the application
of albumin in patients with septic shock is helpful, the two factors that affect its use are
the high cost of clinical-grade albumin and its regulated availability. Therefore, the use of
a suitable alternative to albumin was investigated, where dextran-70 was tested during
resuscitation for its impact on organ failure or mortality in patients (n = 778) suffering from
severe septicemia or septic shock, in addition to the use of albumin and crystalloids. The
evidence collected through investigation did not detect any harmful impact of dextran-70
on organ failures or mortality in patients diagnosed with critical sepsis [22].

Alternatives to albumin, used for the expansion of plasma, consist of crystalloids
in the form of 0.9% sodium chloride solution as the normal saline, whereas the plasma
protein fraction is used as alternate protein colloids. Dextran, a non-protein colloid, worked
as an albumin alternative. These alternatives, whether the crystalloids or non-protein
colloids have not proved superior to albumin; however, these materials are reasonably
cost-effective choices. Dextrans are added in 0.9% sodium chloride isotonic medium to
form a component of colloid solutions. A report on albumin and related products has
informed that a hypertonic mixture Rescueflow can be used for its prehospital use during
bleeding for the management of hypotension [23]. An article on fluid resuscitation and early
management reported that colloid replacement was frequently needed in young pediatric
burn patients who suffered injuries from major burns. It could be effective because the
concentration of serum protein decreases rapidly during burn shock. In such cases, it is
reported that dextran colloid is normally applied during resuscitation cases, where children
had main injuries from burns [24].

Dextrans are also used in hematology. The following section presents information on
applications of dextran products in the pharmaceutical industry, where various dextran
derivatives, dextran conjugates, nanoemulsions, and micelles have been studied for their
use as nanocarriers for nanomedicine drug delivery.

3.2. Dextran a Vehicle and Carrier for Drug Delivery

Dextran and its modified derivatives have attracted immense interest from researchers
in the design of delivery procedures for pharmaceuticals of clinical relevance. Several
delivery systems based on dextran have evolved with desired configurations for intended
capabilities. The fabrication strategies included self-assembled micelles and nanoparti-
cles, nanoemulsions, magnetic nanoparticles, microparticles, and hydrogels for diverse
applications [25]. In contrast to chemically synthesized molecules, natural materials, such
as polysaccharides, have many advantages, including biodegradability, biocompatibility,
and non-toxicity. These materials can be used for the protected encapsulation of different
bioactive entities [26], which is crucial for the safer delivery of functional pharmaceu-
tical components [27]. In recent years, the development of effective and safer delivery
practices constructed from dextran has been explored with considerable benefits [28]. De-
livery systems based on dextran EPS with purposely designed compositions, such as
nanoparticles, nano-complexes, nano emulsions, nano-crystals and micelles, have been
produced [27,29,30].
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Dextran, as a biopolymer, offers certain benefits if it is used to build nanomaterials
as a clinical vehicle for the delivery of important pharmaceuticals due to its exceptional
solubility and non-immunogenicity. Dextran has characteristics of its solubility in a choice
of solvents from H2O, dimethyl sulfoxide, ethylene glycol, or glycerol. This property is
attached to the presence of α-1, 6 glycosidic bond, which supports the expansion in the
mobility of the polymer chain. Some drugs have poor aqueous solubility; hence, their
dissolution in the gastrointestinal fluids is a slow process that affects the bioavailability
of drug molecules [9,31]. Dextran with high aqueous solubility is used in the fabrication
of nanocarriers of drug molecules. It can facilitate the transportation of drugs and their
effective bioavailability by permeation through the gastrointestinal membrane. The use of
dextran in pharmaceutical delivery is preferred as it is a physiologically harmless biopoly-
mer of saccharides and can, therefore, be metabolized by digestive enzymes. However,
if synthetic polymers are used as vehicles, they might accrue in the system, causing side
effects with their toxic degradation products [31].

