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Abstract: Geosynthetics play a pivotal role in modern infrastructure projects, with geogrids serving
as a common choice for enhancing bearing capacity and reducing soil settlement in road construction.
This study investigates the influence of density and uniformity coefficients on geogrid-reinforced
sandy and gravelly soils through a series of consolidated drained triaxial tests. The research covers
six distinct soil types from Lithuania, each characterized by particle size distribution analysis and
classified using various standards. A polyester biaxial geogrid is employed, and test specimens
are prepared with and without geogrid reinforcement. Triaxial compression tests are performed at
different cell pressures, mirroring real-world conditions in road construction. The results highlight the
critical role of cell pressure in the reinforcement effect, with higher pressures reducing the geogrid’s
influence. The study also emphasizes the importance of soil type, as gravel soils consistently exhibit
higher deviatoric stress than sandy soils. Notably, the geogrid enhances cohesion but reduces the
angle of internal friction in most cases. Overall, this research provides valuable insights into the
intricate interplay between soil properties, geogrid reinforcement, and cell pressure, shedding light
on the mechanical behavior of geosynthetic-reinforced soils in road construction applications.

Keywords: geogrid; sand; gravel; road embankment; angle of internal friction; apparent cohesion;
density; coefficient of uniformity

1. Introduction

Geosynthetics are widely employed in diverse infrastructure projects. While their ini-
tial applications were focused on soil reinforcement, separation, filtration, and drainage [1,2],
geosynthetics have since found expanded utility. They are now employed in preventing
asphalt cracks [3,4], addressing significant settlement concerns beneath pile-supported em-
bankments [5], fabricating stone columns [6], constructing shallow strip foundations [7,8],
protecting pipelines [9], and reducing CO2 [10], among other uses. In road infrastructure,
geogrids are a common choice, specifically designed for enhancing load-bearing capac-
ity and reducing soil settlement [11–13]. Although both functions involve mechanical
improvements, the properties required to fulfill them are distinctively different [14].

Much research has been done to study the behavior of soil reinforced with geogrids
using numerical simulation, analytical methods, laboratory experiments, and in situ ex-
periments. While it has been acknowledged that different laboratory experiments can
effectively replicate the behavior of soil and geogrids in specific components of embank-
ments [15], a significant portion of these tests has been carried out using the direct shear
apparatus [16]. These experiments encompass diverse aspects, such as different soil types,
particle sizes, soil densities, and moisture contents [17–21], as well as variations in the
type of geogrids, aperture sizes, and shapes [22–25]. An important parameter found to
increase the reinforcement effect is the number of geogrid-reinforcement layers [26]. These
studies have a shared objective: to obtain a precise understanding of how soil and geogrids
interact, thus optimizing the effective use of geogrids [27]. In addition, the angle of internal
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friction and cohesion obtained during direct shear tests are used in modeling with software
packages. The precision of the results is influenced by the reproduction of the stress applied
to the sample [28], so tests with a triaxial pressure apparatus, during which it is possible to
set the lateral pressure, have the advantage [29,30].

The change in the angle of internal friction, the change in cohesion, and the effect of
geogrid reinforcement are the main properties obtained by the triaxial pressure apparatus
tests for samples without geogrids and with geogrids [31]. The results obtained showed
that the geogrid creates apparent cohesion and a small change in the angle of internal
friction [32]. The effect of the geogrid is better reflected through the reinforcement effect,
which is expressed as the ratio of the maximum deviatoric stress with the geogrid to the
maximum deviatoric stress without the geogrid [33]. Obtained results depend on the type
of soil, the type of geogrid, and the confining pressure at which the tests were carried
out [34].

The type of soil significantly influences triaxial pressure tests, with the geogrid’s
effectiveness tied to soil properties [35]. While most tests focus on coarse-grained soils for
laboratory convenience, the influence of cohesive soils is also considered [36]. The follow-
ing parameters affecting deviatoric strength are attributed to soil type: soil compaction,
average particle size, and density [34]. Recent research has highlighted the influence of the
uniformity coefficient on soil shear strength [37].

