
Citation: Bae, H.; Park, J. Proactive

Service Caching in a MEC System by

Using Spatio-Temporal Correlation

among MEC Servers. Appl. Sci. 2023,

13, 12509. https://doi.org/10.3390/

app132212509

Academic Editor: Dimitris Mourtzis

Received: 21 September 2023

Revised: 14 November 2023

Accepted: 17 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Proactive Service Caching in a MEC System by Using
Spatio-Temporal Correlation among MEC Servers
Hongseob Bae and Jaesung Park *

School of Information Convergence, Kwangwoon University, Seoul 01897, Republic of Korea; bhs8931@kw.ac.kr
* Correspondence: jaesungpark@kw.ac.kr; Tel.: +82-2-940-8124

Abstract: Optimizingthe cache hit rate in a multi-access edge computing (MEC) system is essential
in increasing the utility of a system. A pivotal challenge within this context lies in predicting the
popularity of a service. However, accurately predicting popular services for each MEC server (MECS)
is hindered by the dynamic nature of user preferences in both time and space, coupled with the
necessity for real-time adaptability. In this paper, we address this challenge by employing the
Convolutional Long Short-Term Memory (ConvLSTM) model, which can capture both temporal
and spatial correlations inherent in service request patterns. Our proposed methodology leverages
ConvLSTM for service popularity prediction by modeling the distribution of service popularity in
a MEC system as a heatmap image. Additionally, we propose a procedure that predicts service
popularity in each MECS through a sequence of heatmap images. Through simulation studies
using real-world datasets, we compare the performance of our method with that of the LSTM-based
method. In the LSTM-based method, each MECS predicts the service popularity independently.
On the contrary, our method takes a holistic approach by considering spatio-temporal correlations
among MECSs during prediction. As a result, our method increases the average cache hit rate by
more than 6.97% compared to the LSTM-based method. From an implementation standpoint, our
method requires only one ConvLSTM model while the LSTM-based method requires at least one
LSTM model for each MECS. Thus, compared to the LSTM-based method, our method reduces the
deep learning model parameters by 32.15%.

Keywords: proactive service caching; cache hit rate; spatio-temporal correlation; heatmap sequence

1. Introduction

Online mobile services are evolving from traditional information searching and re-
trieval towards innovative artificial intelligence (AI)-based services. This transformative
shift encompasses a spectrum of functionalities, including language translation, image
recognition, autonomous driving, artificial intelligence of things (AIoT), and augmented
reality/virtual reality [1,2]. The advent of these advanced services not only necessitates
substantial computing power and data but also demands the swift delivery of results to
end users. The prevalent cloud computing service paradigm has been instrumental in
supporting computationally intensive services [3,4]. However, a common challenge arises
due to the considerable distance between end users and cloud servers. Furthermore, the
escalating volume of service requests contributes to heightened congestion levels in the
backhaul network. Consequently, while the cloud computing service paradigm provides
significant computing power and extensive storage to end users, it encounters challenges
in meeting the service delay requirements of AI-based services [5,6]. In response to this
challenge, the Multi-Access Edge Computing (MEC) system has emerged [7,8]. In the
MEC system, a cluster of MEC servers (MECSs) strategically positions itself in proximity
to end users. This strategic placement enables users to offload computing-intensive and
delay-sensitive tasks to the nearest MECS. Subsequently, the MECS processes these tasks
and transmits the results back to the users. By bringing servers into close proximity to

Appl. Sci. 2023, 13, 12509. https://doi.org/10.3390/app132212509 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132212509
https://doi.org/10.3390/app132212509
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8976-6480
https://doi.org/10.3390/app132212509
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132212509?type=check_update&version=1

Appl. Sci. 2023, 13, 12509 2 of 22

users, the MEC system effectively mitigates service delays and alleviates the strain on the
backhaul network.

In the realm of MEC system design, a pivotal challenge lies in the task offloading
decision problem. Various task offloading methods have been proposed [9,10], generally
falling into two primary categories. The first group involves users making intelligent
offloading decisions, aiming to optimize service delay and the energy required for service
completion [11,12]. Conversely, another research strand focuses on MEC system operators
striving to optimize the utilization of computing and communication resources while en-
suring users experience reasonable service delays [13,14]. However, these approaches often
overlook the crucial aspect of service availability for the offloaded tasks. Essentially, they
assume that services requested by tasks offloaded from users to the MECS are always avail-
able at the MECS. However, due to the inherent limitations of MECS in terms of computing
power and storage compared to cloud servers, it can only accommodate a subset of the
services available on cloud servers. Consequently, if MECS lacks the service requested by
the offloaded task, it must fetch the service from the cloud server. Given that the installation
and loading of services on MECS entail time, the effective management of service caching
emerges as a critical factor in mitigating service delays within the MEC system.

Ensuring the inclusion of the most popular services in each MECS cache is important
in achieving a higher cache hit rate. The popularity of services within MECS is intricately
linked to the service preferences of users in the respective MECS service area. The dynamic
nature of user mobility causes changes in the set of users within the MECS service area
over time. Moreover, user service preferences evolve over time as well. Consequently,
determining the optimal service set to be cached in a specific MECS within the MEC system
presents a significant challenge. To address this challenge, popularity prediction methods
have been proposed [15,16]. These methods delve into diverse metrics for each service,
scrutinize their changing patterns, and extrapolate the future popularity of each service.
By leveraging these identified patterns, they make estimates about the future popularity
of each service. However, these methods primarily rely on the temporal relationships
among services within individual MECS to forecast service popularity. Since users change
locations over time, not only the users currently residing in the service area of a MECS
but also the users served by the neighboring MECSs affect the future service popularity in
the MECS. Consequently, integrating the spatial–temporal correlations between MECS en-
hances the accuracy of service popularity predictions. From an implementation standpoint,
the number of predictors required in these popularity prediction methods escalates with
the expansion of services and MECSs. Thus, concerns about scalability may surface as the
MEC system grows.

In response to the identified challenges, we propose a proactive service caching
methodology inspired by the Convolutional Long Short-Term Memory (ConvLSTM) model,
recognized for its efficacy in video frame prediction [17,18]. Our approach seeks to exploit
the inherent spatio-temporal relationships among service popularity within a MEC system.
To operationalize the ConvLSTM model for this purpose, we discretize time into time slots
and construct a heatmap that collectively depicts the distribution of service popularity in
each MECS during a given time slot. Treating each heatmap in a time slot as a frame, we
conceptualize the sequence of heatmaps as a video. Subsequently, we train a ConvLSTM
model to predict the upcoming heatmap based on a few recent heatmaps. At the beginning
of each time slot, we leverage the trained model to identify the most popular services
from the predicted heatmap. These services are then selected to be cached on each MECS
for the ensuing time slot. Utilizing a heatmap containing the popularity of each service
across MECS as input enables us to comprehensively predict the popularity of all services
in all MECS simultaneously. This holistic approach contributes to an enhanced service
cache hit rate in each MECS. In addition, our methodology stands out by requiring only
a single predictor model, as opposed to conventional methods necessitating separate
prediction models for each service and MECS. This consolidation not only streamlines the

Appl. Sci. 2023, 13, 12509 3 of 22

predictive process but also significantly improves the scalability of a MEC system. Our
main contributions can be summarized as follows.

• We propose a framework for proactive service caching by taking a deep learning
approach. Inspired by the ConvLSTM model that successfully predicts video frames
by exploiting the hidden spatio-temporal relationships in the frames, we incorporate
the ConvLSTM model as a fundamental element in our proactive service caching
methodology.

• We propose a procedure that utilizes ConvLSTM model for accurately predicting
service popularity for each MECS over time. We construct heatmaps collectively
representing the distribution of service popularity in a MEC system during each
time slot. Treating each heatmap in a time slot as a frame, we conceptualize the
sequence of heatmaps as a video. We predict the next heatmap by using the ConvLSTM
model and identify the most popular services for the upcoming time slot from the
predicted heatmap.

• Through simulation studies using real-world datasets, we verify that our method
outperforms conventional LSTM-based method in terms of the cache hit rate and the
amount of model parameters required to predict service popularity in a MEC system.

