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Abstract: Unmanned aerial vehicle (UAV) swarms offer unique advantages for area search and envi-
ronmental monitoring applications. For practical deployments, determining the optimal number of
UAVs required for a given task and defining key performance metrics for the platforms and payloads
are crucial challenges. This study aims to address mission planning and performance optimization
for cooperative UAV swarm search scenarios. A new clustering algorithm is proposed, integrating
enhanced clustering techniques with ant colony optimization, particle swarm optimization, and crow
search optimization. This jointly optimizes and validates the UAV numbers and coordinated trajecto-
ries. Sensitivity analysis and indicator optimization further examine specific scenarios to quantify
platform and sensor factors influencing search efficiency. Lastly, sensitivity analysis and performance
indicator optimization are conducted in specific scenarios. The modular algorithmic components and
modeling techniques established in this work lay a foundation for continued research into real−world
mission−based swarm optimization.

Keywords: UAV cluster; mission plan; load index sensitivity; clustering algorithm

1. Introduction

Unmanned Aerial Vehicle (UAV) swarm systems, encompassing an aggregation of
drones collaborating in tandem to execute multifaceted tasks, represent an innovation
with considerable promise in diverse sectors, including urban logistics, maritime surveil-
lance, border security, and regional search and rescue operations. Especially pertinent to
time−critical regional searches with numerous targets, deploying a cost−effective UAV
swarm in the specific zone could augment the numerical advantage, thereby expediting
the task completion time.

In managing UAV swarms, the control hierarchy is typically divided into four strati-
fied layers: the task assignment layer, the trajectory planning layer, the trajectory tracking
layer, and the base control layer. The foremost layer, task assignment, involves designated
personnel selecting tasks and issuing task commands. The second layer, the flight path
planning layer, employs a designated trajectory planning algorithm to formulate optimal
flight paths for either the collective swarm or individual units. The third layer, the trajectory
tracking layer, takes the coordinated trajectory as the desired path and uses trajectory track-
ing control methods to generate attitude guidance commands. The fourth layer comprises
the UAV’s individual control system, which formulates respective control directives for the
rudder surface. Nevertheless, when deploying drone swarms in practical applications faced
with specific tasks and an unknown numbers of drones, determining how to optimally
allocate drones based on mission timelines, coverage requirements, and matching optimal
platforms and payload capacities to enhance the efficiency of the drone swarm remains a
research−worthy challenge.
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The existing literature predominantly assumes the number and payload capacity of
UAVs as known variables. These studies often involve only a few drones, not addressing
the task scheduling for large−scale drone swarms, and seldom delve into the analysis of
task payload suitability. Addressing this gap necessitates the consideration of two pivotal
factors. From the perspective of matching swarm size, the number and routes of the drones
need to be as optimal as possible to meet the task requirements. From the viewpoint of
matching payload indicators, taking an electro–optical payload as an example, it is essential
to jointly verify the impact of drone performance and electro–optical payload capabilities
on task requirements [1–6]. Through scrutinizing UAV swarm task planning, we aim not
only to formulate algorithms for superior task planning, but also to evaluate the interaction
between UAV platforms and payload performances on overall mission effectiveness. This
analytical approach facilitates the validation of the feasibility and efficacy of designated
indices. This nuanced approach thereby enhances UAV swarm task−planning optimization,
taking into account UAV numbers and routes, as well as the aptitude of mission loads.