Geogrid selection is a critical factor in soil reinforcement. Even when geogrids share the
same tensile strength, the mesh size influences the strength of the specimen [38]. Notably,
whether biaxial or triaxial, geogrid variations do not impact the results of triaxial tests [39].
In laboratory testing, a specimen with a diameter of 100 mm and a height of 200 mm
exhibited maximum strength parameters when the geogrid was positioned at 80% of the
specimen’s height [40]. Experimental data reveal that geogrid-reinforcement coefficients
increase with the number of geogrid layers. For geogrids used in embankment sites, it is
recommended to maintain a separation of 20 cm between layers [28]. It is recommended
to ensure that the optimal distance between geogrids does not exceed the diameter of the
specimen [41]. Tests incorporating multiple geogrid layers simulate conditions found in
bridge abutments [42]. This practice aims to replicate real-world scenarios, emphasizing
that tests conducted with a large-scale triaxial device correspond closely to those performed
under field conditions [43].

In geotechnical practice, it is common to apply high confining pressures, typically
exceeding 100 kPa. However, it is essential to highlight a knowledge gap related to low
confining pressures [44]. A comprehensive literature review indicated a more pronounced
geogrid effect when lower pressures were applied to the samples [45]. The conducted stud-
ies have unveiled the intricate stresses generated by dynamic loads in road structures [46].
Hence, there is a critical need to analyze, calculate, and precisely select stress values within
the structure, particularly in the context of a road embankment [47]. To address these con-
siderations, the decision was made to employ static loads, aligning with the specifications
outlined in standard documents. Subsequently, stress distribution analysis was conducted
based on these static loads [48].

Based on these findings, the aim of the study is to conduct tests that closely simulate
road construction conditions. Consolidated drained (CD) triaxial tests were carried out
with small confining pressures of 20, 50, and 70 kPa, specifically calculated to replicate real-
world road structures [48]. The primary objective is to investigate the influence of density
and uniformity coefficient on cohesion, angle of internal friction, and the reinforcement
effect for a single layer of geogrid-reinforced sandy and gravelly soils.

2. Experimental Setup
2.1. Soil

For this study, six soil types were selected—three gravelly and three sandy soils
from different locations in Lithuania. The determination of the particle size distribution
was obtained using sieve analysis according to LST EN ISO 17892-4:2017 [49]. Particles



Appl. Sci. 2023, 13, 12480 3 of 14

larger than 14 mm were removed before the analysis to avoid interference during triaxial
compression testing.

These soils were classified according to LST 1331:2022 [50]—the primary Lithuanian
road construction classification. LST EN ISO 14688-2:2018 [51] and the Unified Soil Classifi-
cation System (USCS) were also included to provide a broader perspective. The particle
size distribution is illustrated in Figure 1, with the average particle size d50 values ranging
from 0.19 to 1.05 for sandy soils and 1.23 to 6.13 for gravelly soils. These values, particularly
the uniformity coefficient (CU), were used in our subsequent analysis. The average particle
size (d50) and the uniformity coefficient (CU) are detailed in Table 1.
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Figure 1. Particle size distribution curves (sample numbering coincides with the numbering given in
Table 1).

Table 1. Classification of soils based on grading.

Sample
No.

Soil Classification System

d10 d30 d50 d60 CU CCLST
1331:2022

LST EN ISO
14688-2

Unified Soil Classification
System

1 ŽB GrP GrP 1.95 3.62 6.13 7.94 4.08 0.85
2 ŽG GrM GrP 0.17 0.51 1.23 2.10 12.22 0.72
3 ŽP GrP GrP 1.54 2.64 4.31 5.37 3.48 0.84
4 SB SaU SaP 0.09 0.15 0.19 0.21 2.25 1.08
5 SG SaM SaP 0.23 0.44 1.05 1.69 7.42 0.51
6 SP SaU SaP 0.14 0.20 0.28 0.35 2.45 0.79

To ensure uniform testing conditions for the coarse soils, each sample needed to be
prepared by recompacting it. To achieve consistent compaction, it was decided to compact
the samples to their optimal water content, to reach their optimal density. The Proctor
compaction test was conducted according to LST EN 13286-2:2013 [52] to determine the
optimal water content and density. The results of these tests are presented in Table 2. It
was established that gravel samples should be prepared with water content ranging from
3.0% to 7.5%, resulting in a density between 1.90 and 2.23 g/cm3. For sandy samples, the
determined optimal water content range was between 8.0% and 14.3%, leading to a density
range between 1.86 and 2.16 g/cm3. The density of the prepared soil samples was utilized
in the subsequent analysis.
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Table 2. Physical properties of soils.