The rest of the paper is organized as follows. In Section 2, we discuss the related
works. We explain the system model and formalize the problem in Section 3. In Section 4,
we present our proactive caching strategy. In Section 5, we verify the proposed method
by comparing its performance with that of the conventional method through simulation
studies using real-world datasets. We conclude the paper with future research directions in
Section 6. Before we proceed, in Table 1, we present the notations used in this paper.

Table 1. Notations used.

Notation Meaning

M = {1, . . . M} A set of MECS in a MEC system
K = {1, . . . K} A set of services provided by a MEC system

ηm Service cache size of MECS m
am,k(t) 1: a service k is cached at MECS m during a time slot t, 0: otherwise.

AM×K(t) Service cache state of a MEC system during a time slot t
Sm(t) A set of services cached at MECS m during a time slot t
Um(t) A set of users in the service area of MECS m during a time slot t

bm,u,k(t)
1: a service k requested by user u is at MECS m during a time slot t. 0:

otherwise
fm,k(t) popularity of a service k in MECS m during a time slot t

FM×K(t) service popularity matrix of a MEC system during a time slot t
wa the number of recent past heatmap images used for prediction

bm,k(t) the number of times MECS m receives the request of service k during a time slot t
Zm(t) the set of bm,k(t)s at a MECS m (∀k ∈ K)
νm,k(t) fm,k(t) normalized by f M

m (t) = maxk∈K(fm,k(t))
Ω(t) a heatmap image of a MEC system at the end of a time slot t
Ω̂(t) predicted heatmap image of a MEC system at the start of a time slot t

δm,k(t) popularity prediction error for a service k at MECS m during a time slot t
am(t) service cache similarity degree at MECS m during a time slot t
ρm(t) relative service cache hit rate at MECS m during a time slot t

2. Related Works
2.1. Caching in a MEC System

Various cache management methods have been proposed for a MEC system. In [19,20],
a game-theoretic approach is taken for making a caching decision. After modeling the
interaction between a MECS and wireless devices as a two-stage Stackelberg game under
incomplete information, the authors in [19] devise two strategies for the game. The first
strategy is used for a MECS to make the caching and the price decision. The second
strategy is used for a wireless device to make a task offloading decision. A stochastic

Appl. Sci. 2023, 13, 12509 4 of 22

differential game is used in [20] to formulate a dynamic cache control problem. Since the
computational complexity of the problem is huge, both the mean-field game theory and
the stochastic-geometry are used to transform the original problem into a more tractable
form. Then, authors propose an iterative algorithm for optimal caching control. However,
these game-theoretic methods require information exchange among the players. Thus,
the control overhead increases in proportion to the number of devices and the number
of MECSs. In addition, they require an iterative process to reach an equilibrium state.
Therefore, they cannot make a decision until the iterative process converges nor adapt
quickly to topology changes.

In [21], a service cache placement problem and a task offloading problem are jointly
investigated. The joint problem is formulated as an average service response time mini-
mization problem with a long-term energy consumption constraint. To resolve the problem
without unknown future information, an online algorithm is devised by using the Lyapunov
optimization framework and deep reinforcement learning (DRL). DRL-based methods are
also proposed in [22,23]. The authors in [22] propose a cooperative video caching method
for a MEC system by combining the knowledge graph (KG) and DRL. The KG is used to
determine a set of candidate videos by inferrinIn [23], a model-free reinforcement learning
algorithm called RL-Cache is proposed to decide whether or not to accept a requested
object into the content distribution network’s cache. RL-Cache uses the size, frequency,
and request recency of an object as an input feature for a feed-forward neural network that
determines the admission probability of an object. However, these DRL-based methods
do not exploit the spatio-temporal relation among the cached services in each MECS. In
addition, they are reactive in that they make a caching decision in an on-demand manner.
In [24], the authors analyze the road side unit (RSU) historical content request data and
calculate the spatial–temporal correlation among the RSUs in terms of the request number,
which is used to predict the service popularity in each RSU. They also employ multi-agent
RL (MARL) to cope with the diversity of the popularity. However, unlike the method
in [24] that uses a traditional statistical tool to directly calculate the correlation, we adopt a
deep learning model to use the hidden features in the spatio-temporal relationships.

To make a caching decision in a proactive manner, the dynamics of service popularity
is often considered as a time series, and a deep learning model that can handle sequential
data is adopted to predict the future service popularity. An LSTM encoder and decoder
model is used in [25] to map a sequence of objects requested so far to the top-k objects
most likely to be requested in the future. In [26], a two-step model is proposed. In the first
step, the popularity of a video genre in a future time slot is predicted. Then, the popularity
of a video belonging to the prevalent genre in the same time slot is further predicted in
the second step. An LSTM model is also used in [27]. The authors predict the number
of content requests by the seq2seq LSTM model. Using the priority of the content and
predicted popularity, they solve the cache placement problem with the binary particle
swarm optimization (BPSO) technique. However, since BPSO is an iterative process, it
takes time to find a solution.

Attention-based methods have been proposed for a caching problem in a MEC system.
In [15], the authors propose a multi-head attention-based popularity prediction model
(MAPP). After proposing an architecture that integrates MEC in social content-centric
network, they use MAPP to predict content popularity by considering the history of
content popularity, social relationships, and geographic location. However, they mainly
use temporal correlations in the data when predicting the popularity. A transformer-based
edge (TEDGE) caching scheme based on the attention-based vision transformer (ViT) is
proposed in [28]. At the end of each time window, they aim to determine the top-k popular
contents in the future by directly mapping the request patterns of all contents during the
current time window to their future request patterns. In [29], authors improve the TEDGE
by proposing a self-supervised caching scheme called CoPo. CoPo distinguishes the input
samples by utilizing the contrastive learning paradigm. Since CoPo does not need all the
input request patterns of all the contents at the same time, it can reduce the algorithm

Appl. Sci. 2023, 13, 12509 5 of 22

complexity, and even the number of contents increases. In addition, CoPo does not require
manual labeling for model training. In [30], a parallel ViT with cross attention (ViT-CAT)
fusion is proposed, which is composed of two ViT networks. The first ViT network collects
the temporal correlation of a content, while the second ViT network captures the spatial
correlation between different contents.

In [31], the authors focus on the popularity prediction problem while preserving the
privacy of users. They propose an efficient content popularity prediction of a privacy-
preserving (CPPPP) scheme based on federated learning and the Wasserstein generative
adversarial network (WGAN). The goal of CPPPP is to predict future content popularity by
generating fake samples that can represent the overall trend of content popularity. However,
since they use federated learning, it is inevitable to exchange model parameters between
users and MECSs multiple times. Thus, there is a high possibility that learning will be
delayed due to the increased load on the access network.

Our method differs from these methods mainly in two ways. The popularity of a ser-
vice within a MECS is determined by the set of users within its service region and the
service preference of the users, both of which change over time due to users mobility and
changes in their service request patterns. Therefore, during a time interval, the popularity
of a service within a single MECS is influenced not only by the users that it serves but also
by the users moving from its neighboring MECSs. However, previous methods consider
only the temporal correlation among the service popularity within a single MECS when
they predict the popularity of services. On the contrary, we consider not only the temporal
correlation in a single MECS but also the spatial correlation among MECSs to predict the
service popularity distribution in a MEC system. In other words, we comprehensively
consider the service popularity distribution over a MEC system and predict the popularity
of each service in each MECS at the same time. In terms of implementation, our method
reduces the amount of storage required to predict the service popularity. Since previous
methods independently predict the service popularity in each MECS, the number of pre-
dictors required in a MEC system increases as the number of services and the number of
MECSs increases. However, since our method simultaneously predicts the future popu-
larity of all services in all MECSs by utilizing the spatio-temporal correlation structure, it
needs only one predictor. We summarize the related works in Table 2.

Table 2. Cross-comparison of caching methods in a MEC system (DRL: Deep Reinforcement Learning,
LSTM: Long Short-Term Memory, ConvLSTM: Convolutional LSTM, ViT: Vision Transformer, BPSO:
Binary Particle Swarm Optimization, CL: Contrastive Learning, FL: Federated Learning, GAN:
Generative Adversarial Network).