The study was conducted to test subcutaneous implantation and tissue response
evaluation; the results proposed in vivo biocompatibility of delivery systems based on
dextran-polymer, as the dextran did not create a harmful or immunological effect on the
body [32,33]. Unlike other polysaccharides such as starch, dextran cannot be hydrolyzed
by common amylase enzymes, for instance, amylase in saliva. This stability makes dextran
a safer nanomaterial for its use in oral delivery systems. Its satisfactory colloidal stability
towards the enzymatic degradation supports the reliability of the delivery vehicle through
a prolonged retention duration in the system for increased bioavailability of the drug
molecules. The dextran chain can only be depolymerized by the enzyme dextranase if
available in the gastrointestinal tract and other organs [9]. Consequently, dextran-based
drug delivery arrangements can be used to safeguard pharmaceutical compounds during
their passage by increasing their absorption by the epithelium. The neutral charge of
dextran facilitates the efficiency of drug delivery.

Lai et al. investigated nanoparticles with the capability of mucus-penetrating for drug
and gene delivery to mucosal tissues. The intestinal mucus layer generated by the goblet
cells is negatively charged and is capable of trapping nanocarriers with a hydrophobic
nature in their surface properties [34]. However, if the vehicle was negatively charged,
it would be difficult for it to traverse the mucus layer caused by the negative-negative
repulsion. Reports have recommended that delivery vehicles with neutral surfaces of a
hydrophilic nature, as in dextran molecules, are perfect for mucus permeation of drug
molecules [35]. Shan et al. investigated the issue of overcoming the diffusion barrier in mu-
cus and the absorption barrier in epithelium by using self-assembled nanoparticles for the
safer oral administration of insulin. Therefore, the above-mentioned properties make dex-
tran an appropriate nanomaterial used to deliver micro concentrations of pharmaceutical
compounds [36].

Kadota et al. studied the development of porous particles in a dry powder inhaler for
enhanced delivery of rifampicin in the deep lung [37]. In this device, the acetalated dextran
was applied as a sugar excipient. A suspension was prepared by mixing an ethanolic
solution of rifampicin with an aqueous dextran solution, and then the powder was prepared
by a spray-drying process of rifampicin suspension. Dextran-based nanoparticles have been
explored as a vehicle for delivering therapeutic chemicals in the treatment of a few diseases.
Although chemotherapy has been broadly used for the treatment of cancers, most drugs
used as anticancer chemicals have insignificant water solubility and serious toxicity. The
dextran nanocarriers have been suggested to enhance the bioavailability of pharmaceuticals.
Carriers also lengthen the time for drugs’ blood circulation and passively improve the
accumulation of drugs in tumors by their higher permeation and retention [38,39]. Many
forms of nanoparticulate systems based on dextran for anticancer drug delivery have been
investigated in the last few years [40–43].

The current therapy for diabetes mellitus using insulin presents inconvenience and
reduced conformity for patients’ independence for physical intake; hence, nanocarriers
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based on biopolymers have been developed for oral delivery of insulin [44,45]. The dextran-
based biodegradable and biocompatible nanoparticles have been formulated to solve this
issue. Alibolandi et al. performed in vitro and in vivo evaluation of dextran-b-poly (lactide-
co-glycolide) polymersome for oral administration of insulin [46]. A new dextran-based
glucose/pH-responsive insulin delivery method was fabricated, and the insulin release in
response to varying pH levels and glucose concentrations was further investigated in vitro
by Jamwal et al. [47]. In this design, an enzyme glucose oxidase was immobilized on
acryloyl cross-linked dialdehyde dextran nanoparticles in a Schiff-base reaction.

Nanocarrier using dextran is one of the favorable agents for traumatic spinal cord
injury treatment. In a study by Qi et al., methylprednisolone (MP) was integrated into
ibuprofen-modified dextran nanoparticles for the delivery process; otherwise, it could
cause serious side effects at high dosages [48]. The MP-loaded nanoparticles showed
comparable therapeutic efficacy compared to free molecules of MP in in vivo experiments
conducted on acute spinal cord injury model rats. Liu et al. formulated acetalated dextran
nanoparticles for the delivery of paclitaxel in the treatment of spinal cord injury [49].