Sample No. *
Water Content Determined by

Standard Proctor Compaction Test
w, %

Dry Density of the Soil Determined
by the Standard Proctor

Compaction Test ρd, g/cm3

Sample Density (Prepared)
ρ, g/cm3

1 3.00 1.90 1.96
2 7.50 2.08 2.23
3 3.50 1.83 1.90
4 14.30 1.65 1.86
5 8.80 1.98 2.16
6 8.00 1.75 1.90

* Sample numbering coincides with the numbering given in Table 1.

2.2. Geogrid

The geogrid employed in this study was a biaxial, flexible polyester (PET) geogrid. Its
mesh size measured 25 × 25 mm, and it exhibited an ultimate tensile strength of ≥40 kN/m,
as provided by the manufacturer’s specifications. The selection of this geogrid with a tensile
strength of 40 kN/m aligns with common practices in embankment reinforcement in Baltic
countries. It is important to note that specific tests regarding the geogrid’s properties were
not conducted within the scope of this study, and the physical and mechanical properties
are based on the manufacturer’s data. Table 3 provides an overview of the physical and
mechanical properties according to the manufacturer’s data.

Table 3. Physical and mechanical properties of the geogrid.

Property Unit Value

Mesh size mm 25 × 25
Mass per unit area g/m2 260

Ultimate tensile strength kN/m ≥40
Strain at nominal tensile strength % ≤10

To prepare the test specimens, the geogrids were cut into circular shapes, as depicted
in Figure 2. The diameter of the selected geogrid was deliberately set to be 3–5 mm smaller
than the 100 mm diameter of the soil sample. This sizing choice was essential to prevent
potential damage to the membrane and edge effects during testing [53].

2.3. Sample Preparation

Two types of cylinder specimens were prepared for the triaxial compression tests.
The first type of specimen consisted of only sandy and gravelly soil without geogrids.
The second type of specimen was prepared with geogrids in the middle of the specimen
(Figure 2). The diameter of the specimens was 100.0 mm, and the height was 200.0 mm.
The samples were remolded in ten layers at an optimal water content and an optimal
density based on the Proctor compaction test (Table 2). When a geogrid was inserted in the
middle of the specimen, five layers were compacted first, followed by the placement of the
geogrid, and then the remaining five layers were compacted. The soils used for the tests
are non-cohesive, so the samples were prepared in a membrane, which helped to keep the
samples stable.

2.4. Experimental Program

In total, 42 consolidated drained (CD) triaxial compression tests were conducted
for six different types of soils. Initially, tests were performed on soils without geogrid
reinforcement, followed by tests on geogrid-reinforced soils. Three different cell pressures
σ3 were applied during the consolidation and loading phases: 20, 50, and 70 kPa, which
were based on stress calculation for road construction by Zakarka [48]. The conditions
for the test were selected according to LST EN ISO 17892-9:2018 [54]. Additional tests at



Appl. Sci. 2023, 13, 12480 5 of 14

cell pressures of 100, 200, and 300 kPa were conducted for one soil type to investigate the
impact of cell pressure on geogrid-reinforced samples. The test conditions were selected in
accordance with LST EN ISO 17892-9:2018 [54].
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The absence of a dedicated saturation stage aligns with the aim of simulating real-
world scenarios, where soils may not always be fully saturated. The acceptable B-value
for the tests was maintained by adjusting the water content during mixing to ensure
optimal compaction and representative mechanical behavior without a specific saturation
phase. The consolidation duration was determined in accordance with the guidelines of
the standard LST EN 17892-9:2018. However, in all cases, the consolidation duration was
less than 30 min. As per the standard, the rate of vertical displacement of the load frame is
dependent on the consolidation duration. To ensure consistency, the decision was made to
standardize the consolidation duration and select a uniform rate of strain. In all cases, the
soil underwent a 30 min consolidation period, with the rate of vertical displacement of the
load frame set at 0.950% per minute. The tests were carried out by loading the specimen up
to 15% of the vertical deformation. The results were interpreted using the Mohr–Coulomb
criterion τ = σ’ tanφ´ + c [55].

