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Abstract: This paper comprehensively assesses the application of active learning strategies to enhance
natural language processing-based optical character recognition (OCR) models for image-to-LaTeX
conversion. It addresses the existing limitations of OCR models and proposes innovative practices to
strengthen their accuracy. Key components of this study include the augmentation of training data
with LaTeX syntax constraints, the integration of active learning strategies, and the employment of
active learning feedback loops. This paper first examines the current weaknesses of OCR models with
a particular focus on symbol recognition, complex equation handling, and noise moderation. These
limitations serve as a framework against which the subsequent research methodologies are assessed.
Augmenting the training data with LaTeX syntax constraints is a crucial strategy for improving model
precision. Incorporating symbol relationships, wherein contextual information is considered during
recognition, further enriches the error correction. This paper critically examines the application of
active learning strategies. The active learning feedback loop leads to progressive improvements in
accuracy. This article underlines the importance of uncertainty and diversity sampling in sample
selection, ensuring that the dynamic learning process remains efficient and effective. Appropriate
evaluation metrics and ensemble techniques are used to improve the operational learning effectiveness
of the OCR model. These techniques allow the model to adapt and perform more effectively in diverse
application domains, further extending its utility.

Keywords: optical character recognition (OCR); LaTeX; active learning strategies; image-to-LaTeX
conversion; natural language processing (NLP)

1. Introduction

The digital age has transformed how we interact with written content, with optical
character recognition (OCR) technology serving as a linchpin in this transformation [1].
OCR enables the conversion of printed or handwritten text into machine-readable formats,
thus ushering in an era of enhanced accessibility and utility for textual data. Even though
the accurate recognition and conversion of mathematical expressions into LaTeX format is
still a challenge that looms large, it is within this complex and critical arena that we find the
motivation and contributions of this study. The rationale for undertaking this research is
underpinned by a profound recognition of the crucial role played by mathematical expres-
sion recognition within the broader OCR landscape. Mathematical notation, characterized
by its intricate symbols and complex structures, has long been a vexing challenge for OCR
systems [2]. The precise recognition and correct conversion of mathematical expressions
require understanding the symbols themselves and a deep grasp of the semantics, syntax,
and intricate relationships interweaving these symbols [1]. However, prevailing OCR meth-
ods, while formidable, often fall short of capturing these subtleties, resulting in conversions
that do not meet the stringent accuracy requirements [3]. The crux of the challenge lies
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in the visual complexity of mathematical symbols, where symbols that bear a striking
resemblance can possess distinct semantic meanings [4]. The perennial noise or distortion
in input images adds a layer of complexity, directly impeding the OCR system’s ability to
recognize and interpret mathematical expressions accurately.

Recognizing these multifaceted challenges propels our quest for innovative solutions
at the intersection of OCR and natural language processing (NLP) to enhance the accuracy
of mathematical expression recognition and conversion. Hence, this extensive review study
is aimed at exploring various existing natural language processing (NLP) techniques that
attempt to enhance OCR accuracy in image-to-LaTeX conversions. This study also analyzes
the limitations of existing approaches and recommends future directions. In turn, this
study exposes existing research gaps and paves the way for innovative NLP integration
techniques in OCR. In order to meet these research goals, this review study has gone
through several stages (see Figure 1). These include a thorough literature review that
sets out the problem statement and tries to answer the research question about how NLP
techniques can be added to OCR to make it more accurate when converting images to
LaTeX, an analytical screening of the techniques introduced by various research articles,
and the recommendation of future directions.

Research
Objective

— Literature Review

Review

Extensive Literature

le—]

Problem Statement Formulate Research
Definition Question and Scope

Critical Appraisal

Developing
Resecarch

I

Selection/Screening
the Articles

—

Wrile Review Article

Review Article

Figure 1. Research method.

The remainder of this paper is structured as follows: the background information of
this study and the related works will be stated in Section 2; the deep learning strategies
for OCR in the image-to-LaTeX conversion will be stated in Section 3; the preprocessing
techniques for image enhancement will be presented in Section 4; the limitations of current
OCR models will be presented in Section 5; the augmenting OCR training data with LaTeX
Syntax constraints will be presented in Section 6; binarization and thresholding techniques
will be presented in Section 7; leveraging symbol relationships for OCR error correction
will be described in Section 8; post-processing techniques for error correction in OCR for
image-to-LaTeX conversion will be presented in Section 9; post-processing strategies to
leverage the redundancy inherent in mathematical notation will be presented in Section 10;
active learning strategies for incorporating the OCR model will be described in Section 11;
evaluation metrics for OCR accuracy in image-to-LaTeX conversion will be presented in
Section 12; and finally, Section 13 will conclude this study and provide recommendations
for future directions.
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2. Background Information

The previous OCR approaches have struggled with handling the complexities and in-
tricacies of mathematical notation, causing suboptimal conversions. Mathematical scholars
have turned to natural language processing (NLP) techniques to respond to these chal-
lenges to enhance OCR accuracy in image-to-LaTeX conversion. Integrating NLP strategies
into OCR models can potentially improve mathematical expression recognition and conver-
sion by leveraging semantic information and including linguistic context. Applying deep
learning architectures like recurrent neural networks, convolutional neural networks, and
transformer models, can enable OCR systems to capture subtle patterns and relationships
within mathematical expressions [5].

Advancements in retraining techniques, like bidirectional encoder representations
from transformers, can also capture the contextual embedding that helps accurately rec-
ognize mathematical symbols. This paper’s main objective is to critically examine the
challenges associated with OCR accuracy in the image-to-LaTeX conversion and propose
creative solutions to enhance the performance of OCR models. This report explores inno-
vative techniques that leverage NLP methods to address the limitations of current OCR
systems. The main limitation of current OCR models in accurately recognizing and convert-
ing mathematical expressions is handling the complex equations characterized by several
symbols and intricate structural arrangements [2]. Identifying and interpreting such equa-
tions is critical for accurate conversion to LaTeX format. Various mathematical symbols
also tend to be challenging due to their visual similarity, making it difficult for OCR models
to differentiate between similar-looking symbols accurately [4]. Another challenge arises
from noise or distortion in the input images that negatively affects OCR performance (see
Table 1). OCR models can better interpret signs based on their surrounding context and
infer their intended meaning by encoding contextual information [6]. For instance, under-
standing whether a symbol represents an operator, a variable, or a function is essential for
accurate conversion to LaTeX.

Table 1. Summary of challenges and techniques in OCR approaches to image-to-LaTeX conversion.

OCR Approach

Performance Challenges and Techniques

NLP Integration [7]

Complex equations and intricate structural arrangements.

Visual similarity of mathematical symbols.

Noise or distortion in input images.