An effective delivery approach with a profile of sustained release was developed
to eliminate the biofilm matrix and destroy contained pathogenic microbes causing skin
infections. The biocide hydrogel for antibiofilm treatment was prepared with dextran
methacrylate copolymer as a delivery vehicle for the destruction of bacterial growth in
biofilms [50]. Hoque and Haldar have reported that these dextran hydrogels could release
the biocide chemical for a prolonged time period of 5 days. The retention of biocide chemi-
cals helped in completely clearing the infection caused by Escherichia coli, Staphylococcus
aureus, and methicillin-resistant S. aureus. Some dextran-based hydrogels presented advan-
tages over other cationic hydrogels based on chitosan, with a higher strength to eradicate
biofilm [51]. In comparison to hydrogels based on peptides, dextran-hydrogels proved
cost-effective for their simpler making process [52]. Dextran-hydrogels have been reported
to have higher compatibility with mammalian cells than metal-based nanoparticles [53].
Therefore, in view of these characteristics, dextran could be efficiently used to design safe
and functional antibiofilm agents.

3.3. Applications of Dextrans in Products of Food Industry

The main rationale for the application of dextran in food products is the property of
dextran, being a fine white powder that dissolves readily in water at any temperature to
prepare clear and viscous solutions. Moreover, dextran solutions are colorless, odorless,
tasteless, and chemically inert, and therefore, these can be compatible with a variety of
ingredients used in food items. Dextran has been suggested as a preservative coating for
common perishable food products such as shrimp, meat, fruits, and cheese. Dextran can be
produced by lactic acid bacteria, which are considered food-quality organisms that have
been given the status of generally recognized as safe (GRAS) [5–7].

Few LABs synthesize extracellular polysaccharide, which is a material of commercial
interest for its physical-chemical properties. Considering this fact, the EPS-forming Lactic
acid bacteria have been used in food fermentations. The presence of dextran released
by bacteria contributes to improving the rheological characteristics of dairy products, for
instance, viscosity, texture, and mouthfeel [54]. EPS are categorized as heteropolysaccha-
rides, which are composed of several types of sugar units, including glucose, galactose,
fructose, and rhamnose, whereas homopolysaccharides type contain only one type of
monosaccharide unit, glucose or fructose [55]. Homopolysaccharides studied in species of
Lactobacillus, Leuconostoc, and Streptococcus are typically types of glucan or fructan, which
are synthesized by extracellular enzyme glycan-sucrase consuming sucrose as the source of
glycosyl (fructose or glucose) [56].

Semyonov et al. prepared dextran nanoparticles in the process of enzyme synthesis to
study their application in delivery for nutraceuticals [57]. Food colloids binary and ternary
complexes composed of up to three substances were studied for creating nanoparticles,
which could be suitable for the fortification of bioactive composites in food products [28].
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Conjugates of whey protein and dextran were used as stabilizers for the physicochemical
strength and for the bio-accessibility of β-carotene nano emulsions [29].

The application of dextran in several food products is due to the characteristics of its
flexibility in solubilization. The rheological properties in a product can be modified by
using dextran of diverse molecular weights and types of branching in the polymer chain;
hence, a dextran preparation matching the requirement can be selected accordingly [11].
Most applications of dextran as a polysaccharide have been investigated for food industry
products. This polymer has been used in baking and confectionery for its exceptional
moisturizing, stabilizing, and preserving properties [58]. Dextrans have also been explored
for the improvement in flavor, texture, and consistency of several consumer-friendly
products like ice creams, jellies, sauces, sweets, flour, breads, etc. [59].

Dextran polysaccharides act as stabilizers of culinary characteristics like texture, aroma,
and flavor in finished food products. Other than that, it has been added to products
prepared with the main ingredients of cheese, meat, and vegetables in order to slow down
the oxidation of products [60,61]. Furthermore, dextran has been recommended as a
suitable material for preparing biodegradable, edible coatings and films [62]. Dextran has
been incorporated with another polymer, chitosan, in the fabrication of biodegradable
material suitable as film for the packaging of mushrooms [63]. Dextran molecules of low
molecular weights have been suggested as potential prebiotics for the sustainability of
human gut microbiota [64,65].

4. Biosynthesis of Dextran in Optimized Microbial Processes

This section presents information on the synthesis of dextran polymer of diverse
specifications in fermentation systems to obtain products produced as metabolites from
selected bioagents, i.e., the strains of a few bacterial species.