3. Test Results
3.1. Influence of Cell Pressure on Mechanical Properties

Road structures appear to have lower stress than most building structures and their
foundations transfer stress to the soil strata. However, the influence of cell pressure on
the mechanical properties of the soil and its improvement with geogrids was chosen to
check sand sample No. 4 (Figure 3 and Table 4). A higher pressure σ3 in the triaxial
pressure device results in larger deviatoric stress. The ratio of the maximum deviatoric
stress with the geogrid to the maximum deviatoric stress without the geogrid is called the
reinforcement effect. The reinforcement effect, or influence of the geogrid, decreases as
stress σ3 increases. The reinforcement effect for cell pressures of 20 to 70 kPa ranged from
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1.37 to 1.07, and for cell pressure 100–300 kPa ranged from 1.07 to 1.01 (Table 4). Based on
these results, further tests were performed only at cell pressures of 20, 50, and 70 kPa.
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Table 4. Effect of cell pressure on maximum deviatoric stress for soil No. 4.

σ3, kPa
Deviatoric Stress (σ1–σ3), kPa Reinforcement

Effect RσWithout Geogrid With Geogrid

20 106.94 145.98 1.37
50 208.04 244.19 1.17
70 339.94 364.48 1.07

100 393.21 419.12 1.07
200 697.33 742.13 1.06
300 1146.01 1154.49 1.01

In several tests with a geogrid reinforcement at the lowest cell pressure of 20 kPa, two
peak deviatoric stresses appeared during shear (Figure 4). The first peak appeared when
the vertical strain was equal to 2–3%. This tendency was common in all soils reinforced
with geogrids. The second peak began to appear at a 5% vertical strain and reached its
maximum at the end of the test (15% vertical strain). Notably, the deviatoric stress value
for the second peak was greater than that of the first peak.

In cases where two peak values appeared, it was clear that the load was primarily
carried by the geogrid itself, with minimal contribution from the surrounding soil. This
phenomenon was also evident in post-test images of the geogrid (Figure 5b), which showed
substantial damage and deformation of the geogrid. Conversely, in cases where only a
single deviatoric stress peak was observed, the geogrid returned to its initial state without
significant long-term damage (Figure 5a).
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These observations suggest a complex interplay between the geogrid and the surround-
ing soil and could have significant implications for the performance of geogrid-reinforced
structures. Only the deviatoric stress values of the first peak were evaluated for further
analysis of the results.

3.2. Geogrid Influence

Post-test images provide visual evidence of the different behaviors exhibited by spec-
imens without and with geogrid reinforcement (see Figure 6). Notably, the presence of
geogrid in the specimens introduces a significant change in how the shearing surfaces
are formed.

In the case of specimens without geogrid reinforcement (Figure 6 above), the shearing
surfaces extend uniformly across the entire height of the specimen. This results in a
relatively uniform distribution of shear forces throughout the specimen, as is typical in
triaxial compression testing.

However, when geogrid reinforcement is introduced (Figure 6 below), the shearing
surfaces are localized either in the upper or lower part of the specimen. This localization
indicates that geogrid reinforcement plays a pivotal role in redistributing and concentrating
shear forces. This concentrated behavior might explain the presence of two deviatoric stress
peaks in tests with geogrid reinforcement, as observed earlier (Figure 4).
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It is important to mention that although the soils used for the tests are classified as
non-cohesive, they contained fine particles, the amount of which did not exceed 5%, and
also the suction effect due to the water in the sample allowed the samples to be kept stable
after the test. Stable gravelly soils were not maintained in almost all cases; therefore, their
photos are with a membrane.