Ref. Control Objective Algorithm

[19] pricing maximize MECS Profit Stakelberg game, knapsack
[20] cost function optimize distributed caching Mean-Field Game
[21] virtual queue minimize completed task delay Lyapunov Opt. with DRL
[22] graph among contents minimize service delay Knowledge graph with DRL
[23] admission probability maximize cache hit rate Model-free RL
[24] spatio-temporal correlation maximize cache hit rate Multi-Agent RL
[25] temporal correlation boost cache hit rate LSTM model
[26] temporal correlation improve cache hit rate LSTM model
[27] temporal correlation maximize cache hit rate LSTM model with BPSO
[28] temporal attention predict top-K popular contents ViT model
[29] temporal attention predict content popularity LSTM with CL
[30] spatio-temporal correlation predict content popularity ViT with cross attention
[31] fake data high cache hit rate FL with GAN

proposed spatio-temporal correlation predict top-K popular services ConvLSTM

2.2. Time Series Prediction Methods

Time series data analysis and prediction have been extensively researched for a long
time and have found applications in various industries, including finance, climate, health-

Appl. Sci. 2023, 13, 12509 6 of 22

care, transportation, and more. Research endeavors to analyze or predict time series data
through traditional statistical models have been actively conducted. The drawback of the
traditional statistical models lies in their application of regression to certain fixed factors us-
ing the most recent historical data. Therefore, the prediction performance tends to decrease
when they are applied to volatile time series.

Time series analysis techniques employing deep learning technologies demonstrate
superior performance by overcoming these challenges. These methods are categorized
into RNN-based, Transformer-based, and MLP-based techniques. The RNN-based ap-
proaches [32–34] enable effective representation of the dynamic characteristics inherent
in time series data. However, the RNN-based approach requires the computation and
management of hidden states at every time step, leading to an increased computational
cost and prolonged training times, particularly when dealing with extensive datasets.

The Transformer-based method improves the performance by addressing the structural
limitations of the RNN-based method. Unlike RNN-based techniques that utilize recurrent
networks, the Transformer-based technique employs positional encoding to indicate the
temporal sequence of the data [35,36]. Through selectively assigning weights to crucial
information from the past, the Transformer-based method learns to focus on significant
features and past trends. However, since the Transformer-based model is characterized by
its intricate architecture, it presents challenges in terms of configuration complexity and
result interpretation.

MLP-based models, such as N-BEATS [37] and NHITS [38], revolve around the chal-
lenges faced by the Transformer-based method. Since they use a simple MLP architecture,
they are simple, flexible, and make it easy to interpret the learned time series features.
These methods exhibit excellent performance in a single variate and a multi-variate time
series data prediction. However, they predict solely based on the temporal correlations
within the given time series data. In our service popularity prediction problem, the time
series data in each MECS have a relationship not only in the time domain but also in the
space domain. If these spatio-temporal relationships can be utilized, the service popularity
prediction accuracy will increase. Therefore, we adopt the ConvLSTM model to utilize the
spatio-temporal correlation inherent within the service popularity time series data among
the MECSs.

2.3. ConvLSTM Model

The ConvLSTM model is proposed to solve a spatio-temporal sequence forecasting
problem by combining the fundamental principles of the LSTM model and the CNN
model [17]. The LSTM model has a memory cell storing state information. The information
flow through a memory cell is controlled by three gates, named as an input gate, a forget
gate, and an output gate. By efficiently handling temporal correlations in the sequence data,
the LSTM model has effectively solved real-life sequence modeling problems. However,
since the LSTM model uses 1D tensor, it is not adequate for spatial data.

The ConvLSTM model resolves the issue by encoding the spatial information and
incorporating a convolutional structure into the LSTM model. The ConvLSTM model
resolves the issue by encoding the spatial information and incorporating a convolutional
structure into the LSTM model. In Figure 1, we show the operation of a ConvLSTM cell at
time step t. The notations used in this figure are summarized in Table 3.

In the ConvLSTM model, all inputs Xt, cell outputs ct, hidden states ht, and the outputs
of all gates (it, ft, ot) are 3D tensors. The main process in a ConvLSTM cell is described as

it = σ(Wxi ∗ Xt + Whi ∗ ht−1 + Wci ◦ ct−1 + bi)

ft = σ(Wx f ∗ Xt + Wh f ∗ ht−1 + Wc f ◦ ct−1 + b f)

ct = ft ◦ ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ ht−1 + bc)

ot = σ(Wxo ∗ Xt + Who ∗ ht−1 + Wco ◦ ct + bo)

ht = ot ◦ tanh(ct),

(1)

Appl. Sci. 2023, 13, 12509 7 of 22

where the operator ∗ represents the convolutional operation, and ◦ denotes the Hardmard
product. The ConvLSTM model has been used to predict the next frame in a video [18,39].

Figure 1. The inner structure of a ConvLSTM cell at time step t. The operator ∗ represents the
convolutional operation, and ◦ denotes the Hardmard product. In addition, σ represents the sigmoid
function, and tanh represents the hyperbolic tangent function.

Table 3. Notations used in the inner structure of a ConvLSTM cell at time step t.

Notation Meaning

Xt Input at time step t.
it Output of an input gate at time step t.
ft Output of a forget gate at time step t.
ot Output of an output gate at time step t.
ct Cell state at time step t.
ht Hidden state of a cell at time step t.

Wxi Model parameters used for convolution of Xt in an input gate.
Whi Model parameters used for convolution of ht−1 in an input gate.
bi Bias in an input gate.

Wci Model parameters used for element-wise product with ct−1 in an input gate.
Wx f Model parameters used for convolution of Xt in a forget gate.
Wh f Model parameters used for convolution of ht−1 in a forget gate.
b f Bias in a forget gate.

Wc f Model parameters used for element-wise product with ct−1 in a forget gate.
Wxc Model parameters used for convolution of Xt when making ct.
Whc Model parameters used for convolution of ht−1 when making ct.
bc Bias used when making ct.

Wxo Model parameters used for convolution of Xt in an output gate.
Who Model parameters used for convolution of ht−1 in an output gate.

bi Bias in an output gate.
Wci Model parameters used for element-wise product with ct in an output gate.

3. System Model

We consider a MEC system composed of M MECSs and a remote server hosting
a controller. We denote the set of MECSs in the system asM = {1, . . . , M}. We depict the
system model in Figure 2, which also shows the overall process flow. We assume that each
MECS m ∈ M is colocated with a base station, and a server is connected to all the MECSs
through a backhaul network. Periodically, the controller collects the service popularity
information from each MECS and makes a caching decision for all m ∈ M. We denote the
set of services that a MEC system provides as K and K = |K|, where |K| is the cardinarity
of a set K. Each user asks for a service by offloading its tasks to the nearest MECS by using
a wireless link between the user and the base station colocated with the MECS. If an user
u offloads its task to a MECS m and the task is processed by m, the MECS m is called the
serving MECS of a user u. We consider a discrete time controller by dividing time into slots
of length τ.

Appl. Sci. 2023, 13, 12509 8 of 22

Figure 2. System model.

A server can provide all the services in K while a MECS m can serve a subset of K
depending on its service cache size ηm and a caching decision made by a controller. We
introduce a variable am,k(t) to represent the service cache state of a MECS m during a time
slot t. Specifically, am,k(t) = 1 indicates that a MECS m contains the service k in its service
cache during a time slot t. Otherwise, am,k(t) = 0. Then, the service cache state of a MECS
m during a time slot t is represented by the following service cache vector.

am(t) = {am,k(t)|k ∈ K}. (2)

Accordingly, the service cache state of a MEC system during a time slot t is represented
by a M× K matrix

AM×K =


a1(t)
. . .

am(t)
. . .

aM(t)

 =


a1,1(t) . . . a1,K(t)

.
am,1(t) . . . am,K(t)

.
aM,1(t) . . . aM,K(t)

. (3)

We denote the set of services in the service cache of a MECS m during a time slot t as

Sm(t) = {k|am,k(t) = 1, ∀k ∈ K}. (4)

Our goal is to devise a controller that determines an optimal Sm(t), ∀m ∈ M (i.e., an op-
timal AM×K(t)) at the beginning of a time slot t, so that the cache hit rate in a MEC system
during the time slot is maximized. We denote the set of users in the service area of a MECS
m during a time slot t as Um(t). We introduce an indicator function bm,u,k(t). When
bm,u,k(t) = 1, it represents the situation where a task offloaded from a user u to a MECS m
during a time slot t requests for a service k. Otherwise, bm,u,k(t) = 0. Then, our problem is
formally stated as follows.