4.1. Bioagents Used in the Production Process

Normally, the synthesis of polysaccharides by plants and production from agricultural
products are relatively inexpensive. However, the cultivation of such resources requires fa-
vorable climates during a particular season in a year. Furthermore, plant-sourced materials
have a vast inconsistency in their availability, purity, and properties. In contrast, the yield
and properties of polysaccharides originating from microbial sources can be controlled
by optimized parameters set for microbial fermentations. At the same time, microbial
synthesis can be performed using economical substrates like by-products and residual
materials produced in the agricultural and food industries [66,67]. Although the dextran
is a neutral glucan with complex α-1, 6 glycosidic linkages between glucose units with
branches with α-1, 2, α-1, 3, and α-1, 4 connections [60], nevertheless, the degree and nature
of branching at 2, 3, or 4 positions can be manipulated by the selection of an appropriate
dextran-producing strain in the synthesis process of dextran.

Dextran is mainly released extracellularly by fermenting lactic acid bacteria utilizing
sucrose as a substrate in synthesis. Enzyme dextransucrase acts as a catalyst in the transfer
of D-glucopyranosyl residues from sucrose to form dextran [60]. LAB are non-spore-
forming, fermentative, facultatively anaerobic bacteria; products prepared using LAB are
considered safe for human consumption. Several LAB strains approved as Generally Rec-
ognized As Safe (GRAS) have been given Qualified Presumption of Safety (QPS) status [68],
which are widely employed in food production [69]. Characterized as effective probiotics,
LAB have been used for the restoration of imbalanced gut microbiota affected in antibiotic-
therapy-induced gut dysbiosis [70]. The clinical potential of LAB strains, which are used in
fermentation for probiotic food and beverages and in the formulation of synbiotic supple-
ments, has been recognized as a psychobiotic for cognitive treatment through gut-brain
signaling [68], and for the biosynthesis of compounds for medical applications [71].

Due to their health-improving effects in nutrition and functional food and nutraceuti-
cals, certain species of LAB have also been exploited as suitable bioagents for dextran pro-
duction. Dextran biosynthesis by various strains differs in their glucosidic linkages, degree
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and type of branching, molecular weight, and physical and chemical characteristics [61].
Dextransucrase can utilize the high binding energy of the glycosidic bond in sucrose to
generate the α-1, 6 linkages of the polymer backbone without using adenosine triphosphate
or cofactors. In the presence of dextransucrase, other natural or synthetic polymers such
as lactulosucrose, α-D-glucopyranosyl fluoride, and p-nitrophenyl-α-D-glucopyranoside
can also act as donor substrates to produce dextran [72]. The bulk production of dextran is
required to meet its extensive needs in medical and food applications.

4.2. Dextran Synthesized by Specific Strains of Leuconostoc Species

The genus Leuconostoc belongs to a group of lactic acid bacteria usually isolated from
fermented vegetables, which includes species involved in the production of exopolysaccha-
rides with commercial potential. High molecular weight dextran produced by Leuconostoc
mesenteroides AA1 have been characterized for their potential applications [61]. Dextrans
produced by wild and mutant strains of L. mesenteroides were studied for their structural
configuration and characterization [73]. Dextran production was studied using LAB strains
isolated from the aguamiel of Agave salmiana; the product was structurally characterized to
analyze the rheological properties of dextran [74].

Recently, in a study performed by Castro-Rodríguez et al. to produce and characterize
dextran of different configurations, employing four strains of L. mesenteroides, which were
isolated from Agave salmiana. The extracellular polysaccharides were produced in a 24 h
process with sucrose substrate at optimized fermentation conditions set at pH 6 and incu-
bated without mixing or shaking at 30 ◦C. The product with 20 g/L yield was precipitated
as a gummy material by the addition of ethanol, and in its characterization, it was found to
be a long-chain glucose polymer known as dextran. Dextrans produced by these strains
have a polymer chain of α (1→ 6) linkages with branching of α (1→ 3). The rheological
behavior of dextran solutions exhibited typical shear thinning and weak gel properties [74].

Commercial dextran is biosynthesized by the non-pathogenic organism L. mesenteroides
strain NRRL B-512. For industrial production, a method is based on the batch-wise culture
of fermentation medium containing sucrose as the main carbon source and supplemented
with yeast extract, casein, peptone, malt extract, tryptone, and the salts of calcium and
phosphate. During fermentation, the pH drops from 7 to 5 due to the generation of lactic
acid; therefore, non-ionic compounds are usually added to maintain the stability of the
bacteria and its enzymes [75]. Table 2 presents some fermentation studies performed for
the production of dextran using selected strains of Leuconostoc species.