Two prevalent strategies are generally adopted to solve the problem of UAV swarm
task assignment and track planning. The first employs optimization algorithms to trans-
mute the issue into either an offline or online optimization challenge, premised on con-
straints such as time, energy, or obstacle avoidance, given a known UAV quantity and
unknown targets [7–9]. For example, Carabaza (2017) studied the UAV track planning
problem under the minimum search time target based on the ant colony optimization
method [10]. Yuan (2021) studied the problem of optimal communication relay for UAV
clusters based on ant colony and clustering methods [11]. Commonly used optimization
algorithms include the particle swarm optimization algorithm, crow search optimization al-
gorithm, and more advanced gray wolf optimization algorithm, artificial hummingbird op-
timization algorithm and Harris Eagle optimization algorithm, etc. These algorithms have
solved many practical problems in the engineering field and achieved good results [12–14].
An alternative approach leverages reinforcement learning to cultivate UAV swarms with
autonomous decision−making capabilities, enabling real−time task objective assignment
and flight path planning. Kaufmann (2023), based on image recognition and reinforcement
learning algorithms, studies the path assignment of UAVs using visual navigation, and
beats human champions in an FPV test [15]. Hu (2022) studied the real−time planning
problem of UAV tracking dynamic targets in a large−scale unknown environment using
the deep reinforcement learning method [16].

Regarding the verification and matching of drone platform performance and electro–
optical payload indicator performance, they are typically decoupled from platform design
and task requirements. From task planning to drone design, payloads are often considered
optional accessories, making it challenging to achieve optimal metrics based on swarm
tasks. Currently, only some studies comprehensively verify the relationship between
electro–optical payloads, drone performance, and task requirements. Generally, these
investigations are based on optimization concepts, modeling the payload capability−task
requirements, and seeking optimal metrics under objectives such as timeliness and energy
consumption [17,18]. Gustavo (2015) calculated the camera’s coverage width, factoring in
the field width of the optical sensor, the camera lens’ focal length, and the distance between
the camera and the ground, subsequently crafting an area coverage path that minimizes
task time [19]. Carmelo (2016) designed an overlay path−planning algorithm with the
objective of low energy consumption, grounded on an actual energy model and image
resolution constraints, additionally proposing two energy−conscious safety mechanisms
for returning home [20]. Wang (2022) formulated a multi−objective mathematical model
aiming to minimize both flight path length and correction frequency, considering the
path−tracking deviation and turning radius of UAVs during offshore platform patrols
while introducing a UAV path planning strategy rooted in genetic algorithm principles [21].
Targeting UAV search and rescue operations, Jing (2023) investigated area coverage search
techniques and task parameter configurations under the influence of sector scanning
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photoelectric load, comparing the efficacy of different optimization algorithms in the search
and rescue frameworks involving sector photoelectric devices [22].

These aforementioned studies have actively examined the intricacies of UAV swarm
task planning, yielding fruitful results. However, their primary emphasis has been on
scenarios featuring a predetermined count of UAVs, neglecting critical variables such as
drones’ quantity and payload capacities. In real−world applications, the imperative lies
in ascertaining the optimal drone count for deployment and effectively allocating target
routes for each drone, especially in situations involving time−intensive and multifaceted
missions.

The key contributions of this paper can be summarized as follows:

• In contrast to traditional task−planning frameworks, this study establishes a unified
framework for UAV swarm search task−planning and payload performance optimiza-
tion. On the two−dimensional level, it mainly conducts optimal task scheduling and
outputs a two−dimensional projection of the three−dimensional trajectory. Building
upon this, considering drone performance and electro–optical payload performance,
the problem is elevated to three dimensions. A thorough examination is conducted
on how these performance indicators impact task completion capability, providing
results from optimal index analysis.

• An improved cluster algorithm is devised based on target geographic distribution.
The inner layer of the algorithm introduces an ant colony optimization algorithm,
only considering the optimal trajectory of the entry and search segments. The outer
layer of the algorithm retains the optimizer interface, allowing for the optimization
of variables such as the clustering circle radius and cluster center location to plan the
optimal track of the cluster.

• A task model for UAV swarm search is established. It introduces elements such as
the drone platform’s ascent and descent angles, the electro–optical payload’s visible
distance, and the viewing angle. With the task duration as the objective, it conducts
sensitivity analysis and optimization of performance indicators.

The organization of this paper is as follows: Section 2 formulates the problem of UAV
swarm search. Section 3 introduces the cooperative search task−planning algorithm for
UAV swarms. Section 4 offers an analysis through modeling and simulation to validate the
efficacy of the proposed algorithm. Lastly, Section 5 presents the conclusion and outlines
avenues for future research.