Leveraging semantic information and linguistic context through NLP techniques.

Potential

Data Augmentation [8]

Ensuring adherence to LaTeX syntax rules.
Improved Reducing generation of syntactically incorrect LaTeX code.
Incorporating LaTeX syntax constraints during data augmentation.

Dependency Capture [9]

Capturing dependencies and relationships between symbols (subscripts,
Enhanced superscripts, fraction components).

Improving accuracy by correcting recognition errors and ensuring the integrity

of the converted LaTeX representation.

Active Learning [10]

Mitigating dependency on large labeled datasets.

Efficient Intelligently selecting informative and challenging examples.
Involving human annotators in training through active learning strategies.
(query-by-committee, uncertainty sampling, adaptive sampling).

Incorporating LaTeX syntax constraints during data augmentation guides OCR models
to learn more accurate and compliant conversions, ensuring that the output adheres to
LaTeX syntax rules. Studies can reduce the likelihood of generating syntactically incorrect
LaTeX code during conversion by enforcing these constraints [5]. The constraint-based
augmentation strategy improves accuracy and reliability in OCR outputs [11]. Additionally,
mathematical expressions often exhibit dependencies and relationships between symbols,
such as subscripts, superscripts, or fraction components. We can enhance the accuracy of
OCR outputs by correcting recognition errors and ensuring the integrity of the converted
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LaTeX representation by capturing these dependencies and incorporating them into the
OCR model. Traditional OCR approaches require large labeled datasets for training,
which are expensive, time-consuming, and costly to create [12]. Active learning addresses
this challenge by intelligently selecting samples for manual annotation to mitigate the
dependency on large labeled datasets. The OCR model can focus on learning from the
most informative and challenging examples, leading to more efficient and effective model
improvement by actively involving human annotators in training [4]. Active learning
strategies like query-by-committee, uncertainty sampling, and adaptive sampling, can be
used to select samples that maximize the model’s learning potential.

3. Deep Learning Strategies for OCR in Image-to-LaTeX Conversion

Deep learning strategies have reformed the field of optical character recognition
(OCR) and enhanced the accuracy in image-to-LaTeX conversion. Leveraging neural net-
work architectures like recurrent neural networks and convolutional neural networks
enables researchers to tackle the complex challenges of character recognition and equation
parsing [13,14]. The learning models rely on large-scale annotated datasets to learn and
generalize. However, developing high-quality datasets that include various styles, fonts,
and mathematical symbols poses significant challenges. It is critical to address data col-
lection challenges to ensure representative and unbiased training sets. Studies have tried
creating benchmark datasets specific to image-to-LaTeX conversion, like the CROHME
dataset containing handwritten mathematical expressions [15-18]. The datasets enhance
the evaluation and training of OCR models and serve as a foundation for advancing the
field [1]. CNNs and RNNs may struggle with out-of-domain and rare symbols encoun-
tered in image-to-LaTeX conversion, leading to low accuracy and errors in the converted
LaTeX result.

Addressing this challenge requires domain-specific knowledge and designing models
that can handle the intricacies of mathematical notation. For instance, studies have exam-
ined integrating mathematical grammar rules into OCR models to enable the recognition
process and enhance accuracy [19]. These models can achieve more reliable conversions
by incorporating mathematical semantics and structure. Understanding how the models
predict is vital for identifying and rectifying OCR issues. However, the inherent challenge
of deep learning architectures deters their interpretability [12]. Studies have developed
methods for visualizing the attention and feature activations in CNNs and RNNs. How-
ever, further advancement is essential to ensure transparent and reliable OCR systems.
Explainable systems like saliency analysis and attention maps can provide insight into
the decision-making process of OCR models and help identify potential sources of er-
rors [20]. The computational necessities of deep learning models also pose a challenge
since training and deploying complex neural network skill sets require serious computa-
tional resources. This challenge hinders the scalability and accessibility of OCR systems in
resource-constrained environments.

Assessing techniques for model compression, hardware acceleration, and granting
them enough skill, may mitigate these difficulties and make OCR solutions more practical.
Studies have recommended lightweight OCR models that attain comparable accuracy to
larger ones since they require fewer computational resources to enhance their deployment
on low-power devices [12]. OCR errors at the character recognition stage may also develop
during the conversion process, leading to substantial inaccuracies in the final LaTeX output.
Creating error correction techniques and post-processing mechanisms is vital for mitigating
the impact of OCR errors and ensuring high-quality conversions. Recent studies have
examined applying language models and contextual information to the enhance error
correction in OCR outputs [21]. Leveraging contextual clues and syntactic analysis enables
these strategies to identify and rectify OCR errors, thus fostering the accuracy of the
converted LaTeX representations.
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4. Preprocessing Techniques for Image Enhancement

Preprocessing techniques for image enhancement in OCR for image-to-LaTeX con-
version are crucial for improving the accuracy of the recognition process [22,23]. These
techniques address challenges related to image quality, noise, contrast, skew, and mul-
timodal features. Recent advancements in this field have shown promising results, but
critical aspects still need to be considered. One aspect is noise reduction and image denois-
ing techniques. The noise in input images can significantly impact OCR accuracy [4,24].
Researchers have proposed various denoising algorithms, such as median filtering, Gaus-
sian filtering, and wavelet-based methods, to reduce noise and artifacts. Additionally,
recent studies have introduced advanced denoising algorithms based on deep learning
approaches, leveraging convolutional autosencoders and generative adversarial networks
(GANSs) [25]. These methods have demonstrated improved OCR accuracy by effectively
suppressing noise patterns and preserving the legibility of characters and symbols.

Another crucial preprocessing step is contrast enhancement. Enhancing image con-
trast can significantly improve the readability of characters and symbols, especially in
low-quality or poorly illuminated images (see Figure 2). Histogram equalization tech-
niques, such as adaptive histogram equalization (AHE) and contrast-limited adaptive
histogram equalization (CLAHE), have been widely used. Recent research has explored
integrating deep learning models, such as U-Net and Pix2Pix networks, for adaptive
contrast enhancement [25]. These approaches have demonstrated their effectiveness in
handling varying illumination conditions and improving OCR performance. Binarization
and thresholding techniques are also critical in OCR preprocessing. Binarization converts
grayscale or color images into binary representations, separating foreground characters
from the background [25]. Various thresholding techniques, including global threshold-
ing, local adaptive thresholding, and hybrid methods, have been proposed to address
different image characteristics and challenges. Recent advancements have introduced
deep learning-based binarization methods that utilize convolutional neural networks to
learn optimal thresholding strategies. These approaches have shown promising results in
handling complex backgrounds and improving the segmentation of characters, leading to
improved OCR accuracy.
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Figure 2. Visual comparison of image preprocessing techniques (noise reduction (a), contrast en-
hancement (b), binarization (c), and skew correction (d)) for OCR.
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Skew detection and correction techniques are essential for aligning images and ensur-
ing accurate character recognition. Skewed or rotated images can negatively impact OCR
accuracy. Recent research has explored the use of deep learning models, such as convolu-
tional neural networks and recurrent neural networks, for automatic skew detection and
correction [25]. These models leverage learned features and geometric transformations to
estimate and rectify image skew. These techniques improve OCR accuracy by effectively
aligning the images, mainly when dealing with skewed documents. Multimodal fusion and
feature enhancement techniques have also gained attention in OCR preprocessing [1]. OCR
models can benefit from complementary features during preprocessing by fusing multiple
modalities, such as color, texture, and shape information. Recent studies have investi-
gated the fusion of these modalities to enhance the discriminative power of OCR models.
Furthermore, attention mechanisms and contextual information have been explored to
guide feature enhancement [25-27]. These approaches enable OCR systems to focus on
informative regions while suppressing noise or irrelevant details, ultimately improving
recognition accuracy.