Table 2. Dextrans of diverse MW and configuration synthesized by specific isolate strains of Leuconos-
toc species.

Dextran Product
Specification Substrate/s Used in Biosynthesis Strains Used to Conduct

Fermentative-Production Reference

358 MDa
with

α-(1→6)
α-(1→3)

2%, w/v solution of sucrose Leuconostoc carnosum strain CUPV411 an
isolate from apple pomace [76]

46 MDa
56% of α-(1→6)
44% of α-(1→3)

10%, w/v solution of sucrose L. citreum strain SK24.002
an isolate from Fermented pickle [77]

n.a. 15%, w/v solution of sucrose Leuconostoc sp. strain LS1
an isolate from fermented cabbage [78]

n.a. 15%, w/v solution of sucrose Leuconostoc sp. strain LI1, an isolate from
fermented rice batter [78]

93% of α-(1→6)
07% of α-(1→3) 10%, w/v solution of sucrose L. mesenteroides strain SD1, an isolate from

green maguey—Agave salmiana [74]

95% of α-(1→6)
05% of α-(1→3) 10%, w/v solution of sucrose L. mesenteroides strain SD23, an isolate of

Agave salmiana [74]
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Table 2. Cont.

Dextran Product
Specification Substrate/s Used in Biosynthesis Strains Used to Conduct

Fermentative-Production Reference

94% of α-(1→6)
06% of α-(1→3) 10%, w/v solution of sucrose L. mesenteroides strain SF2

an isolate from Agave salmiana [74]

74% of α-(1→6)
26% of α-(1→3) 10%, w/v solution of sucrose L. mesenteroides strain SF3

an isolate from Agave salmiana [74]

970 KDa
with

α-(1→6)
α-(1→3)

22%, w/v solution of sucrose L. mesenteroides strain UICT/L18
an isolate from fermented rice batter [79]

52% of α-(1→6)
48% of α-(1→3) Solution of 10% sucrose with 5% maltose L. mesenteroides strain NRRL B-1149 [80]

10–40 MDa 10%, w/v solution of sucrose L. mesenteroides strain AA1
an isolate from fermented cabbage [61]

960 MDa Solution of 15%, w/v sucrose with pineapple juice L. mesenteroides strain ATCC 10830 [81]

635 KDa
94% of α-(1→6)
06% of α-(1→3)

Solution of 15%, w/v sucrose with tomato juice L. mesenteroides strain BD1710 [82]

25–40 MDa
with

α-(1→6)
α-(1→3)

10%, w/v solution of sucrose L. mesenteroides strain KIBGEIB22M20 [73]

15–20 MDa
with

α-(1→6)
α-(1→3)
ß-(2→6)

10%, w/v solution of sucrose L. mesenteroides strain KIBGE-IB22 [73]

93% of α-(1→6)
07% of α-(1→3) Solution of 5%, w/v sucrose with whey L. mesenteroides strain BA08

an isolate from fermented rice batter [83]

230 MDa
390 MDa
440 MDa
210 MDa

2%, w/v solution of sucrose

L. mesenteroides strains
CM9, an isolate from camel milk,

CM30, an isolate from camel milk,
RTF10, an isolate from meat,

SM34, an isolate from sheep milk

[84]

n.d.
Solutions of

2–10% whey with molasses;
6% cheese-whey

L. mesenteroides strain NRRL B512 [85]

<40 kDa 3%, w/v solution of sucrose L. mesenteroides strain NRRL B512 [86]

<10 kDa 5% milk permeate L. mesenteroides strain NRRL B512 [86]

4.3. Dextran Synthesized by Specific Strains of Lactobacillus Species

Strains of Lactobacillus sp. are grown in a fermentation medium of sucrose and used as
the main carbon source to synthesize exopolysaccharide as an added-value microbial prod-
uct. The sugar is metabolized by bacterial cells directly through the phosphotransferase
system to produce dextran [87]. Bacteria secrete an enzyme dextransucrase extracellularly
for the hydrolysis of sucrose in its monomers, fructose, and glucose. Glucose molecules
are used to form an intermediate with glycosyl-enzyme for their subsequent polymeriza-
tion into polysaccharide molecules of dextran, while fructose could be utilized for cell
growth [88]. Table 3 presents some fermentation studies performed for the production of
dextran using selected strains of Lactobacillus species.