A∗M×K(t) = argAM×K(t) max ∑
m∈M

∑
u∈Um(t)

∑
k∈K

am,k(t)bm,u,k(t),

s.t. ∑
k∈K

am,k(t) ≤ ηm, ∀m ∈ M.
(5)

Appl. Sci. 2023, 13, 12509 9 of 22

An optimal AM×K(t) is determined by the popularity of each service in each MECS
during a time slot t. In other words, if we know the popularity of each service within the
service area of each MECS during a time slot, the optimal Sm(t), which we denote as S∗m(t),
can be determined by selecting the top ηm services with the highest popularity in each
MECS m. Then, the element a∗m,k(t) in the optimal am(t) denoted by a∗m(t) is determined as

a∗m,k(t) =

{
1 if k ∈ S∗m(t)
0 otherwise,

(6)

and the optimal AM×K(t) becomes A∗M×K(t) = {a∗m(t) : m ∈ M}T . If we denote the
popularity of a service k in a MECS m during a time slot t as fm,k(t), it is determined by the
service preference of the users in Um(t), which is quantified as ∑u∈Um bm,u,k(t). However, in
terms of implementation, a controller cannot know bm,u,k(t) at the beginning of a time slot
t, which makes it difficult to find an optimal AM×K(t) at the beginning of each time slot.

To resolve these issues, we take a measurement-based approach inspired by a deep
learning model for a sequence forecasting problem. The popularity of a service k in a MECS
m is affected by ∑u∈Um(t) bm,u,k(t). User service preferences (bm,u,k(t)) vary in space and
time because both Um(t) and the service preferences in Um(t) change in time and space.
For example, the services used by users during daytime at the workplace differ from those
utilized in the evening at home. Specifically, since a user can move from a MECS n to
its neighboring MECS m during a time slot and vice versa, Um(t) is influenced not only
by Um(t− 1), Um(t− 2), . . . , but also by Un(t− 1), Un(t− 2), . . . , where n ∈ M− {m}.
Therefore, the service popularity distribution in a MECS m and that in MECS n during
a time slot exert mutual influence on each other. In other words, fm,k(t) is affected by
the spatio-temporal correlation among the MECSs in terms of the set of users (Um(t) and
Un(t)) and their service preferences (bm,u,k(t) and (bn,u,k(t))). Therefore, we transform the
problem in Equation (5) into a spatio-temporal sequence forecasting problem as follows.
We denote the service popularity matrix of a MEC system during a time slot t as M× K
matrix FM×K(t) = { fm(t)|m ∈ M}T , where fm(t) = { fm,k(t)|k ∈ K}. Then, we convert
the problem in Equation (5) into finding an optimal FM×K(t) at the end of each time slot
as follows.

F∗M×K(t) = argFM×K(t) max Pr(FM×K(t)|FM×K(t− 1), . . . , FM×K(t− wa + 1)),

s.t. ∑
k∈K

am,k(t) ≤ ηm, ∀m ∈ M, (7)

where wa is the number of the most recent service popularity matrix used for predicting
F∗M×K(t), and the notation Pr(X) represents the probability of X. Hereafter, we will call wa
as a window size. Once F∗M×K(t) = { f ∗1 (t), . . . , f ∗M(t)} is determined, the optimal service
cache in each MECS m is constructed by selecting the top ηm services with the highest
popularity in f ∗m(t). To fast resolve the popularity prediction problem in Equation (7) at the
beginning of each time slot, we propose a deep learning approach, which will be detailed
in Section 4.

4. Proactive Service Caching Method

In Figure 3, we show the overall procedure of our proactive service caching scheme.
Our method is composed of two main modules. The first module is responsible for
collectively representing the popularity distribution of each service within the MEC system.
A controller periodically collects ∑u∈Um(t) bm,u,k(t) from each MECS m ∈ M and builds
a M× K heatmap image to collectively represent the service popularity of each service
in each MECS. The second module collectively determines the services to be cached by
each MECS for the next time slot with the ConvLSTM model. In the second module,
a controller takes the recent wa consecutive heatmap images and predicts the next heatmap
image. By using the estimated service popularity of each service in each MECS contained

Appl. Sci. 2023, 13, 12509 10 of 22

in the predicted heatmap image, a controller simultaneously determines the services to be
cached by each MECS for the next time slot. We will detail the operation of each module in
Sections 4.1 and 4.2.

Figure 3. Service cache decision procedure.

4.1. Collective Service Popularity Representation

When a sequence of video frames is given, the ConvLSTM model can predict the
next frame. Specifically, the ConvLSTM model predicts the value of each pixel in the next
frame by considering the spatio-temporal correlation in a set of past video frames. To
take advantage of this feature of the ConvLSTM model, we construct a heatmap repre-
senting the service popularity distribution over a MEC system during a time slot and
use it as an input to the ConvLSTM model. Specifically, each MECS m maintains a set
Zm(t) = {bm,1(t),, bm,K(t)} during a time slot, where bm,k(t) = ∑u∈Um(t) bm,u,k(t). At
the end of each time slot, a controller collects Zm(t) from each MECS m ∈ M. Then, a con-
troller calculates fm,k(t)s for all m ∈ M and k ∈ K at the end of each time slot as follows.

fm,k(t) =
bm,k(t)

∑k∈K bm,k(t)
. (8)

By considering each fm,k(t) as the (m, k)-th pixel in the heatmap image, a controller
constructs a M× K grayscale heatmap image with the set of fm,k(t)s.

Since each fm,k(t) << 1 in general, it is not suitable to directly use fm,k(t)s for training
a ConvLSTM model. To enhance the model training performance, we normalize fm,k(t)s in
each MECS m as follows. At the end of each time slot, a controller derives the popularity of
the most popular service in each MECS m, f M

m (t) = maxk∈K{ fm,k(t)}. Then, the controller
normalizes fm,k(t) with f M

m (t) as

νm,k(t) =
fm,k(t)
f M
m (t)

. (9)

Then, a controller obtains a normalized service popularity vector for a MECS m during
a time slot t as follows.

νm(t) = {νm,1(t), . . . , νm,K(t)}. (10)

Therefore, at the end of a time slot t, a controller constructs a heatmap image for
a MEC system as follows.

Appl. Sci. 2023, 13, 12509 11 of 22

Ω(t) =


ν1(t)
. . .

νm(t)
. . .

νM(t)

 =


ν1,1(t) . . . ν1,K(t)

.
νm,1(t) . . . νm,K(t)

.
νM,1(t) . . . νM,K(t)

 (11)

4.2. Service Cache Decision

Given a sequence of Ω(t)s, we construct a training set and a validation set. We
group a set of consecutive images X(t) = {Ω(t), Ω(t − 1), . . . , Ω(t − wa + 1)} as anin-
put to the ConvLSTM model and use Y(t) = Ω(t + 1) as a label for X(t). Once a Con-
vLSTM model is trained, it predicts Ω(t + 1) when X(t) is given. We denote the pre-
dicted Ω(t + 1) as Ω̂(t + 1) = {ν̂1(t + 1), . . . , ν̂M(t + 1)}T . For each MECS m ∈ M,
a controller sorts the elements in ν̂m(t + 1) in a descending order and makes a sorted set
ν̃m(t + 1). We denote the sorted Ω̂(t + 1) as Ω̃(t + 1) = {ν̃1(t + 1), . . . , ν̃M(t + 1)}T , where
ν̃m(t + 1) = {ν̃m,1(t + 1), . . . , ν̃m,K(t + 1)}.

Since the cache size of a MECS m is ηm, a controller determines the services for
Sm(t + 1) by selecting the most popular ηm services according to ν̃m(t + 1). In other words,
Sm(t + 1) is composed of the services whose predicted popularity is larger than or equal to
ν̃m,ηm(t + 1). We summarize the service cache decision algorithm in Algorithm 1.