2. Description of Problem
2.1. Mission Scenario

To investigate the complexities of UAV mission planning, this study develops a simula-
tion for the expedited search operations conducted by a UAV cluster (Figure 1). Within the
designated mission area, 100 target points are randomly generated, represented by green
points in Figure 2. The drone swarm gathers from multiple points outside the mission
area, corresponding to the red points in the picture. Once the mission directive is issued,
the drone swarm, equipped with electro–optical payloads, departs from the gathering
point and conducts a quick search and filming for each target. Regarding the photoelec-
tric payload of the UAVs, the visual range at each target point manifests as a spherical
cone, wherein the apex of the cone and the sphere’s center align perfectly. As the UAV
approaches the target from its cruising altitude, it swiftly intersects the upper circular edge
of this spherical cone, transitioning to horizontal flight, enabling it to spot the target and
maintain level flight. Upon reaching this upper circular boundary, the UAV alters its course
towards the next target, maintaining level flight. Once this boundary is again reached,
the UAV initiates an ascent, rapidly returning to cruising altitude before proceeding to
the subsequent target. If the proximity to the subsequent target does not permit ascent
to cruising altitude, the UAV preemptively transitions into a descent to facilitate efficient
target engagement.
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In this task, the UAV swarm initiates its operation from the starting point, maintaining
a consistent speed of 100 km/h and a cruising altitude of H = 3 km. As it approaches
the vicinity of a target point, it transitions into a descent trajectory, eventually stabiliz-
ing at a lower altitude to facilitate level flight. Concurrently, the UAV swarm executes
close−range imaging of the target point. After the shooting is completed, they ascend and
re−enter cruising altitude until they approach the next target and then descend again, thus
perpetuating this cyclic process throughout the mission duration.

2.2. Assumption

In the scenario, the following assumptions are introduced:

1. All UAVs commence their mission simultaneously, maintaining a constant speed
throughout the operation. They are designed to avoid collisions, have a sufficiently
small turning radius, and the maximum range meets the requirements;

2. The visible range of the drone’s electro–optical payload is equivalent to a cone. Each
target entering the drone’s visual cone is judged as being seen. After leaving the
visual cone, it is judged as the search completed.
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2.3. Mission Evaluation Function

In the section concerning two−dimensional goal allocation, an optimization algo-
rithm is implemented to refine task requirements, and the objective function is G1. G1 is
formulated as outlined below:

G1 = min : w1 ∗ N + w2 ∗ L1 + w3 ∗ L2 + w4 ∗ σ1
L1 = 1

N ∑ Li
L2 = max : {Li}
σ1 =

√
1
N ∑ (Li − L1)2

(1)

where N denotes the number of drones, Li signifies the path length of each unit within the
cluster, with i = 1, 2, . . ., N; σ1 represents the standard deviation of the path length for each
unit in the cluster, and w1, w2, w3, and w4 are weighting coefficients adaptable to various
task requirements.

During the 3D track optimization phase, an optimization algorithm is used. Based
on the multi−objective distribution of the swarm and the two−dimensional optimized
trajectory obtained earlier, the task time is calculated, and optimization analysis is con-
ducted on three indicators. The form of the optimization objective function is G2. G2 is
represented below:

G2 = min : w5 ∗ T1 + w6 ∗ T2{
T1 = 1

N ∑ Ti
T2 = max : {Ti}

(2)

Ti represents the time allocated for the search task for each unit within the cluster, with
w5 and w6 acting as the weighting coefficients. The parameters under optimization include
the UAV’s climbing and descending angles α, the discernible distance of the photoelectric
load Lgd, and the observable angle of the photoelectric load θgd.

3. Methods
3.1. Improved Cluster Algorithm Based on the Geographic Distribution of the Target

In the initial algorithm development segment, the focus is primarily on allocating the
number of drones and the optimal path for each drone within the cluster. The research is
based on optimization algorithms and clustering algorithms. The entire algorithm consists
of three main components, namely, sequential clustering algorithm, single−drone optimal
trajectory algorithm, and cluster mission planning optimization algorithm.