4.4. Dextran Synthesized by Specific Strains of a Few Weissella Species

Weissella genus was earlier considered to be a member of the Leuconostocaceae family,
but later it was placed in Lactobacillaceae. Weissella confusa was formerly known as Lacto-
bacillus confusus as it resembles in numerous properties with other Lactobacillus bacteria.
Hence, it has often been mistaken for bacteria of the Leuconostoc and Pediococcus. It is a
non-motile coccus Gram-positive, catalase-negative, facultative anaerobic with an efficient
fermentative metabolism. Although there are about 22 known species of Weissella, W.
confusa has been generally employed in fermentation for its utilities (Table 4). The studies
for dextran synthesis mainly employed two species of Weissella, namely confusa and ciberia;
some relevant references have been summarized in Table 4.
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Table 3. Dextrans of diverse MW and configuration synthesized by specific isolate strains of Lacto-
bacillus species.

Dextran Product Specification Substrate/s Used in Biosynthesis Strains Used to Conduct
Fermentative-Production Reference

87% of α-(1→6)
13% of α-(1→3) 5%, w/v solution of sucrose

Lactobacillus plantarum
Strain DM5

An isolate from fermented
beverage

[89]

55% of α-(1→6)
45% of α-(1→3) 15%, w/v solution of sucrose L. satsumensis Strain NRRL B-59839

isolated from Kefir grains [90]

n.a. 15%, w/v solution of sucrose L. acidophilus Strains LV3, LV4, LV5
isolate from vaginal swabs [91]

170 MDa 2%, w/v solution of sucrose L. sakei Strain MN1 isolated from
meat products [92]

n.a. 15%, w/v solution of sucrose L. fermentum Strain LS2
isolated from the stool sample [91]

n.a. 15%, w/v solution of sucrose L. plantarum Strain LS3
isolated from the stool sample [91]

123 MDa
with

α-(1→6)
α-(1→3)

2%, w/v solution of sucrose L. mali Strain CUPV271
an isolate from the ropy slime of ham [76]

n.a. 15%, w/v solution of sucrose
L. gasseri Strains LV1, LV2,

isolated from vaginal swabs,
strain LS1 isolated from stool samples

[91]

High molecular weight dextran 5.0%, w/v sucrose L. sakei strain TMW 1.411,
isolated from sauerkraut [87]

High molecular weight dextran with
increasing viscosity 15%, w/v solution of sucrose L. acidophilus strain ST76480.01

an isolate from fermented vegetables [88]

Table 4. Dextrans of diverse MW and configuration synthesized by specific isolate strains of
Weissella species.

Dextran Product Specification Substrate/s Used in Biosynthesis Strains Used to Conduct
Fermentative-Production Reference

180 kDa
96% of α-(1→6)
04% of α-(1→3)

4%, w/v solution of sucrose Weissella sp. Strain TN610
isolated from pear [93]

120–870 kDa
96% of α-(1→6)
04% of α-(1→3)

8%, w/v solution of sucrose W. confusa Strain PP29 isolated from yogurt [94]

120–250 kDa
96% of α-(1→6)
04% of α-(1→3)

Solution of 8%, w/v sucrose with milk W. confusa Strain PP29 isolated from yogurt [94]

10 MDa
97% of α-(1→6)
03% of α-(1→3)

5%, w/v solution of sucrose W. confusa Strain QS813, a
sourdough inoculum [95]

10 MDa
97% of α-(1→6)
03% of α-(1→3)

10%, w/v solution of sucrose W. confusa Strain R003 isolated from
sugarcane juice [96]

>20 MDa
97% of α-(1→6)
03% of α-(1→3)

10%, w/v solution of sucrose
W. confusa Strains A3/2-1, A4/2-1, F3/2-2,

E5/2-1, G3/2-2
isolated from fermented cassava

[97]

1158 kDa
α-(1→6)
α-(1→3)

10%, w/v solution of sucrose
W. confusa Strain K1-Lb5

isolated from kimchi (fermented
food product)

[98]

>20 MDa
97% of α-(1→6)
03% of α-(1→3)

10%, w/v solution of sucrose
W. confusa three strains 8CS-2, 11GU-1,

11GT-2,
isolates of fermented milk

[97]

12 MDa
α-(1→6) 20%, w/v solution of sucrose

W. ciberia Strain 27
isolated from kimchi (fermented

food product)
[99]
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Table 4. Cont.