While recent advancements in preprocessing techniques for image enhancement have
shown promising results, there are still challenges to be addressed. Finding the right
balance between noise suppression and the preservation of fine details is crucial. Adapting
to varying image quality and the efficient handling of input image types, such as hand-
written or scanned documents, also require further research. Moreover, the computational
complexity of some deep learning-based techniques may limit their practicality, especially
in resource-constrained environments. Future research should focus on developing ro-
bust preprocessing methods that are adaptive, efficient, and capable of handling diverse
real-world scenarios to enhance OCR accuracy in image-to-LaTeX conversion [21].

5. Analyzing the Limitations of Current OCR Models

Optical character recognition (OCR) has improved the digitization of documents by
enhancing the conversion of printed and longhand text into machine-readable formats.
However, the accurate recognition and conversion of mathematical expressions from im-
ages to the LaTeX format remain challenging. The main limitation with current OCR models
is handling complex equations accurately. Mathematical expressions involve variables,
many symbols, operators, and nested structures, making them inherently difficult to inter-
pret and convert accurately. OCR models should comprehend the hierarchical relationships
between symbols and the intended mathematical operations to produce faithful LaTeX
representations [4]. Complicated equations challenge OCR models to capture the exact
arrangement of symbols and matrices and recognize fractions, subscripts, superscripts, and
parentheses. Mathematical expressions include advanced concepts like Greek symbols, in-
tegrals, and summations, that further complicate recognition. Handling complex equations
enables OCR models to provide reliable and accurate conversions to the LaTeX format [2].

OCR models also face challenges in accurately recognizing various mathematical sym-
bols. Mathematical notation includes multiple characters, including numerals, operators,
alphabets, Greek letters, and mathematical functions [28]. Most of these symbols show
visual similarities, making it difficult for OCR models to differentiate between similar-
looking characters accurately [1]. Differentiating between the symbol “0” and the letter “o0”
or distinguishing between the variable “x” and the multiplication operator “x” is a chal-
lenge for OCR models. Moreover, recognizing and differentiating between similar-looking
symbols accurately, like “cos” and “sin” or “«” and “a”, requires OCR models to possess a
robust symbol recognition capability that can handle variations in font sizes, styles, and
orientations [5]. To overcome this limitation, OCR models may benefit from incorporating
contextual information and leveraging the semantic relationships between symbols. OCR
models can also make more informed decisions regarding symbol recognition and improve
the accuracy of the conversion process by considering the surrounding context and the
syntax of mathematical expressions [2].
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Distortion in the input images also presents an excellent challenge for OCR models.
Images captured in real-world scenarios are characterized by types of noise, such as pixela-
tion, blurring, lighting, and artefacts introduced during the scanning process. Documents
may have longhand annotations, erasures, or smudges that further complicate the recogni-
tion process. These distortions affect the clarity and legibility of mathematical expressions
and cause errors in recognition and subsequent LaTeX conversion [25]. OCR models must
be robust and resilient to warping to ensure accurate recognition and conversion. OCR
models can benefit from preprocessing techniques for image enhancement and noise reduc-
tion. These techniques involve denoising, filtering, and contrast adjustment to improve
the legibility of the input images before OCR processing [29]. Integrating noise-robust
recognition algorithms and data augmentation techniques that simulate various types of
noise can also improve the OCR model’s ability to effectively handle noisy or distorted
images. Mathematical expressions provide intricate correlations between symbols like sub-
scripts, superscripts, and fraction components. OCR models can correct recognition errors
and maintain the structural integrity of the converted LaTeX representation by modelling
these relationships [30].

OCR models can be improved using advanced techniques that capture the hierarchical
structure and semantic relationships within mathematical expressions to overcome their
limitations when handling complex equations. OCR systems can understand the intricate
arrangements of symbols and capture the nuances of mathematical notation by incorpo-
rating deep learning models such as convolutional neural networks and recurrent neural
networks. These models can learn to recognize and interpret matrices, fractions, subscripts,
and nested parentheses more accurately, improving conversion quality. Identifying various
mathematical symbols requires OCR models to have comprehensive symbol recognition ca-
pabilities [4]. The old OCR models struggle with differentiating similar-looking characters,
leading to conversion errors. Leveraging semantic information and contextual embedding
will enable the models to understand symbols better based on their surrounding context
and syntactic patterns. Contextual information can help differentiate between visually
similar characters and improve symbol recognition accuracy. Addressing noise and dis-
tortion challenges requires noise-robust recognition algorithms and robust preprocessing
techniques. OCR models can be trained using augmented datasets that simulate various
types of noise to make them more resilient to real-world image imperfections. Combining
strong preprocessing and noise-robust recognition algorithms can allow the models to
handle challenging image conditions better and produce accurate conversions.

Incorporating domain-specific knowledge into OCR models can improve the models’
performance. Mathematical expressions adhere to mathematical conversion and syntax
rules. OCR models can learn to generate LaTeX outputs, conforming to syntactic rules
by integrating LaTeX syntax constraints during training. The constraint-based data aug-
mentation strategy enables the model to provide valid and compliant LaTeX code and
mitigates the likelihood of producing syntactically incorrect conversions [1]. Active learn-
ing strategies can be employed to iteratively improve the model’s performance and enhance
OCR accuracy further. Traditional OCR approaches often rely on large labeled datasets
for training, which is time-consuming and expensive. Active learning allows the model
to actively select informative samples for manual annotation, reducing its dependency on
extensive labeled datasets [29]. Active learning helps improve the model’s performance
with fewer labeled examples, resulting in more efficient and effective training by selecting
challenging or uncertain samples for the model.