Algorithm 1 Service Cache Decision Algorithm

1: Initial State: X(t) = {Ω(t− 1), Ω(t− 2), . . . , Ω(t− wa)}
2: At the end of a time slot t:
3: Collect Zm(t)s from all m ∈ M.
4: Calculate fm,k(t) in Equation (8), ∀m ∈ M and ∀k ∈ K.
5: Normalize fm,k(t)s to make νm(t) in Equation (10).
6: Construct a heatmap Ω(t) in Equation (11).
7: Build an input sequence X(t) = {Ω(t), Ω(t− 1), . . . , Ω(t− wa + 1)}.
8: Predict Ω(t + 1): Ω̂(t + 1) = ConvLSTM (X(t)).
9: for m ∈ M do

10: Build ν̃m(t + 1) by sorting ν̂m(t + 1) in a descending order
11: Sm(t + 1) = ∅
12: i = 1
13: while i ≤ ηm do
14: Get service id k corresponding to the i-th element of ν̃m(t + 1)
15: Sm(t + 1) = Sm(t + 1) ∪ {k}
16: i ++

5. Performance Evaluation

In this section, we evaluate the performance of our method through simulation studies
using real-world datasets. We compare our method with an LSTM method in terms of the
service popularity prediction behavior and the cache hit rate. In the LSTM method, each
MECS has an LSTM predictor that estimates the popularity of each service during the next
time slot. After predicting the popularity of all services, the LSTM method determines
Sm(t) by choosing the top ηm services with the highest predicted popularity. We use the
publicly known default values of the ConvLSM model and LSTM model for configuring
their hyperparameters. Specifically, we use the hyperparameters in [40] to configure the
hyperparameters of the ConvLSTM model and employ the hyperparameters in [41] to
configure the LSTM model. We summarize the parameters used for each model in Table 4.
For our simulation study, we use a computer equipped with an Intel i9-10980XE CPU and
four Nvidia GeForce RTX 3080. The size of the random access memory is 128 GB, and
its operating system is Window 10. When we run the ConvLSTM model, we use Python

Appl. Sci. 2023, 13, 12509 12 of 22

version 3.8.3, TensorFlow 2.5.0, and TensorFlow-gpu 2.5.0. To run the LSTM model, we use
Python 3.8.3, TensorFlow 2.10.0, and Tensorflow-gpu 2.10.0.

Table 4. Parameters used to train each model.

ConvLSTM LSTM

hidden layers 3 3
units (64, 64, 64) (100, 1, 100)

total params 746,689 121,301
epochs 20 20

Input {Ω(t), . . . , Ω(t− wa + 1)} {νm(t), . . . , νm(t− wa + 1)}, ∀m ∈ M
Output Ω̂(t + 1) ν̂m(t + 1), ∀m ∈ M

5.1. Simulation Setup

In Figure 4, we show the topology of a MEC system we configured for simulation
studies. We evenly deploy M = 9 MECSs in a 3× 3 grid, which ranges from (0, 0) to (2 km,
2 km). We locate each MECS at each grid point. We set the number of services that a MEC
system provides to 64 (K = 64) and the cache size of each MECS to η.

Figure 4. Topology of a MEC system.

To configure the popularity of each service in each MECS, we use the MovieLens 25 M
dataset D measured from 1 January 2019 to 21 November 2019 by GroupLens Research [42].
The dataset contains 1,202,602 ratings for 41,440 movies by 10,619 users. Assuming the
patterns that the users rate the movies are similar to the patterns that they request for the
MEC services, we configure the popularity of each service according to the popularity
of movies in the dataset. Specifically, we define the popularity of a movie i in D as
gi = ni/ ∑j∈D nj, where ni is the number of times that a movie i is rated in the dataset. We
sort gi in a descending order and investigate its distribution. We find that the popularity
distribution follows the Pareto principle in that the top 20% popular movies take 84.36%
of the total movies. Assuming that the popularity of a service in a MEC system will also
follow the Pareto principle, we configure the popularity of a service k ∈ K in a MECS
m by setting its popularity to that of the set of movies as follows. We denote the set
of movies belonging to the top 20% popular movies as P . Without loss of generality,
we assume that both the elements in P and those in D − P are sorted in a descending
order according to gi. We set pm = b0.2Kc and divide the elements in P evenly into pm
subsets P0, . . . , Ppm−1. We also divide the elements in D − P evenly into K − pm subsets
Ppm , . . . , PK−1. To determine the popularity of each service in each MECS, we randomly
assign a service identification number k ∈ [0, K − 1] to each subset P0, . . . , PK−1 without
duplication. Therefore, if a number k is assigned to Pj, the popularity of the service k in
a MECS m becomes αm,k = ∑i∈Pj

gi.

Appl. Sci. 2023, 13, 12509 13 of 22

We denote the service popularity distribution in a MECS m during a time slot t as
Ψm(t) = {αm,k(t)|k ∈ K}. For each MECS m ∈ M, we set Ψm(0) by randomly assigning
a number k ∈ [0, K − 1] to each subset P0, . . . , PK−1 without duplication. In other words,
we set Ψm(0) 6= Ψn(0) if m 6= n ∈ M. In the beginning of the simulation, we randomly
deploy U=1000 users in the grid according to the Poisson point process and number them
from 0 to 999. As time elapses, Ψm(t) changes because of the mobility of users in the MEC
system. We set the mobility pattern of each user by using a real-world dataset. Specifically,
we use the Divvy historical trip dataset, which records the trip start day and time, trip
end day and time, trip start station, and trip end station [43]. Among the historical trip
data, we use the dataset T containing 767,650 trip history in Chicago during July 2023. We
set the x-th record in the dataset as the mobility pattern of the user x mod U in the MEC
system. Therefore, the service popularity distribution in the MEC system changes in time
and space.

To configure the service request of each user in the MEC system, we use the records in
D. For instance, let us consider the a-th record in D, which says that a movie b ∈ Pj is rated
at time c. If a MECS m is the nearest MECS of a user u = a mod U and k is assigned to Pj
in the MECS m, we set that the user u requests the MECS m for a service k at time c. Since
there are average U ratings during six hours in D, we set the duration of a time slot τ to
6 h so that the average number of service requests by each user in the MEC system is one
during a time slot. We set the window size wa = 12 for both our method and the LSTM
method. By using the datasets D and T , we measure Ω(t) = {ν1(t), . . . , νm(t)} at the end
of each time slot. We shuffle all Ω(t)s and randomly select 90% of them as a training dataset
and use the rest as a validation dataset. We use the last 10% of the total Ω(t)s as a test
dataset. We summarize the parameters used for the simulation study in Table 5.

Table 5. Parameters used for the simulation study.

Parameter Value

M 9
K 64
ηm 8, 16
wa 12

Service popularity dataset MovieLens [42]
User mobility dataset Divvy trip dataset [43]

5.2. Prediction Accuracy

We denote the error involved in predicting the popularity of each service k in a MECS
m during a time slot t as δm,k(t) = νm,k(t)− ν̂m,k(t) and compare the distribution of δm,k(t)
for all k ∈ K in different MECSs in Figure 5. In this figure, we illustrate the results for four
different cases based on the applied methods and MECSs. In each subfigure, the x-axis
is the service index k ∈ [0, K − 1] and the y-axis is the prediction error. Thus, for each
service k, each subfigure shows the distribution of δm,k(t) in a MECS m as a box plot. We
observe in the figure that regardless of the true popularity of a service, the 75th percentile
of δm,k obtained by our method is smaller than that resulting from the LSTM method. For
example, in MECS 4, the 75th percentile of δm,k is 0.054 when our method is used, while
it is 0.11 when the LSTM method is used. In addition, when the LSTM method is used,
there are services whose median δm,ks are much higher than those obtained by our method.
For example, the δm,k of the service k = 33 in MECS 4 obtained by our method is 0.080,
while it is 0.90 when the LSTM method is used. We also observe that the interquartile range
(IQR), which is the difference between the 75th percentile and the 25th percentile, is smaller
when our method is applied compared to when the LSTM method is used. For example, in
MECS 4, the average IQR acquired by our method is 0.034, while it is 0.046 when the LSTM
method is applied. The results are attributed to the manner that each method predicts the
service popularity. When the LSTM method is used, each MECS predicts the popularity of
each service within its service range, regardless of the service popularity distributions in the

Appl. Sci. 2023, 13, 12509 14 of 22

other MECSs. On the contrary, our method predicts the popularity of each service in each
MECS at the same time by comprehensively considering the service popularity distributions
all over the MECSs. Therefore, our method reduces the amount of error in predicting the
popularity of each service in each MECS. We obtain the same results in all the other MECSs.