Dextran Product Specification Substrate/s Used in Biosynthesis Strains Used to Conduct
Fermentative-Production Reference

800 kDa 10%, w/v solution of sucrose W. ciberia Strain JAG8
isolated from apple skin [100]

177 kDa
93% α-(1→6)
07% α-(1→3)

2%, w/v solution of sucrose W. ciberia Strain JAG8
isolated from apple skin [101]

390 KDa
96% α-(1→6)
04% α-(1→3)

5%, w/v solution of sucrose W. ciberia Strain YB-1
isolated from fermented cabbage [102]

97% α-(1→6)
03% α-(1→3) 2%, w/v solution of sucrose W. ciberia Strain RBA-12

isolated from Citrus maxima [103]

5–40 MDa 0.5 M solution of sucrose W. ciberia Strain 10 M [104]

>20 MDa
95% α-(1→6)
05% α-(1→3)

20%, w/v solution of sucrose W. ciberia Strain 11GM-2
isolated from fermented milk [97]

α-(1→6) 10%, w/v solution of sucrose W. ciberia Strain MG1 [105]

>2 MDa
97% α-(1→6)
03% α-(1→3)

15%, w/v solution of sucrose W. ciberia Strain CMGDEX3
isolated from fermented cabbage [106]

5. Conclusions

This article has presented in the first few Sections 2 and 3 a review of the clinical and
commercial importance of dextran polymer and its derivatives. In consideration of the
multifunctional and important uses of dextran in several sectors, its supply in the form of a
base raw material with specific molecular weights and configurations for the preparation
of its structural derivatives is an important matter. Since the supply of polysaccharides
from vegetative sources is not realistic for obtaining materials of desired specifications with
structural uniformity throughout the year, frequent studies were aimed at the biosynthesis
of dextran in a controlled optimized process of bacterial culture cultivation for its sufficient
availability. Microbial fermentative processes employing purposely modified efficient
microbial strains have been reported to be cost-effective and can be manipulated for the
biosynthesis of products of commercial importance using cheaper raw materials; similarly,
dextran can be synthesized from sucrose [107–110]. Selected bacterial strains under cus-
tomized fermentation conditions can be cultivated to synthesize a good yield of dextran in
the microbial production process. Moreover, it is easy to harvest dextran from the culture
medium as an extracellular bacterial polysaccharide produced in the fermentation process.

6. Future Perspectives and Challenges

Different new probiotic and non-probiotic strains and appropriate culture conditions
can be further explored to produce a variety of dextran polymers of varied molecular
specifications suitable for specific applications. Such possibilities, having the availability
of a diverse range of dextran molecules from lower to higher molecular weight and with
different branching in the polymer chain, will increase their wider applications in several
industries. Future perspectives for the requirement of dextran and its derivatives are
numerous and will further expand in the pharmaceutical and food industries. Dextran
will always be used as an ideal inert polysaccharide necessary for analytical procedures in
research and development for clinical and various industrial products.

Although low molecular weight fractions of dextran polymer can be prepared by acid
hydrolysis of high MW-dextran polysaccharide, low MW dextran fractions obtained by the
action of acid in the chemical synthesis process would require a few steps of purification.
That would increase the total cost of its production process. Therefore, a cost-effective
method would be preferred, and for that, bio-synthesis employing specific strains of
bacteria (Tables 2–4) metabolizing a common easily available carbon source like sucrose
offers an economical process for obtaining different MW-dextran products. The challenges
could be in optimizing bioprocesses from bench-scale to production-scale, when newer
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strains are used. The bioreactors of different configurations for continuous cultivation
of bacterial cultures could take considerable effort, depending on the type of bacterial
species, to optimize the yield of dextran in a cost-effective production process. However,
based on the information presented in the above tables, appropriate bacterial strains can be
selected for a dextran product of the desired molecular specification, and subsequently, the
production process can be upgraded for the rate and economic yield.
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