Evaluation metrics such as recall, precision, and F1 score can be applied to assess
the performance of OCR models in symbol recognition. These metrics quantify the OCR
model’s completeness, accuracy, and overall performance in recognizing mathematical
symbols [25]. Iterative improvements can be made to the OCR model based on the results.
The process may involve fine-tuning the deep learning architectures, refining contextual
information utilization, and adjusting training data augmentation strategies. By contin-
uously evaluating and refining the OCR model, recognition accuracy can be enhanced,
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leading to more reliable and precise image-to-LaTeX conversions. The visual similarities,
contextual complexities, and font variations are obstacles to symbol recognition. How-
ever, utilizing semantic relationships, incorporating contextual information, augmenting
training data, and incorporating domain-specific knowledge can enable OCR models to
overcome these challenges. Improving symbol recognition accuracy in OCR models en-
ables a more accurate and reliable conversion of mathematical expressions from images to
LaTeX format. This advancement has significant implications for various fields, including
academic research, scientific publishing, and document digitization. Enabling the efficient
representation of mathematical content can help OCR models contribute to disseminating
scientific knowledge and enhance the accessibility of mathematical information [31]. Con-
tinuously advancing and refining recognition capabilities can allow the models to better
serve the needs of researchers, professionals, and educators who rely on accurate and
efficient image-to-LaTeX conversion.

The semantic relationships between symbols provide additional indications for ac-
curate recognition. Mathematical expressions show relationships such as fractions or
superscript components [30]. OCR models can correct recognition errors and maintain the
structural integrity of the converted LaTeX representation by modeling these relationships.
For instance, recognizing a fraction requires identifying the denominator and numerator
symbols and their relative positions. OCR models can enhance symbol recognition accu-
racy by leveraging these semantic relationships [25]. Transformer models have shown
promising results in symbol recognition tasks. Convolutional neural networks are effective
in capturing local visuals. OCR models can leverage their strengths to improve symbol
recognition accuracy by combining these architectures. OCR models can benefit from
augmented training datasets encompassing variations in symbol appearance, font styles,
sizes, and orientations [1]. Data augmentation techniques like noise injections and random
rotations can help the model learn to handle variations commonly encountered in real-
world scenarios (see Table 2). Augmenting the training data with various symbol instances
enables the OCR model to generalize and recognize symbols accurately. Domain-specific
knowledge can enhance symbol recognition in OCR models [29]. OCR models can be
trained to identify the appropriate usage of symbols in mathematical expressions, such as
differentiating between using “7t” as a constant or as a variable.

Table 2. Summary of challenges and techniques in optical character recognition (OCR) for the
conversion of mathematical expressions.

Challenges Techniques

Incorporating deep learning models (e.g., convolutional neural

Handling complex equations [25]. networks, recurrent neural networks) to capture hierarchical structures

and semantic relationships within mathematical expressions.

Recognizing various mathematical symbols [32].

Leveraging semantic information and contextual embedding,
integrating strong symbol recognition capabilities.

Dealing with noise and distortion in input images [33].

Employing noise-robust recognition algorithms and robust preprocessing
techniques, training OCR models using augmented datasets.

Incorporating domain-specific knowledge [34].

Integrating LaTeX syntax constraints during training, utilizing active
learning strategies, refining contextual information utilization.

Applying evaluation metrics (recall, precision, F1 score), refining OCR

Evaluating OCR model performance [35,36]. models through fine-tuning, adjusting training data augmentation

strategies.

Utilizing semantic relationships, combining transformer models and

Enhancing symbol recognition accuracy [37]. convolutional neural networks, augmenting training datasets with

variations in symbol appearance.

Augmenting training data with variations in symbol instances,

Handling variations in symbol usage and appearance [38].  incorporating domain-specific knowledge to identify appropriate

symbol usage.
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6. Augmenting OCR Training Data with LaTeX Syntax Constraints

Augmenting OCR training data with LaTeX syntax constraints is a critical approach
that improves OCR models’ performances in image-to-LaTeX conversion. OCR models can
generate LaTeX representations that adhere to the correct semantics, structure, and syntax
of mathematical expressions by including the concept of LaTeX syntax rules and applying
them during the training process. The main advantage of augmenting OCR training data
with LaTeX syntax constraints is the improvement in conversion accuracy. LaTeX syntax
provides a well-defined and standardized framework for representing mathematical no-
tation. The models can learn to recognize and correct common errors made during the
OCR and conversion processes by training OCR models with augmented data that includes
the correct LaTeX syntax [31]. For example, OCR models can be trained to locate missing
LaTeX delimiters like brackets, parentheses, or curly braces and rectify them accordingly.
This ability to correct errors leads to the enhanced accuracy and validity of the converted
LaTeX code. Augmenting OCR training data with LaTeX syntax constraints also enables
the preservation of structural integrity. LaTeX syntax rules define the hierarchical corre-
lation between mathematical symbols, subexpressions, and operators. Incorporating this
knowledge during training can help OCR models understand mathematical expressions’
structure and organization [31]. The information allows the models to generate LaTeX code
that accurately represents the structural integrity of the original mathematical content. For
example, OCR models can learn to correctly handle superscripts, fractions, subscripts, and
nested parentheses.

Augmenting OCR training data with LaTeX syntax constraints also enables a semantic
understanding of mathematical expressions. LaTeX syntax provides semantic concepts
that give information about the meaning and interpretation of the mathematical content.
For instance, applying specific LaTeX commands or environments indicates the type of
mathematical concept represented, like equations, matrices, or mathematical functions [30].
Training OCR models with augmented data containing these semantic concepts enables the
model to understand mathematical content better [39]. This understanding allows them to
generate more meaningful LaTeX code that reflects the intended semantics of the original
mathematical expressions. Integrating LaTeX syntax constraints into OCR training data
improves consistency in the LaTeX representation of mathematical expressions. Following
the LaTeX syntax rules ensures that the generated LaTeX code is consistent and coherent
when dealing with mathematical notations with multiple hierarchy levels [29]. Augmenting
OCR training data with LaTeX syntax constraints enables OCR models to produce LaTeX
code that adheres to mathematical expressions’ expected structure and semantics, leading
to a more coherent and readable output.