(a) Proposed Method (MECS 4)

(b) LSTM Method (MECS 4)

(c) LSTM Method (MECS 0)

Figure 5. Cont.

Appl. Sci. 2023, 13, 12509 15 of 22

(d) LSTM Method (MECS 0)

Figure 5. Distribution of the prediction error for each service k ∈ K in different MECSs. MECS 4 is
located at the center of the grid, and MECS 0 is located at the bottom left corner of the grid. Each
subfigure shows the distribution of δm,k(t) in each MECS as a box plot.

To investigate the influence of the service popularity prediction error on the service
caching decision, we inspect the difference between the true Sm(t) and the predicted Sm(t)
in each MECS m. We note that the true Sm(t) is composed of the top η popular services
during a time slot t, which can be known at the end of a time slot t. On the contrary, the
predicted Sm(t) comprises the top η popular services whose popularities are estimated by
a predictor at the beginning of a time slot t. We denote the true Sm(t) as ST

m(t) and the
predicted Sm(t) as SP

m(t). To quantify the similarity between ST
m(t) and SP

m(t), we calculate
am(t) = |ST

m(t) ∩ SP
m(t)|/η and show the results in Figure 6 with different ηs. In the figure,

we draw the ranges of the y-axis to be the same on purpose to make comparison easier.
This figure has four subfigures. In each subfigure, the x-axis is a MECS index m and the
y-axis is am. Each subfigure shows the distribution of am(t) in each MECS as a box plot.

(a) Proposed Method (η = 8) (b) LSTM Method (η = 8)

(c) Proposed Method (η = 16) (d) LSTM Method (η = 16)

Figure 6. Service cache similarity at each MECS with different ηs. Each subfigure shows the distribu-
tion of the service cache similarity in each MECS as a box plot.

Appl. Sci. 2023, 13, 12509 16 of 22

In Figure 6, we observe that our method improves the similarity of the service cache
regardless of the MECS position in the grid and the cache size. When η = 8, compared
with the LSTM model, our method achieves an 11.26% increase in the cache similarity.
Specifically, the average am(t) is 54.71% when the LSTM method is used. The average am(t)
increases to 60.87% when our method replaces the LSTM method. The standard deviation
of am(t) is 5.99% when our method is used, while it is 5.74% when the LSTM method is
used. When η = 16, the proposed method improves the average service cache similarity
by 13.52%. When the LSTM method is used, the average am(t) is 54.45%. Our method
increases the average am(t) to 61.81%. The standard deviation of am(t) is 6.56% when our
method is used, and it is 5.09% when the LSTM method is used.

5.3. Hit Rate Comparison

In Figure 7, we show the variations of a cache hit rate in different MECSs with different
cache sizes over time. To facilitate the comparison, the ranges of the y-axis in all subfigures
are shown to be the same. We observe that the hit rates obtained by our method are higher
than those acquired by the LSTM method, regardless of the MECS locations and η.

(a) MECS 0, η = 8 (b) MECS 4, η = 8

(c) MECS 0, η = 16 (d) MECS 4, η = 16

Figure 7. Comparison of a cache hit rate over time in different MECSs.

To further verify our method, we compare the distribution of a cache hit rate in each
MECS. Specifically, for each MECS, we investigate the difference between the maximum
cache hit rate that can be obtained when ST

m(t) is used and that acquired when SP
m(t) is used.

We denote the cache hit rate when ST
m(t) is used as hT

m(t). We also denote the cache hit rate
obtained by a popularity prediction method as hP

m(t). For each time slot, we calculate the
relative hit rate ρm(t) = hP

m(t)/hT
m(t) and show its distribution in Figure 8. This figure has

four subfigures. In each subfigure, the x-axis is a MECS index m and the y-axis is ρm(t).
Each subfigure shows the distribution of ρm(t) in each MECS as a box plot.

In this figure, we observe that the proposed method outperforms the LSTM method
in terms of ρm in all MECSs and ηs. When η = 8, the average ρm(t) is 82.13% when our
method is used, while it is 76.78% when the LSTM method is used. In other words, our
method improves the average cache hit rate by 6.97%. In the case of η = 16, the proposed
method enhances the average cache hit rate by 8.48%. The average ρm(t) is 81.08% when
our method is used, while the average ρm(t) obtained by the LSTM method is 74.74%. We

Appl. Sci. 2023, 13, 12509 17 of 22

also observe that our method decreases the variance in the cache hit rate. When η = 8,
the average IQR resulted by the proposed method is 14.19%, while the LSTM method
produces an average IQR of 15.88%. In the case of η = 16, the proposed method achieves
an average IQR of 11.76%, while it is 13.55% when the LSTM method is used. By decreasing
the average IQR by more than 10%, our method makes the cache hit rate in a MEC system
stabler than the LSTM method.

We also note that the proposed method needs only one ConvLSTM model to predict
the popularity of each service in each MECS. On the contrary, since each MECS needs at
least one LSTM model to predict the popularity of each service within only its service area,
the LSTM method needs the M LSTM model to predict the service popularity in a MEC
system. As we show in Table 4, we use a total of 746,689 parameters for the ConvLSTM
model and 121,301 parameters for a single LSTM model. Since the LSTM method uses
a total of M× 121, 301 model parameters, the proposed method reduces the total model
parameters by 32.15%. Therefore, when we consider these facts along with the results
observed in Figure 8 in an integrated manner, our method can achieve a higher cache hit
rate with a smaller amount of model parameters compared to the LSTM method.

(a) Proposed Method (η = 8) (b) LSTM Method (η = 8)

(c) Proposed Method (η = 16) (d) LSTM Method (η = 16)

Figure 8. Comparison of the distribution of the relative cache hit rate in each MECS. Each subfigure
shows the distribution of ρm(t) in each MECS as a box plot.

5.4. Caching Behavior

We also scrutinize the caching behavior of each method. Instead of predicting the
exact order of the service popularity in each MECS, we aim to predict a set of η services
whose popularity is relatively higher than those of the rest of the services. To quantify the
service caching behavior, for each time slot, we calculate bm(t) = |ST

m(t)− ST
m(t + 1)|/η

and b̃m(t) = |SP
m(t)− SP

m(t + 1)|/η and plot them in Figure 9 for different m and η.
We observe that both our method and the LSTM method are conservative in that they

do not change the elements in the service cache abruptly. In addition, we observe that the
changing pattern of b̃m(t) is more similar to that of bm(t) when the LSTM method is used

Appl. Sci. 2023, 13, 12509 18 of 22

compared to when our method is used. This difference in the caching behavior comes from
the manner that each method predicts the service popularity. The LSTM method uses only
the history of νm,k(t) when it predicts ν̂m,k(t + 1) without considering the history of νn,j(t)s
(n ∈ M− {m}, k ∈ K − {k}). On the contrary, when our method predicts the service
popularity, our method collectively considers not only the temporal correlation but also the
spatial correlation. Consequently, compared with the LSTM method, our method responds
less sensitively to the instant changes in the service popularity at a single MECS.

(a) MECS 0, η = 8 (b) MECS 4, η = 8

(c) MECS 0, η = 16 (d) MECS 4, η = 16

Figure 9. Comparison of caching behavior.

5.5. Effect of User Mobility

To inspect the effect of user mobility on the service cache performance, we conducted
the same simulation but with a change in the user mobility model from the previous one
to a random mobility model, while maintaining the same experimental environment. In
a random mobility model, a user changes its moving direction from (0, 360◦) and speed
from [0, ς] at each time slot according to the Uniform random distribution. Considering the
size of the simulation topology, we conduct simulations for the cases where the ς is 0.2 km
and 0.5 km.

In Figure 10, we show the distribution of the relative cache hit rate ρm(t) with different
ς when the cache size is η = 8. In this figure, we observe that the cache hit rate decreases
as ς increases. This is attributed to the fact that the increased mobility speed leads to
a larger change in the service popularity distribution across each MECS. As a result, the
popularity prediction accuracy decreases. In this figure, we also observe that for all the
moving speeds, the median ρm(t) at all MECS is higher when using the proposed method
compared to using the LSTM method. When ς = 0.2 km, the average cache hit rate rate
across all MECS (ρ(t) = 1

M ∑i∈M ρm(t)) is 85.32% when using the proposed method, while
it is 80.88% when using the LSTM method. When ς = 0.5 km, the average ρ(t) obtained
through the proposed method is 80.92%, while the average ρ(t) is 74.79% when the LSTM
method is used.