The clustering algorithm functions as a classification mechanism to group seemingly
disordered target points, ensuring that the target points within the same group are close
in position. This organization ensures that the target points within the same group are
proximal to each other, reducing long−distance transfers for a single drone while keeping
the target points of different groups as far apart as possible. At the same time, it avoids
overlapping areas for drones, preventing resource wastage.

Traditionally, k−means clustering algorithm represents classical clustering algorithms.
At its core, it partitions data into ‘k’ groups, with ‘k’ entities randomly selected as the initial
clustering centers. Then, the distance between each entity and the respective clustering
centers is calculated to assign each entity to the nearest cluster center. Although this
method boasts a high exploratory potential, it is typically marred by a considerable degree
of uncertainty and extensive iterative computing time costs. Given the introduction of
multiple optimizations in the proposed algorithm, the initial calculation stages strive to
diminish uncertainty within the optimization process. This approach aims to yield results
that are not only interpretable, but also conducive to further optimizations.

To mitigate these challenges, this paper introduces a sequential clustering method that
hinges on geographic coordinates, advancing from the traditional clustering approaches
(Algorithm 1). During the clustering phase, two pivotal optimization parameters are
highlighted: the cluster circle diameter D and the cluster circle positioning distance ∆d.
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The former parameter, D, signifies the cluster circle’s diameter, influencing the cluster
count and the number of clustered target parcels. Conversely, ∆d denotes the minimum
positional shift between the starting point of a new cluster and the center of the preceding
cluster during a cluster transition. This parameter influences the relative positioning
amongst the cluster circles to adjust the relative position between the cluster circles, thereby
improving the uniformity of clustering in densely targeted areas and reducing the spatial
overlap of clusters. In the sequential clustering process, each cluster’s target points, which
correlate to the tasks assigned to each drone, need to be traversed. This problem is akin
to the classic TSP in mathematics. It dictates that each drone tasked with visiting ‘n’
target points must define a path encompassing all designated points, with the stipulation
that each target is visited only once before returning to the initial starting position. This
path selection aims to minimize the overall journey length amongst all potential paths.
Recognized as a quintessential combinatorial optimization issue, TSP falls under the
category of NP−complete problems. As of now, no flawless solution has been identified.

In this paper, the ant colony optimization (ACO) algorithm is employed to solve
the shortest path problem for drones, approximating the optimal solution. The basic
principle of the ACO algorithm is derived from nature’s shortest path principle for foraging.
According to entomologists, ants can find the shortest path from food sources to their nests
without any hints, even in complex environments (Figure 3).

Algorithm 1. Improved cluster algorithm based on the geographic distribution of the target

1. The coordinates of the target point set {Ptar}, the assembly point coordinate {Pjjd}, and the
reference point coordinate P0;

2. Initialize parameters;
3. Determine the nearest point Pini−i closest to P0, and the distance between Pini−i and center C

of any cluster circle is ≥∆d;
4. Starting with Pini−i, find the farthest point Pfar−i within the distance D;

5. The coordinate Ci of cluster circle center is determine as d Ci =
Pini-i+Pf ar-i

2 ;
6. Search by distance and record point set {Pci,j}, within the diameter D, centered on Ci;
7. Add the assembly point Pjjd,j closest to Ci in {Pci,j};
8. Eliminate {Pci,j} in {Ptar};
9. Initialize pheromones and ants within {Pci,j};
10. Randomly initialize the solution space of the problem;
11. Initialize the pheromone value for each solution;
12. Create a group of ants and place them on different solutions;
13. Iteratively update pheromones and ant paths;
14. Carry out the following for each ant;
15. Choose the next solution according to the pheromone and heuristic information;
16. Update ant’s path reconciliation;
17. Update the pheromone along the ant’s path;
18. Carry this out for all ants;
19. Update the global optimal solution;
20. Update the global optimal solution based on the solution of all ants;
21. Update pheromone;
22. Record the path information {Touri} within {Ptar};
23. Iterate until {Ptar} is empty, and all points are traversed;
24. Update the pheromone matrix according to the pheromone along the ant path;
25. End condition judgment;
26. Terminate the iteration when reaching a predetermined number of iterations or meeting a

certain stopping condition.