OCR models trained with augmented data incorporating LaTeX syntax constraints also
show improved compatibility with existing LaTeX tools, workflows, and libraries. OCR
models produce outputs seamlessly integrated with the LaTeX environment by generating
LaTeX code conforming to the syntax constraints. This compatibility enhances further
manipulation, processing, and rendering of the converted LaTeX code to enable users
to leverage existing LaTeX tools for tasks such as typesetting, rendering to PDF or other
formats, and educational materials [40]. Augmenting OCR training data with LaTeX syntax
constraints also enables a reduction in post-processing work. OCR models can minimize
the need for extensive manual correction and post-processing of the converted content
by generating LaTeX code that adheres to syntax rules [41]. This saves time and effort
for users who rely on accurate and reliable image-to-LaTeX conversion. The reduction in
post-processing requirements allows users to focus on other essential activities such as
validation, content analysis, or further correction of the converted LaTeX code. LaTeX is
broadly applied in academic and scientific domains for typesetting mathematical content.
OCR models produce outputs that seamlessly integrate into existing LaTeX workflows,
tools, and publishing pipelines by generating LaTeX code that conforms to the constraints
of syntax [30]. The compatibility improves the usability and practicality of the converted
LaTeX code and enables users to leverage the full potential of LaTeX for further processing.
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In summary, augmenting OCR training data with LaTeX syntax constraints provides
advantages for enhancing the performance and reliability of OCR models in image-to-
LaTeX conversion. It enables consistency, accuracy, and semantic understanding while
mitigating post-processing work and ensuring compatibility with existing LaTeX workflows
and tools [42]. OCR models can generate LaTeX representations that capture mathematical
expressions’ semantics, structure, and syntax by incorporating the knowledge of LaTeX
syntax rules.

7. Binarization and Thresholding Techniques

The performance of learning models relies on large-scale annotated datasets. However,
developing high-quality datasets with diverse styles and mathematical symbols poses
a severe challenge due to the scarcity of datasets designed for image-to-LaTeX conver-
sion. Scholars have tried to gather datasets representing the difficulties encountered in the
conversion process [43]. The Competition on Recognition of Handwritten Mathematical
Expressions (CHROME) dataset incorporates handwritten mathematical expressions that
enable the evaluation and comparison of OCR models in the context of image-to-LaTeX
conversion [44]. The MathML and LaTeX dataset (MALL) is also concerned with mathe-
matical expressions expressed in MathML and LaTeX formats, enhancing the training and
assessment of OCR systems for this specific task [45,46]. These benchmark datasets create a
foundation for strengthening the field by enabling standardized assessment and fostering
the development of more accurate OCR models [19]. The quality and representativeness of
the training data are vital since any form of bias presented in the training data may affect
the accuracy of OCR systems.

Training data mainly composed of a specific font or style makes it difficult for the OCR
model to recognize symbols and characters from other styles and fonts accurately. Address-
ing such challenges requires keen data collection and annotation plans to ensure a balanced
and diverse representation of styles, fonts, and mathematical symbols. Collaborative strate-
gies among academic institutions and scholars can play a critical role in addressing this
challenge by ensuring diversity, sharing datasets, and fostering a more comprehensive un-
derstanding of the intricacies of mathematical notation [20]. In the context of training data,
the scarcity of data for rare symbols is also a critical area to be addressed. Deep learning
models perform better on frequently occurring characters and styles in the training data.
Scholars have examined synthetic data generation and augmentation techniques [12]. Data
augmentation includes applying diverse transformations like scaling, rotation, and adding
noise to augment the training data and expose the model to broad variations. Synthetic
data generation is the development of artificial images with rare notations to supplement
the training data. These techniques enhance OCR models’ generalization capability and
improve their accuracy when working with less common symbols.

The training data’s diversity and size are other essential elements that affect OCR
accuracy. The learning models need large-scale training data to learn the images’ underlying
variations and patterns. Insufficient training data leads to overfitting, in which the model
fails to generalize well to unseen examples. The diversity of the training data is also critical
to ensuring generalization to different styles, fonts, and writing styles [42]. Gathering a
comprehensive and diverse dataset is a non-trivial task, since it requires the consideration
of variations in handwriting, mathematical domains, and notation styles. Studies should
expand and diversify the available training data to improve the accuracy and reliability
of OCR systems for image-to-LaTeX conversion [47]. Training data biased toward specific
cultural or regional preferences lead to inaccurate OCR results. For instance, OCR models
trained on datasets that mainly encompass Western mathematical notation may struggle
when faced with symbols or notes used in non-Western languages and mathematical
systems [31]. It is essential to incorporate diverse cultural perspectives and collaborations
with experts from various regions to ensure the comprehensive coverage of mathematical
notations and symbols.
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8. Leveraging Symbol Relationships for OCR Error Correction

Leveraging symbol relationships for OCR error correction enhances the accuracy and
reliability of image-to-LaTeX conversion. Mathematical notation contains interconnected
symbols and operators that convey specific relationships and meanings. OCR models
can detect and rectify errors during recognition and conversion by understanding and
analyzing these symbol relationships [48]. OCR systems face errors when dealing with
complex mathematical equations and symbols. OCR models can identify and correct
these errors by considering the context and relationships between characters. For instance,
examining the relationships between adjacent symbols can enable OCR models to detect
and rectify errors like missing symbols [31]. This strategy helps ensure that the converted
LaTeX code accurately represents the original mathematical expression [49].

Symbol relationships also play an important role in error correction related to the
positioning of superscripts and subscripts. OCR errors may lead to incorrectly positioned
subscripts and superscripts, affecting the meaning of mathematical expressions [29]. OCR
models can analyze symbols’ relative heights and alignments to determine the correct
positioning of subscripts and superscripts by leveraging symbol relationships. This assess-
ment enables the models to mitigate errors and accurately represent mathematical notation.
Complex equations with brackets or nested parentheses also challenge OCR systems [13].
Errors may occur when opening and closing symbols, leading to missing and imbalanced
delimiters. OCR models can analyze the relationships between opening and closing sym-
bols to detect and rectify such errors by leveraging symbol relationships. For example,
when a closing parenthesis is missing, the OCR model can identify the corresponding
opening parenthesis and insert the missing closing symbol. This approach ensures the
correct representation of the structural integrity of mathematical expressions.

Leveraging symbol relationships also enhances the correction of errors related to
the misinterpretation of mathematical operators. OCR errors may occur when operators
interpret incorrectly, leading to incorrect mathematical representations. OCR models
can analyze the context and identify the correct operator based on its relationship with
adjacent symbols by considering the relationships between symbols. This enables the
models to correct errors and ensure the accurate representation of mathematical operations.
It is crucial to effectively train OCR models with data about symbol relationships to
leverage symbol relationships for OCR error correction. OCR models learn to recognize
individual symbols and understand their relationships during training [48]. This contextual
understanding enables the models to assess symbol sequences, apply error correction
strategies, and identify potential errors based on symbol relationships. OCR models
develop a deeper understanding of mathematical notation and can make informed decisions
about error correction by incorporating symbol relationships into the training process [50].