Appl. Sci. 2023, 13, 12509 19 of 22

(a) Proposed Method (ς = 0.2 km) (b) LSTM Method (ς = 0.2 km)

(c) Proposed Method (ς = 0.5 km) (d) LSTM Method (ς = 0.5 km)

Figure 10. Distribution of the relative cache hit rate at each MECS when a cache size is η = 8.

5.6. Effect of Service Popularity Variation

To assess the impact of the degree of service popularity change at each MECS on
the caching performance, we conduct the following simulations. We extend the topology
by deploying M = 16 MECSs in a 4× 4 grid, which ranges from (0,0) to (3 km,3 km).
We locate each MECS at each grid point. We also increase the number of services from
64 to 128 and set η to 16. For each service k and each MECS m, we randomly change
the popularity of a service k at a MECS m at each time slot. To control the degree of
service popularity change at each MECS, at the beginning of each time slot, we randomly
configure vm,k(t + 1) = vm,k(t) + x(t)y(t) (∀m ∈ M, k ∈ K), where x(t) is determined with
a probability of 1/2 to be either 1 or −1. We randomly select y(t) from [0, ξ] according to
the Uniform distribution.

In Figure 11, we show the distribution of the cache similarity degree (am(t)) with
different ξ. We oberve that as the degree of service popularity change at each MECS (i.e., ξ)
increases, the cache similarity degree decreases. In the case of the proposed method, the
average am(t) is 98.47% when ξ = 0.05, while is is 96.19% when ξ = 0.15. We also observe
in this figure that the proposed method outperforms the LSTM method. For all MECSs and
ξs, the cache similarity degree is higher when using the proposed method than when using
the LSTM method.

Appl. Sci. 2023, 13, 12509 20 of 22

(a) Proposed Method (ξ = 0.05) (b) LSTM Method (ξ = 0.05)

(c) Proposed Method (ξ = 0.15) (d) LSTM Method (ξ = 0.15)

Figure 11. Distribution of the cache similarity degree when η = 16, K = 128, and M = 16.

6. Conclusions and Future Works

In this paper, we address the service caching problem in a multi-access edge computing
system. To increase the cache hit rate, we comprehensively exploit the spatio-temporal
correlation structure in the service popularity distribution among the MECSs by using the
ConvLSTM model. To achieve the goal, we construct a heatmap to collectively represent
the service popularity distribution in a MEC system during a time slot. Using a sequence of
heatmaps as an input to the ConvLSTM model, we simultaneously predict the popularity of
each service in each MECS. We evaluate the performance of the proposed method through
trace-driven simulations. The results verify that compared with a conventional method
based on the LSTM model, the proposed method increases the cache hit rate by more than
6.97%. In addition, our method reduces the amount of storage required for predicting the
popularity of each service in each MECS by 32.15%.

Our future works are as follows. Firstly, we will continue our research to further
enhance the prediction accuracy. To verify our method, we used the MovieLens dataset
and Divvy mobility dataset. We will use other datasets on the user mobility and the service
request patterns and show the generality of the proposed method. We will also investigate
the explainability of our cache decision algorithm.

Author Contributions: Conceptualization, J.P.; methodology, J.P.; software, H.B.; writing—original
draft preparation, J.P.; validation, H.B.; visualization, H.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (No. 2022R1F1A1065371). The present research was
conducted using a Research Grant of Kwangwoon University in 2023.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2023, 13, 12509 21 of 22

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, F.; Cai, S.; Lau, V.K.N. Decentralized DNN Task Partitioning and Offloading Control in MEC Systems With Energy

Harvesting Devices. IEEE J. Sel. Top. Signal Process. 2023, 17, 173–188. [CrossRef]
2. Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Ylianttila, M. A Survey on Mobile Augmented Reality With 5G Mobile Edge

Computing: Architectures, Applications, and Technical Aspects. IEEE Commun. Surv. Tutor. 2021, 23, 1160–1192. [CrossRef]
3. Khan, A.u.R.; Othman, M.; Madani, S.A.; Khan, S.U. A Survey of Mobile Cloud Computing Application Models. IEEE Commun.

Surv. Tutor. 2013, 16, 393–413. [CrossRef]
4. Xu, F.; Liu, F.; Jin, H.; Vasilakos, A.V. Managing Performance Overhead of Virtual Machines in Cloud Computing: A Survey, State

of the Art, and Future Directions. Proc. IEEE 2014, 101, 11–31. [CrossRef]
5. Ren, D.; Gui, X.; Zhang, K. Adaptive Request Scheduling and Service Caching for MEC-Assisted IoT Networks: An Online

Learning Approach. IEEE Internet Things J. 2022, 9, 17372–17386. [CrossRef]
6. Liu, H.; Eldarrat, F.; Alqahtani, H.; Reznik, A.; de Foy, X.; Zhang, Y. Mobile Edge Cloud System: Architectures, Challenges, and

Approaches. IEEE Syst. J. 2018, 12, 2495–2508. [CrossRef]
7. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On Multi-Access Edge Computing: A Survey of the Emerging

5G Network Edge Cloud Architecture and Orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681. [CrossRef]
8. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465.

[CrossRef]
9. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv. Tutor.

2017, 19, 1628–1656. [CrossRef]
10. Fan, W.; Yao, L.; Han, J.; Wu, F.; Liu, Y. Game-Based Multitype Task Offloading Among Mobile-Edge-Computing-Enabled Base

Stations. IEEE Internet Things J. 2021, 8, 17691–17704. [CrossRef]
11. Anajemba, J.H.; Yue, T.; Iwendi, C.; Alenezi, M.; Mittal, M. Optimal Cooperative Offloading Scheme for Energy Efficient

Multi-Access Edge Computation. IEEE Access 2020, 8, 53931–53941. [CrossRef]
12. Wu, H.; Chen, J.; Nguyen, T.N.; Tang, H. Lyapunov-Guided Delay-Aware Energy Efficient Offloading in IIoT-MEC Systems. IEEE

Trans. Ind. Inform. 2023, 19, 2117–2128. [CrossRef]
13. Spinelli, F.; Mancuso, V. Toward Enabled Industrial Verticals in 5G: A Survey on MEC-Based Approaches to Provisioning and

Flexibility. IEEE Commun. Surv. Tutor. 2021, 23, 596–630. [CrossRef]
14. Djigal, H.; Xu, J.; Liu, L.; Zhang, Y. Machine and Deep Learning for Resource Allocation in Multi-Access Edge Computing:

A Survey. IEEE Commun. Surv. Tutor. 2022, 24, 2449–2494. [CrossRef]
15. Liang, J.; Zhu, D.; Liu, H.; Ping, H.; Li, T.; Zhang, H.; Geng, L.; Liu, Y. Multi-Head Attention Based Popularity Prediction Caching

in Social Content-Centric Networking With Mobile Edge Computing. IEEE Commun. Lett. 2021, 25, 508–512. [CrossRef]
16. Ale, L.; Zhang, N.; Wu, H.; Chen, D.; Han, T. Online Proactive Caching in Mobile Edge Computing Using Bidirectional Deep

Recurrent Neural Network. IEEE Internet Things J. 2019, 6, 5520–5530. [CrossRef]
17. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y. Convolutional LSTM Network: A Machine Learning Approach for Precipitation

Nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS’15), Montreal,
QU, Canada, 7–12 December 2015.

18. Zhang, H.; Li, X.; Ren, K.; Ren, X.; Penglun, L.; Wang, L. ConvLSTM-CRF: Sea Ice Concentration Prediction with ConvLSTM and
Conditional Random Fields. In Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
Prague, Czech Republic, 9–12 October 2022.

19. Yan, J.; Bi, S.; Duan, L.; Zhang, Y.-A. Pricing-Driven Service Caching and Task Offloading in Mobile Edge Computing. IEEE Trans.
Wirel. Commun. 2021, 20, 4495–4512. [CrossRef]

20. Feng, H.; Guo, S.; Liu, D.; Yang, Y. Mean-Field Game Theory Based Optimal Caching Control in Mobile Edge Computing. IEEE
Trans. Mob. Comput. 2022, 22, 6585–6598. [CrossRef]

21. Liy, N.; Zhuy, X.; Liy, Y.; Wangy, L.; Zhai, L. Service Caching and Task Offloading of Internet of Things Devices Guided by
Lyapunov Optimization. In Proceedings of the 2022 IEEE ISPA/BDCloud/SocialCom/SustainCom, Melbourne, VIC, Australia,
17–19 December 2022.