The maximum deviatoric stresses and their dependency on cell pressure are presented
in Table 5. The influence of cell pressure on the increase in deviatoric stress in geogrid-
reinforced specimens is notable. At a cell pressure of 20 kPa, the reinforcement effect
showed a range from 1.05 to 1.37. When the cell pressure increased to 50 kPa, the reinforce-
ment effect still showed a substantial range, spanning from 1.09 to 1.31. As the cell pressure
further increased to 70 kPa, the range of the reinforcement effect remained considerable,
varying from 1.02 to 1.13. These results demonstrated that cell pressure was the dominant
factor influencing reinforcement, overshadowing the influence of soil type, whether sand
or gravel, which did not significantly affect the observed outcomes.

Table 5. Summary of the results of the triaxial compression test for maximum deviatoric stress and
reinforcement effect.

Sample No. * Test Conditions
Maximum Deviatoric Stress, kPa Reinforcement Effect Rσ

σ3 = 20 kPa σ3 = 50 kPa σ3 = 70 kPa σ3 = 20 kPa σ3 = 50 kPa σ3 = 70 kPa

1
Without geogrid 144.68 281.32 428.96

1.26 1.30 1.08With geogrid 182.92 364.40 465.12

2
Without geogrid 195.97 380.48 475.56

1.24 1.10 1.13With geogrid 242.31 418.88 538.55

3
Without geogrid 141.78 284.98 394.80

1.26 1.09 1.07With geogrid 178.30 310.54 422.40

4
Without geogrid 106.94 208.04 339.94

1.37 1.17 1.07With geogrid 145.98 244.19 364.48
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Table 5. Cont.

Sample No. * Test Conditions
Maximum Deviatoric Stress, kPa Reinforcement Effect Rσ

σ3 = 20 kPa σ3 = 50 kPa σ3 = 70 kPa σ3 = 20 kPa σ3 = 50 kPa σ3 = 70 kPa

5
Without geogrid 121.65 238.46 365.49

1.37 1.31 1.11With geogrid 166.10 311.58 405.40

6
Without geogrid 124.75 234.97 328.17

1.25 1.18 1.08With geogrid 155.48 278.17 355.52

Average 1.29 1.19 1.09

* Sample numbering coincides with the numbering given in Table 1.

3.3. Dependence on Soil Properties

The type of soil was observed to exert a noteworthy influence on the vertical strain at
which the maximum deviatoric stress was achieved. Figure 7 illustrates the influence of
vertical strain based on soil type and the geogrid reinforcement. In gravel samples without
geogrids, the vertical strain ranged from 2.64 to 3.43, while in the presence of geogrid
reinforcement, it extended from 3.58 to 4.01. In contrast, sand samples displayed lower
values of vertical strain, within the range of 2.37 to 2.87. Moreover, the influence of the
geogrid on sand samples was less pronounced, with the vertical strain ranging from 2.53
to 2.84. This signifies the geogrid’s distinct influence in various soil types, with gravel
samples exhibiting a more substantial response to reinforcement in terms of vertical strain
when compared to sand samples.
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The influence of the geogrid on the angle of internal friction and cohesion values is
presented in Table 6. The geogrid had a positive influence on the angle of internal friction
only for soil No. 2, increasing it by 0.41◦. For the other samples, the angle of internal
friction decreased from 0.23 to 0.73◦. The geogrid increased cohesion for all investigated
soil samples. The apparent cohesion of the gravel soils increased from 7.03 to 10.10 kPa,
and the apparent cohesion of the sandy soils increased from 3.61 to 9.94 kPa.

Table 6. Summary of the results of the triaxial compression test for the angle of internal friction and
cohesion.

Sample
No. *

Without Geogrid With Geogrid Difference

ϕmean, ◦ cmean, kPa ϕmean, ◦ cmean, kPa ϕmean, ◦ cmean, kPa

1 48.38 0.00 48.15 7.03 −0.23 7.03
2 48.46 6.29 48.87 16.39 0.41 10.10
3 46.35 0.85 45.76 9.31 −0.59 8.47
4 44.24 0.00 43.98 3.61 −0.26 3.61
5 45.44 0.00 44.71 9.94 −0.73 9.94
6 43.10 1.81 42.38 10.65 −0.30 8.84

* Sample numbering coincides with the numbering given in Table 1.