Contextually understanding symbol relationships allows OCR models to make in-
formed decisions about error correction, leading to more reliable and accurate conversions.
OCR models ensure the structural integrity and semantic accuracy of the converted LaTeX
code by rectifying errors related to subscripts, superscripts, delimiters, and operators. The
primary technique used in leveraging symbol relationships is the application of context
windows [51]. OCR models analyze a window of symbols surrounding the symbol in
question to determine its correct identity and position. The models can make informed
decisions about error correction by considering the neighboring symbols and their rela-
tionships. For instance, when a symbol is interpreted as a division operator instead of a
fraction bar, the OCR model can examine the symbols before and after the fraction bar to
identify the correct interpretation based on the context [13]. Utilizing information about
the mathematical domain and the relationships between the symbols also enables OCR
models to enhance error correction accuracy [52].

Machine learning algorithms can be trained to explain symbol relationships for error
correction. These models learn to recognize symbols and the correlation between them
by analyzing large annotated datasets. These models can capture the dependencies and
patterns in mathematical notation by incorporating symbol relationships into the training
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process to make accurate predictions and corrections during the OCR and conversion
processes. Graph-based approaches can be used to leverage symbol relationships in mathe-
matical expressions, in the form of graphs, to identify and correct errors [52]. For instance,
a disconnected node in the graph can infer the missing symbol and restore the right re-
lationship between symbols. The spatial arrangement of symbols within a mathematical
expression may also provide important information about their relationships [13]. OCR
models can examine symbols’ relative positions, alignments, and distances to infer their
roles and relationships. For instance, when two symbols are vertically aligned, they are
likely to be related as a numerator and denominator in a fraction [43]. Leveraging symbol
relationships can also be complemented with statistical concepts like probabilistic models.
The models estimate the likelihood of certain symbol relationships based on the statisti-
cal properties of mathematical notation. OCR models can make informed decisions and
prioritize the most likely corrections by incorporating statistical information into the error
correction process.

In summary, leveraging symbol relationships for OCR error correction requires using
semantic information, context-based machine-learning algorithms, statistical techniques,
graph-based approaches, and spatial relationships. The courses enable OCR models to
examine the relationship between symbols and make accurate predictions and corrections
during recognition and conversion [53]. The tools enable OCR systems to achieve higher
accuracy, improve the structural integrity of mathematical expressions, and ensure the
semantic fidelity of the converted LaTeX code.

9. Post-Processing Techniques for Error Correction in OCR for Image-to-LaTeX Conversion

Post-processing techniques improve the accuracy of Optical Character Recognition
(OCR) systems for image-to-LaTeX conversion by addressing errors that occur during the
recognition process. OCR models are not infallible, and mistakes propagate and increase
throughout the conversion process [11]. The creation of robust error correction strategies
is essential to ensuring high-quality conversions. One critical aspect of post-processing is
error detection. Various error detection methodologies include statistical analysis, linguistic
analysis, and pattern matching. A study compared the OCR output with statistical models
to identify discrepancies [22]. Statistical techniques can identify potential errors based on
their deviation from the expected patterns by analyzing the frequency and distribution of
symbols. Pattern-matching strategies apply regular expressions to identify the mistakes
in the OCR output. The designs can capture inconsistencies in the OCR results, like
misrecognized symbols. Linguistic analysis leverages language models and grammar
rules to identify semantic errors. It can identify mistakes that violate grammatical or
mathematical rules by analyzing the OCR output in the context of the surrounding text
or equations [28]. By combining these approaches, error detection algorithms can identify
potential errors and flag them for further correction.

Error correction techniques come into play upon detecting errors to rectify the OCR
and enhance the accuracy of the final LaTeX output. Language models provide contextual
information and semantic understanding to correct mistakes in OCR outputs [43]. The
models consider equations and the surrounding words to identify and rectify errors. If the
OCR output contains a misspelled and unrecognized word, the language model provides
alternative words based on the context to improve the accuracy of the converted LaTeX
representation [54]. Language models can give valuable suggestions for error correction by
leveraging the statistical properties of language and the context in which OCR errors occur.
The integration of contextual information is also used to correct mistakes [55]. Contextual
analysis includes analyzing the relationships between equations, symbols, and mathemati-
cal expressions to identify and correct errors. OCR errors that disrupt the overall coherence
of the mathematical expressions are detected and rectified by considering the syntactic and
structural context. If an OCR error results in an equation that violates mathematical rules,
the contextual analysis identifies the discrepancy and proposes corrections that maintain
the integrity of the equation.
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10. Post-Processing Strategies Leverage the Redundancy Inherent in Mathematical Notation

Mathematical expressions have various representations that convey similar meanings.
The redundancy can be in the form of alternative notes, equivalent forms of equations,
or mathematical transformations [56]. Assessing redundancy enables error correction
algorithms to find the most probable corrected version of the OCR output and improve
the accuracy of the converted LaTeX representation [28]. Error correction techniques
ensure the correctness and consistency of the converted LaTeX representation by utiliz-
ing mathematical equivalences and transformations. Leveraging external knowledge
bases and resources improves error correction in OCR for image-to-LaTeX conversion [25].
These resources include domain-specific databases, mathematical ontologies, and math-
ematical libraries. Errors can be identified and corrected based on the known correct
representations by comparing the OCR output against these resources. Domain-specific
rules can be included in the error correction process to foster the accuracy and consis-
tency of the converted LaTeX representation. For instance, if the OCR output contains a
mathematical symbol that is incompatible with the mathematical domain or context, the
error correction mechanism can propose appropriate replacements based on the domain-
specific rules [39]. Error correction techniques can improve the accuracy and reliability of
the OCR system for image-to-LaTeX conversion by integrating external knowledge and
domain-specific information.

The accuracy of error correction techniques depends on the quality and accuracy of
the OCR output. The correction process becomes more challenging if the OCR system has
many errors. Therefore, it is vital to continuously enhance and correct the underlying OCR
algorithms to mitigate recognition errors [22]. Improvements in preprocessing techniques
like noise reduction, image enhancement, and segmentation lead to better OCR results and
consequently enhance the effectiveness of error correction in image-to-LaTeX conversion.
The complexity of mathematical notation poses challenges for error correction for OCR
in image-to-LaTeX conversion [47]. Mathematical expressions involve intricate symbols
and mathematical notations specific to different domains (see Table 2). Enhancing the
accurate recognition and modification of these elements requires specialized algorithms and
techniques tailored to the complexities of mathematical notation [4]. Developing domain-
specific models and algorithms and collaborating with mathematicians and domain skill
sets leads to more accurate error correction in mathematical OCR.