22. Bai, Y.; Wang, D.; Song, B. A Knowledge Graph-based Cooperative Caching Scheme in MEC-enabled Heterogeneous Networks.
In Proceedings of the 2022 IEEE Global Communications Conference (GLOBECOM), Rio de Janeiro, Brazil, 4–8 December 2022.

23. Kirilin, V.; Sundarrajan, A.; Gorinsky, S.; Sitaraman, R.K. RLCache: Learning-Based Cache Admission for Content Delivery.
In Proceedings of the 2019 Workshop on Network Meets AI & ML (NetAI’19), Beijing, China, 23 August 2019.

24. He, P.; Cao, L.; Cui, Y.; Wang, R.; Wu, D. Multi-Agent Caching Strategy for Spatial-Temporal Popularity in IoV. IEEE Trans. Veh.
Technol. 2023, 72, 13536–13546. [CrossRef]

25. Narayanan, A.; Verma, S.; Ramadan, E.; Babaie, P.; Zhang, Z.-L. Deepcache: A Deep Learning Based Framework for Content
Caching. In Proceedings of the 2018 Workshop on Network Meets AI & ML (NetAI’18), Budapest, Hungary, 24 August 2018.

http://doi.org/10.1109/JSTSP.2022.3221850
http://dx.doi.org/10.1109/COMST.2021.3061981
http://dx.doi.org/10.1109/SURV.2013.062613.00160
http://dx.doi.org/10.1109/JPROC.2013.2287711
http://dx.doi.org/10.1109/JIOT.2022.3157677
http://dx.doi.org/10.1109/JSYST.2017.2654119
http://dx.doi.org/10.1109/COMST.2017.2705720
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/JIOT.2021.3082291
http://dx.doi.org/10.1109/ACCESS.2020.2980196
http://dx.doi.org/10.1109/TII.2022.3206787
http://dx.doi.org/10.1109/COMST.2020.3037674
http://dx.doi.org/10.1109/COMST.2022.3199544
http://dx.doi.org/10.1109/LCOMM.2020.3030329
http://dx.doi.org/10.1109/JIOT.2019.2903245
http://dx.doi.org/10.1109/TWC.2021.3059692
http://dx.doi.org/10.1109/TMC.2022.3193764
http://dx.doi.org/10.1109/TVT.2023.3277191

Appl. Sci. 2023, 13, 12509 22 of 22

26. Lekharu, A.; Jain, M.; Sur, A.; Sarkar, A. Deep Learning Model for Content Aware Caching at MEC Servers. IEee Trans. Netw. Serv.
Manag. 2022, 19, 1413–1425. [CrossRef]

27. Kang, M.W.; Chung, Y.W. Content Caching Based on Popularity and Priority of Content Using seq2seq LSTM in ICN. IEEE Access
2023, 11, 16831–16842. [CrossRef]

28. Meybodi, Z.H.; Mohammadi, A.; Rahimian, E.; Heidarian, S.; Abouei, J.; Plataniotis, K.N. TEDGE-Caching: Transformer-based
Edge Caching Towards 6G Networks. In Proceedings of the IEEE International Conference on Communications (ICC 2022), Seoul,
Republic of Korea, 16–20 May 2022.

29. Meybodi, Z.H.; Mohammadi, A.; Abouei, J.; Plataniotis, K.N. CoPo: Self-supervised Contrastive Learning for Popularity
Prediction in MEC Networks. In Proceedings of the 2023 IEEE 24th International Conference on Digital Signal Processing (DSP),
Rhodes, Greece, 11–13 June 2023.

30. HajiAkhondi-Meybodi, Z.; Mohammadi, A.; Hou, M.; Abouei, J.; Plataniotis, K.N. ViT-Cat: Parallel Vision Transformers With
Cross Attention Fusion for Popularity Prediction in MEC Networks. In Proceedings of the 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023.

31. Wang, K.; Deng, N.; Li, X. An Efficient Content Popularity Prediction of Privacy Preserving Based on Federated Learning and
Wasserstein GAN. IEEE Internet Things J. 2022, 10, 3786–3798. [CrossRef]

32. Xiao, K.; Zhao, J.; He, Y.; Yu, S. Trajectory Prediction of UAV in Smart City using Recurrent Neural Networks. In Proceedings of
the 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019.

33. Sahoo, B.B.; Jha, R.; Singh, A.; Kumar, D. Long Short-Term Memory (LSTM) Recurrent Neural Network for Low-Flow Hydrological
Time Series Forecasting. Springer Acta Geophys. 2019, 67, 1471–1481. [CrossRef]

34. Liu, Y.; Wang, Z.; Zheng, B. Application of Regularized GRU-LSTM Model in Stock Price Prediction. In Proceedings of the 2019
IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 6–9 December 2019.

35. Shih, S.-Y.; Sun, F.-K.; Lee, H.-y. Temporal Pattern Attention for Multivariate Time Series Forecasting. Springer Mach. Learn. 2019,
108, 1421–1441. [CrossRef]

36. Fan, C.; Zhang, Y.; Pan, Y.; Li, X.; Zhang, C.; Yuan, R.; Wu, D.; Wang, W.; Pei, J.; Huang, H. Multi-Horizon Time Series Forecasting
with Temporal Attention Learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (KDD ’19), Anchorage, AK, USA, 4–8 August 2019.

37. Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural Basis Expansion Analysis for Interpretable Time Series
Forecasting. In Proceedings of the eighth International Conference on Learning Representations, Virtual Conference, 26 April–1
May 2020.

38. Challu, C.; Olivares, K.G.; Oreshkin, B.N.; Garza, F.; Mergenthaler-Canseco, M.; Dubrawski, A. N-HiTS: Neural Hierarchical
Interpolation for Time Series Forecasting. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence,
Washington, DC, USA, 7–14 February 2023.

39. Zhou, Y.; Dong, H.; Saddik, A.E. Deep Learning in Next-Frame Prediction: A Benchmark Review. IEEE Access 2020, 8, 69273–69283.
[CrossRef]

40. Joshi, A. Next-Frame Video Prediction with Convolutional LSTMs. Available online: https://keras.io/examples/vision/conv_
lstm (accessed on 5 June 2021).

41. Brownlee, J. A Gentle Introduction to LSTM Autoencoders. Available online: https://machinelearningmastery.com/lstm-
autoencoders (accessed on 27 August 2020).

42. Harper, F.M.; Konstan, J.A. The Movielens Datasets: History and Context. ACM Trans. Interact. Intell. Syst. 2015, 5, 1–19. Available
online: https://grouplens.org/datasets/movielens (accessed on 1 January 2019). [CrossRef]

43. Divvy Historical Trip Data. Available online: https://divvybikes.com/system-data (accessed on 14 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNSM.2021.3136439
http://dx.doi.org/10.1109/ACCESS.2023.3245803
http://dx.doi.org/10.1109/JIOT.2022.3176360
http://dx.doi.org/10.1007/s11600-019-00330-1
http://dx.doi.org/10.1007/s10994-019-05815-0
http://dx.doi.org/10.1109/ACCESS.2020.2987281
https://keras.io/examples/vision/conv_lstm
https://keras.io/examples/vision/conv_lstm
https://machinelearningmastery.com/lstm-autoencoders
https://machinelearningmastery.com/lstm-autoencoders
https://grouplens.org/datasets/movielens
http://dx.doi.org/10.1145/2827872
https://divvybikes.com/system-data

	Introduction
	Related Works
	Caching in a MEC System
	Time Series Prediction Methods
	ConvLSTM Model

	System Model
	Proactive Service Caching Method
	Collective Service Popularity Representation
	Service Cache Decision

	Performance Evaluation
	Simulation Setup
	Prediction Accuracy
	Hit Rate Comparison
	Caching Behavior
	Effect of User Mobility
	Effect of Service Popularity Variation

	Conclusions and Future Works
	References