The type of soil has an influence on deviatoric stress. Deviatoric stress was higher
for gravelly soil than for sandy soil at all cell pressures, as shown in Figure 8. A strong
dependence of deviatoric strength on the initial specimen density was observed. When the
sand samples were not reinforced with geogrids, the deviatoric stress increased slightly
with increasing density. For sandy soils reinforced with geogrids, deviatoric strength
increased more with increasing density, whereas for gravel soils, this phenomenon was not
as pronounced.
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Figure 8. The relationship between the density and the maximum deviatoric stress, and between the
coefficient of uniformity and the maximum deviatoric stress.

The dependence of deviatoric strength on the coefficient of uniformity was also ob-
served, as depicted in Figure 8. It is important to note that sandy and gravelly soils must be
evaluated separately. The slope angles of the curves exhibited little variation with soil type
or cell pressure, but the x-axis crossing points had higher values for gravelly soil compared
to sandy soil.

Conclusively, the soil’s mechanical properties are predominantly determined by den-
sity or the coefficient of uniformity. This assertion is supported by the observation that
gravelly soil consistently exhibits higher deviatoric strength compared to sand. Examining
the relationship between Cu and density in Figure 9 reveals a consistent trend: as Cu
increases, density also increases. This correlation holds true for both sandy and gravelly
soils, indicating that the soil type does not significantly influence this particular association.
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Figure 9. Variations of soil properties with Cu and d50.
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Furthermore, there is no discernible dependence on the average particle size (d50) or
the percentage of gravel particles. Shifting our focus to d50 and optimal water content
(Figure 9), an inverse relationship becomes evident: as d50 increases, optimal water content
decreases. This trend is more pronounced for gravelly soils, especially when considering
both sandy and gravelly soils together. However, when specifically addressing sandy soils,
this relationship is not as distinctly defined.

4. Conclusions

A series of triaxial compression tests were performed on coarse soils reinforced with
geogrids to study the effect of soil type and geogrid influence on the mechanical properties
of the soils.

Based on the test results, it was found that:

• The choice of cell pressure in the triaxial device is crucial, as it significantly affects the
reinforcement effect (the influence of the geogrid). Higher cell pressure corresponds
to a reduced reinforcement effect.

• At a cell pressure of 20 kPa, two peak values of deviatoric stress were observed, and
this phenomenon was consistent across a few soils reinforced with geogrids.

• Gravelly soils exhibited higher vertical strains at which the maximum deviatoric stress
was reached compared to sandy soils.

• The vertical strains at which the maximum deviatoric stress was reached were higher
for gravelly soils compared to sandy soils.

• The introduction of geogrids resulted in a slight reduction in the angle of internal
friction but notably increased cohesion values in both sandy and gravelly soils. This
increase in apparent cohesion was more pronounced in gravelly soils.

• A strong dependence of deviatoric strength on the initial specimen density was ob-
served, with deviatoric strength increasing as density increased. This influence of
density was more noticeable in gravelly soils than in sandy soils.

• Deviatoric strength was found to correlate with the coefficient of uniformity, with
higher values corresponding to higher coefficients of uniformity. Gravelly soils consis-
tently exhibited higher deviatoric strength values compared to sandy soils.
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2. Šiukščius, A.; Vorobjovas, V.; Vaitkus, A.; Mikaliūnas, Š.; Zarin, š, A. Long Term Behaviour of An Asphalt Pavement Structure

Constructed on a Geogrid-Reinforced Subgrade Over Soft Soils. BJRBE 2019, 14, 384–404. [CrossRef]
3. Roodi, G.H.; Zornberg, J.G.; Yang, L.; Kumar, V.V. Cross-Shear Test for Geosynthetic-Reinforced Asphalt. Transp. Geotech. 2023, 38,

100902. [CrossRef]
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