11. Incorporating Active Learning Strategies for OCR Model Improvement

The main advantage of incorporating active learning is its effectiveness in the anno-
tation process. The old OCR training required annotating a large dataset with ground
truth labels, which is expensive and time-consuming [57]. Active learning reduces these
challenges by prioritizing the most informative samples for annotation [2]. Active learning
reduces the annotation effort while ensuring effective model training by selectively choos-
ing samples for which the model is uncertain or likely to make errors in. This efficient use of
annotation resources saves time and reduces the costs associated with the training phase. It
can also improve OCR model performance by allowing the model to learn from its mistakes
and refine its understanding of symbol recognition and conversion. This iterative process
allows the model to concentrate on critical areas for improvement, leading to more accurate
and reliable image-to-LaTeX conversions [39]. The model becomes more robust and capable
of handling various symbols, font styles, and mathematical structures encountered in
real-world scenarios by actively targeting challenging samples for annotation [43].

The feedback loop created between the model and the annotation process leads to
a progressive cycle of learning and refinement. As the OCR model encounters new data
and challenging samples during the image-to-LaTeX conversion, it flags those samples for
annotation. Experts then annotate the samples, and the newly labeled data updates the
model [50]. The updated model has been equipped with additional knowledge that is then
applied to the conversion process to enhance performance. This iterative cycle enables
the OCR model to adapt and improve continuously. Active learning also enhances the
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generalization and adaptability of OCR models [43]. The models learn to handle various
symbol variations, mathematical structures, font styles, and noise patterns by incorporating
diverse samples through strategies like diversity sampling. This generalization capability
enables the model to handle different handwritings, unique mathematical notations, and
variations in expression formats [58]. It also fosters collaboration between the OCR system
and human experts. The ability of the model to flag challenging samples for annotation
enables human experts to provide their expertise and domain knowledge [59]. Experts
contribute to improving the OCR model’s performance by annotating these samples. This
collaboration enhances the quality of the training dataset since human experts can validate
and correct errors made by the model.

A critical aspect to consider is selecting the active learning query strategy. Various
query strategies determine how the model chooses samples for annotation. Common query
strategies include query-by-committee, uncertainty sampling, and diversity sampling [60].
Uncertainty sampling selects samples with low confidence scores, indicating the model’s
uncertainty about their correct labels. Diversity sampling targets a diverse range of samples
to ensure comprehensive training [61]. Query-by-committee includes training multiple
models with slightly different initializations or architectures and selecting samples on
which these models disagree, thus targeting areas of uncertainty. Deciding on an appro-
priate query strategy depends on the OCR system’s specific requirements and the nature
of the data.

It is also critical to consider the balance between exploration and exploitation. Ex-
amination involves selecting samples that the model has not seen before, enabling it to
learn from diverse examples, while exploitation focuses on picking pieces expected to
provide the most significant improvement in the model’s performance. Striking the right
balance between the two ensures that the OCR model continues to learn and improve while
maximizing its accuracy on challenging samples [11]. Active learning may also benefit
from including ensemble techniques. The techniques combine multiple OCR models, each
trained on different subsets of the training data or with different architectures, to make
predictions. Ensemble models often provide more robust and accurate predictions by
aggregating the knowledge and insights from multiple models. In the context of active
learning, ensemble models can be utilized to improve the reliability of sample selection [43].
The operational learning strategy can make more informed decisions about which samples
to annotate, further enhancing the model’s performance by considering the agreement or
disagreement among ensemble members on the uncertainty of samples.

The choice of evaluation metrics is important when incorporating active learning into
OCR models. The original metrics, like error or accuracy rates, might not be sufficient
to capture the nuances of OCR performance [62]. Metrics that consider the complexity
of mathematical expressions can provide a more comprehensive assessment of the OCR
system’s performance. Applying appropriate evaluation metrics can optimize the active
learning process by focusing on challenging samples that directly impact the overall quality
of the image-to-LaTeX conversion. Domain adaptation techniques can also be utilized
to improve the efficiency of active learning in OCR [63]. Due to domain differences,
OCR models trained on synthetic data might struggle to perform well on real-world
documents. The model can be fine-tuned on a small amount of real-world data, making
it more capable of handling the specific challenges and variations present in real-world
OCR scenarios by leveraging domain adaptation methods [64]. Incorporating domain
adaptation into the active learning pipeline ensures that the samples selected for annotation
align with the target domain, resulting in improved performance and accuracy. Active
learning for OCR is dynamic, and various techniques and strategies are continuously
explored [59]. Research efforts focus on developing more sophisticated and efficient sample
selection approaches, investigating the integration of active learning with other methods,
and leveraging advanced machine learning algorithms. These progressive developments
aim to enhance the capabilities of OCR models further and optimize the dynamic learning
process for image-to-LaTeX conversion.
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In summary, incorporating active learning strategies into OCR models for image-to-
LaTeX conversion has numerous advantages [65]. The efficiency of the annotation process
is enhanced by selectively choosing the best samples for annotation, while also mitigating
the annotation effort and related costs. The performance of the model is enhanced through
iterative learning and refinement. The continuous feedback loop ensures that the model
adapts and improves over time, keeping pace with dynamic challenges [62]. Active learning
also enhances the model’s adaptability and generalization by incorporating diverse samples.
The correlation between the OCR system and human experts enriches the training dataset
and improves the model’s performance.

12. Evaluation Metrics for OCR Accuracy in Image-to-LaTeX Conversion

Evaluation metrics are important for examining the accuracy and performance of
optical character recognition (OCR) systems in the context of image-to-LaTeX conversion.
The metrics provide quantitative measures that enable studies to compare different OCR
algorithms, track field progress, and identify areas for improvement [66]. Analyzing the
accuracy of OCR in the image-to-LaTeX conversion presents unique challenges due to
the complex nature of mathematical notation and the need for accurate representation
in the LaTeX format [44]. The main aspect to evaluating OCR accuracy is comparing the
OCR output with ground truth references [15]. The latter represents the correct LaTeX
representation of the mathematical expressions contained in the images. Comparing the
OCR output against these references enhances the calculation of metrics that measure the
similarity between the OCR result and the ground truth [49]. Various strategies can be
utilized for the comparison, such as semantic analysis, string-matching algorithms, and
structural similarity measures. These techniques enable the quantification of the accuracy of
the OCR system in terms of symbol recognition, overall fidelity, and equation structure [29].

Symbol-level evaluation metrics examine OCR systems” accuracy in recognizing in-
dividual symbols in mathematical expressions. The metrics include recall, precision, and
F1 score, commonly used in pattern recognition activities. These metrics enable stud-
ies to assess the performance of OCR systems in accurately identifying and recognizing
mathematical symbols [67]. Equation-level evaluation metrics examine the accuracy of
OCR systems in capturing the structure and syntax of mathematical expressions [68]. The
matrices include an arrangement of symbols and adherence to mathematical rules. The
most commonly applied metric is equation-level accuracy, which measures the proportion
of correctly recognized structured equations. The structural similarity metric quantifies
the similarity between the OCR output and the ground truth regarding the hierarchical
structure and relationships between symbols [69]. These metrics provide information about
the OCR system’s ability to preserve the structural integrity of mathematical expressions
during the conversion process.