Appl. Sci. 2023, 13, 12438 7 of 14

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 14 
 

14. Carry out the following for each ant; 

15. Choose the next solution according to the pheromone and heuristic information; 

16. Update ant’s path reconciliation; 

17. Update the pheromone along the ant’s path; 

18. Carry this out for all ants; 

19. Update the global optimal solution; 

20. Update the global optimal solution based on the solution of all ants; 

21. Update pheromone; 

22. Record the path information {Touri} within {Ptar}; 

23. Iterate until {Ptar} is empty, and all points are traversed; 

24. Update the pheromone matrix according to the pheromone along the ant path; 

25. End condition judgment; 

26. Terminate the iteration when reaching a predetermined number of iterations or 

meeting a certain stopping condition. 

60 70 80 90 100 110 120 130

0

10

20

30

40

50

60

 

 

y
  
/k

m

x  /km

 ANO-TSP

 

Figure 3. ANO−TSP path plan in cluster. The green circle represents the target, the blue symbol 

represents the center of clustering, and the pink star represents the start point. 

3.2. Optimization Algorithm 

To interpret the optimization results and prevent the problem of local optima due to 

a single algorithm, this paper utilizes both the particle swarm optimization (PSO) and 

crow search optimization (CSO) algorithms concurrently to optimize the objective func-

tion. 

The particle swarm optimization (PSO) is an optimization algorithm inspired by bi-

omimicry principles that emulates the collaborative behavior observed in bird flocks or 

fish schools to identify the optimum solution to a problem. This algorithm operates with 

a set of entities called particles. Each particle represents a potential solution in the solution 

space. These particles iteratively adjust their positions and velocities to find the best solu-

tion. 

The crow search optimization (CSO) is a heuristic optimization method based on bird 

behavior, simulating the crows’ strategized foraging activities to ascertain the optimal so-

lution. The foundational idea behind the CSO is to perceive the problem awaiting optimi-

zation as a search space, with the positions within this space representing potential solu-

tions since crows optimize the quality of solutions through cooperative and competitive 

behaviors. 

Figure 3. ANO−TSP path plan in cluster. The green circle represents the target, the blue symbol
represents the center of clustering, and the pink star represents the start point.

3.2. Optimization Algorithm

To interpret the optimization results and prevent the problem of local optima due to a
single algorithm, this paper utilizes both the particle swarm optimization (PSO) and crow
search optimization (CSO) algorithms concurrently to optimize the objective function.

The particle swarm optimization (PSO) is an optimization algorithm inspired by
biomimicry principles that emulates the collaborative behavior observed in bird flocks
or fish schools to identify the optimum solution to a problem. This algorithm operates
with a set of entities called particles. Each particle represents a potential solution in the
solution space. These particles iteratively adjust their positions and velocities to find the
best solution.

The crow search optimization (CSO) is a heuristic optimization method based on bird
behavior, simulating the crows’ strategized foraging activities to ascertain the optimal
solution. The foundational idea behind the CSO is to perceive the problem awaiting
optimization as a search space, with the positions within this space representing potential
solutions since crows optimize the quality of solutions through cooperative and competitive
behaviors.

In the optimization methodology adopted in this study, the PSO algorithm is imple-
mented with a population of 40 particles undergoing a maximum of 100 iterations. The
learning factors are fixed at 1.5 for both components, complemented with maximum and
minimum inertial weights of 0.8 and 0.4, respectively. Meanwhile, the CSO algorithm has a
population of 40 crows, a maximum iteration cycle of 100, a flight distance parameter of 2,
and an exploration probability of 0.2.

3.3. Sobol Sensitivity Analysis

To simplify the intricacies of the problem at hand, this analysis centers on three cru-
cial parameters: the UAV’s climbing and descending angle α, the angular photoelectric
load’s viewing distance Lgd, and its viewing angle θgd. While these parameters function
independently, they collectively shape the 3D search path of the UAV, influencing the
cluster’s task completion time. Considering the large−scale demonstration of performance
indicators, a sensitivity analysis method is warranted to analyze these indicators compre-
hensively. Thus, the Sobol sensitivity analysis method is chosen for this purpose. Suppose
that the input–output relationship of the structural system under consideration can be
determined by

Y = g(X), X = (X1, X2, . . . Xn) (3)
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The global sensitivity index and the principal contribution sensitivity index based on
variance can be obtained as

Si =
Var[E(Y|Xi ]

Var(Y)

Si
T = 1− Var[E(Y|X−i ]

Var(Y)

(4)

4. Results
4.1. Simulation Steps and Conditions

Before optimization, validation tests were conducted using varying parameters: cluster
diameter D = 30 km, cluster circle positioning spacing ∆d = 0 km and D = 40 km, and
cluster ∆d = 5 km. The optimal path was identified using sequential clustering and ant
colony optimization algorithms. This path length was measured from the UAV’s starting
point to each aircraft’s designated final target. The results are graphically illustrated in the
accompanying Figures 3 and 4 and Table 1.
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Table 1. Relevant data of UAVs’ path plan before optimization.

[D, ∆d] N Mean{Li} Max{Li} σ1

[30, 0] 18 70.50 116.53 23.58

[40, 5] 13 86.55 141.87 33.97

For the scenario where D = 30 km, ∆d = 0 km, a total of 18 UAVs are required to
search 100 targets in a cluster formation. In this configuration, the longest path ranged
from 34.52 km to 116.53 km, with an average of 70.50 km and a standard deviation of
23.58 km. When D = 40 km and ∆d = 5 km, the mission necessitates 13 UAVs to search the
same number of targets collectively. In this setup, the path lengths vary between 26.49 km
and 141.87 km, averaging 86.55 km and a standard deviation of 33.97 km. The data show
that the chosen values for cluster diameter D and cluster circle positioning spacing ∆d
significantly impact the number of UAVs deployed in the cluster and the extent of the
longest path, indicating a substantial scope for optimization.

4.2. Optimized Two–Dimensional Object Assignment

For the cluster diameter D, the range is set to [20, 100]. The cluster circle positioning
distance ∆d spans a range of [0, 50]. The weights w1, w2, w3, and w4 are set to 1, 0.5, 0.5,
and 0.5, respectively. The optimization procedure and its outcomes are shown in Figure 5
and Table 2:
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(e) Standard deviation. (f) Result. The green circle represents the target, and the pink star represents
the start point.

Table 2. Relevant data of UAVs’ path plan after optimization.

Algorithm [D, ∆d] Function N Mean{Li} Max{Li} σ1

PSO [22.44,
12.44] 156.14 23 64.34 85.86 11.61

SCO [24.44,
13.79] 156.14 23 64.34 85.86 11.61

The trend analysis shows that both the PSO and CSO methods can achieve convergence
swiftly, with the PSO algorithm necessitating fewer iterations to reach convergence. When
comparing the fitness, quantity, average path length, most extended path length, and
standard deviation of each machine’s path length, both methods produce identical results,
indicating that the original problem has already converged.

For the initial optimization task, 23 unmanned aerial vehicles can accomplish a
multi−objective search in the shortest approximate time. Using both optimization methods,
the paths obtained for each machine are the same, proving that the solution to the original
problem obtained using this algorithm is highly stable and is minimally affected by the algo-
rithm itself. In addition, in the optimization results obtained from both methods, the values
corresponding to the optimal cluster diameter are nearly identical, and the disparities in
the cluster migration distances are inconsequential, resulting in no significant differences
in the final outcomes, indicating that the original algorithm has a certain tolerance for the
excessively large cluster migration distance.