Semantic evaluation metrics also examine OCR systems’ accuracy in capturing the
semantic meaning of mathematical expressions. Mathematical notation enables various
equivalent representations, and preserving the semantic equivalence is important for correct
conversion to LaTeX [54]. Semantic evaluation metrics include the similarity between the
semantic models of the OCR output and the ground truth. Strategies like semantic matching,
parsing, and embedding may be utilized to measure semantic similarity and assess the
OCR system’s accuracy in capturing the intended meaning of mathematical expressions.
Domain-specific evaluation metrics are critical for determining OCR accuracy in specialized
mathematical domains [25]. Various mathematical disciplines may have specific symbols,
notations, or conventions that must be correctly recognized and represented in LaTeX [70].
Evaluating OCR systems in these domains requires domain-specific evaluation metrics that
capture the complexities and intricacies of the notation. Collaborating with mathematicians,
domain experts, and educators is vital for defining and developing these metrics and
ensuring that OCR systems meet the requirements of specific mathematical domains [43].
The evaluation of OCR accuracy in image-to-LaTeX conversion should take into account
the efficiency and computational complexity of the OCR systems. Large-scale document
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processing requires OCR systems to provide accurate results within acceptable time frames.
Evaluation metrics that include processing speed, scalability, and resource utilization can
comprehensively assess the OCR systems’ performance in practical scenarios.

13. Conclusions, Limitations, and Recommendations

This study examines optical character recognition (OCR) for image-to-LaTeX con-
version, mainly focusing on the transformative potential of active learning strategies. It
presents a holistic approach to advancing OCR accuracy, addressing the limitations of
current OCR models, introducing innovative techniques, and emphasizing the critical role
of context-aware processing, active learning, and domain adaptation in achieving this goal.
The limitations of existing OCR models are multifaceted, encompassing challenges related
to recognizing mathematical symbols, handling complex equations, and effectively manag-
ing noise in the input data [71]. OCR models have struggled to cope with the intricacies of
mathematical notation and the diverse typographical conventions associated with LaTeX
documents. Symbol recognition has been a persistent challenge due to variations in writing
styles and the complex interplay of symbols within equations.

This research first introduces the concept of augmenting training data with LaTeX syn-
tax constraints to address these limitations. This innovative approach entails constraining
the OCR model’s predictions to adhere to LaTeX syntax rules during training. Integrating
LaTeX-specific controls enhances the model’s understanding of mathematical expressions,
enabling it to discern structure and semantics accurately. Consequently, the OCR system
produces LaTeX representations that align with LaTeX syntax, resulting in higher accuracy
and reliability in image-to-LaTeX conversions. Symbol relationships within mathematical
expressions also assume critical significance in our exploration [2]. OCR models gain the
ability to rectify errors and enhance the fidelity of LaTeX conversions by considering the
contextual information and interdependencies of the symbols. This context-aware pro-
cessing approach represents a crucial step towards overcoming the challenges associated
with symbol recognition and understanding. It explains the importance of context in OCR,
providing a roadmap for further advancements in symbol recognition, interpretation, and
conversion accuracy. Active learning introduces a dynamic element to the OCR process by
helping the model to selectively choose informative samples for annotation. This strategic
selection enhances the model’s performance by focusing on challenging areas and refining
its understanding of symbol recognition and conversion. The active learning feedback
loop, combined with ensemble techniques and appropriate evaluation metrics, creates a
progressive learning and refinement cycle, allowing OCR models to adapt and improve
over time. This iterative process significantly enhances accuracy and reliability, making it
an invaluable tool in the OCR toolkit.

This study also emphasizes the importance of uncertainty and diversity sampling
in active learning. These strategies ensure that the dynamic learning process remains
efficient and effective, carefully balancing exploration and exploitation. Ensemble models
strengthen OCR predictions’ robustness and accuracy through their ability to aggregate
knowledge from multiple models. Ensemble-based sample selection plays a pivotal role
in the effectiveness of active learning strategies. Domain adaptation techniques emerge
as a crucial aspect of our research since they allow OCR models trained on synthetic
data to be fine-tuned on real-world data, aligning them to the specific challenges and
variations encountered in practical OCR scenarios. Methods such as unsupervised or semi-
supervised learning are instrumental in enhancing the transferability and effectiveness of
active learning strategies when faced with real-world complexities [13].

This study offers a comprehensive framework for advancing OCR accuracy in image-
to-LaTeX conversion. Through active learning and domain adaptation, this research paves
the way for more accurate and versatile OCR systems by tackling the limitations of current
OCR models, proposing innovative methodologies, and highlighting the importance of
context-aware processing. The implications of this work extend far and wide, from improv-
ing scientific documentation and mathematical education to enhancing accessibility for
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visually impaired individuals. This paper underscores the significance of incorporating
techniques that allow OCR models trained on synthetic data to perform well on real-world
documents to address the domain adaptation challenge. The OCR models can be fine-tuned
on a small amount of real-world data, setting them in alignment with the specific challenges
and variations encountered in practical OCR scenarios, by leveraging domain adaptation
methods such as unsupervised or semi-supervised learning. Including domain adaptation
considerations enhances the transferability and effectiveness of active learning strategies in
real-world applications.

It is crucial to recognize various limitations that have influenced the course and
application of this study, despite its significant impacts. Firstly, the dynamic technological
landscape poses a constant challenge. This study has been conducted within a rapidly
evolving field where new algorithms, hardware, and software emerge daily. Continuous
updates and adaptations are needed to keep pace with the ever-evolving landscape of
technology and maintain the cutting-edge applicability of our methods. Secondly, this
study might not cover every possible detail and difficulty OCR professionals face. The
domain of mathematical expressions and LaTeX texts is broad and complex, and although
our approaches show promise, they might not cover every particular situation. Changes in
LaTeX conventions and variations in mathematical notations may present new difficulties
that require specific considerations.

Furthermore, even with the best attempts to use domain adaptation techniques to close
the gap between synthetic and real-world data, real-world OCR applications might still pose
unique challenges that require additional improvements and customized methods. The
variety in real-world documents, including differences in writing styles and the subtleties of
symbol usage, can provide difficulties beyond our investigation’s purview. The subjective
character of human interpretation and assessment may result in variations in the perceived
accuracy of OCR outcomes. As human decisions and subjectivity can affect the impact of
our innovations, the human element in accuracy assessment suggests that judgments of the
system’s performance may differ. These limitations give future researchers an important
direction and a firm base to build on as they improve and advance our work.
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