4.3. Performance Index Analysis of UAV Platform and Electro–Optical Payload

This section uses Sobol sensitivity analysis to access the mission time sensitivity
relative to three specific indices. The defined ranges for the UAV climbing and descending
angle α, the photoelectric load viewing distance Lgd, and the photoelectric load viewing
angle θgd are set to [0, 45] (◦), [1, 3] (km), and [0, 60] (◦), respectively, with the parameter
sample space established at 10,000. The results are presented in Figure 6.
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From the analysis results, the UAV’s climb and descent angle α exhibits a global
sensitivity and first−order sensitivity of 0.73 and 0.97, respectively. It has the most direct
impact on the task time. On the other hand, the global sensitivity and first−order sensitivity
of the photoelectric payload visible distance Lgd and the photoelectric payload visible
angle θgd 0.02 and 0.18 and 0.02 and 0.17, respectively. While their impact on task time
is comparatively small, it cannot be ignored. They should be considered during metric
optimization verification.

4.4. Optimization of the Platform and Photoelectric Load Index

In terms of the trend, both strategies can converge rapidly (Figure 7). However,
comparing the results of both methods, the optimization result of the PSO algorithm, near
the starting interval of the variable, falls into a local optimum, with the eventual longest
task time being 64.75 min (Table 3). In contrast, the CSO algorithm showcases stronger
exploratory capabilities, achieving marginally superior results with an optimum task time
of 64.39 min.

Table 3. Relevant data of UAVs’ platform and photoelectric load index after optimization.

Algorithm [α, θgd, Lgd] Function Mean{Li} Max{Li}

PSO [5.00, 10.00, 1.00] 104.63 39.88 64.75

SCO [17.95, 51.35,
1.01] 103.87 39.58 64.39
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Regarding the photoelectric load’s ascent and descent angles, the optimization out-
comes from both algorithms align closely, gravitating towards a 1 km interval, indicating
that for such a task, the criteria for the photoelectric payload need to be manageable, and
meeting the basic requirements will suffice. Concerning the UAV’s climb and descent
angles, both algorithms optimize the indices to remain below 20◦, which illustrates that,
within this scenario, the UAV is not anticipated to engage in rapid ascents or descents.
When flying in the mission area, they maintain agility in the pitch direction and take the
shortest mission route. Concerning the visible angle of photoelectricity, the indicators
optimized by both differ significantly. This may be related to the coupling of the aircraft’s
ascent and descent angles. In practical applications, this can be validated based on a more
precise task model.

5. Conclusions

This paper explores the research of task planning and platform–payload metric match-
ing in rapid cluster search. We established a cluster search task−planning algorithm
framework, combining an improved sequential clustering algorithm, ant colony algorithm,
particle swarm optimization algorithm, and crow search optimization algorithm. This
offers a novel approach to addressing the issue. The findings from this paper could serve
as valuable references for cluster command and coordination personnel and those involved
in platform–load demonstrations.

However, this paper exhibits several shortcomings. From a task analysis standpoint,
the current targets are two−dimensional and do not consider the effects of terrain and
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topography. From the search strategy perspective, the UAV swarm’s approach within the
mission area appears relatively basic. From the search strategy perspective, the search
strategy of the drone cluster in the mission area is relatively simple. When analyzed from
the drone platform metrics perspective, the metrics this paper covers are mainly in the
pitch direction, and the speed is uniform. However, the real−world task execution by
UAVs encompasses many indicators during various phases like glide, climb, mission area
level flight, cruise height level flight, and turning process, necessitating a more nuanced
and detailed modeling analysis.

Moreover, from the photoelectric metric standpoint, the current modeling of the
photoelectric payload is also relatively simple. Real−world applications demand the
consideration of other significant factors, including sampling frequency, image resolution,
focusing time, and other indicators. Fortunately, the existing deficiencies can be addressed
and rectified, building upon the algorithm framework devised in this paper and paving the
way for further in−depth research in the future.
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