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Abstract: Anomaly detection has a wide range of applications and is especially important in indus-
trial quality inspection. Currently, many top-performing anomaly detection models rely on feature
embedding-based methods. However, these methods do not perform well on datasets with large vari-
ations in object locations. Reconstruction-based methods use reconstruction errors to detect anomalies
without considering positional differences between samples. In this study, a reconstruction-based
method using the noise-to-norm paradigm is proposed, which avoids the invariant reconstruction
of anomalous regions. Our reconstruction network is based on M-net and incorporates multiscale
fusion and residual attention modules to enable end-to-end anomaly detection and localization.
Experiments demonstrate that the method is effective in reconstructing anomalous regions into
normal patterns and achieving accurate anomaly detection and localization. On the MPDD and VisA
datasets, our proposed method achieved more competitive results than the latest methods, and it set
a new state-of-the-art standard on the MPDD dataset.

Keywords: anomaly detection; reconstruction; M-net; residual attention

1. Introduction

In the field of computer vision, visual anomaly detection is a crucial issue that involves
the process of detecting and pinpointing data instances that deviate from the expected
or standard observations. In the past years, Anomaly detection had a wide range of
applications in fields such as industrial quality inspection [1–3], medical diagnosis [4],
and video surveillance [5,6]. In industrial production processes, product quality is highly
susceptible to various factors, such as existing technologies and working conditions. Surface
defects are the most visible manifestation of the impact on product quality. Therefore,
surface defect detection is crucial to ensure product qualification and reliability. Anomaly
detection plays a vital role in industrial quality inspection by identifying and locating
defects in product appearance, thereby improving product quality and ensuring compliance
with standards.

In recent years, with the rapid development of the computer vision field, deep learning-
based methods have become an effective solution for industrial quality inspection. How-
ever, due to the limited number of anomaly samples and the difficulty of including all
types of anomalies in a limited number of samples, and the labor-intensive data label-
ing process, supervised anomaly detection methods are severely limited. As a result,
most recent research has focused on unsupervised learning methods, which aim to achieve
anomaly detection without requiring prior information on anomaly samples. Unsupervised
learning-based anomaly detection has become a promising research trend for the future.

In unsupervised anomaly detection methods, there are mainly two types of approaches:
feature embedding-based and reconstruction-based methods. Feature embedding-based
methods [7–11] that utilize pre-trained models to extract image features and realize the
measurement or comparison of features by feature modeling, have been widely used in
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the field of unsupervised anomaly detection. However, feature embedding-based methods
rely on pre-trained models on additional datasets such as ImageNet, and their perfor-
mance may significantly decrease when the features of industrial images differ significantly
from those of the pre-training dataset. Additionally, feature embedding-based methods
are highly dependent on the consistency of the placement of the target and the shooting
angle. Otherwise, false detections are likely to occur. In contrast, reconstruction-based
methods [12–15] do not have this limitation and do not require additional training data,
making them suitable for various scenarios. Reconstruction-based methods exhibit better
anomaly detection and localization performances for randomly placed objects. However,
reconstruction-based methods also have limitations. They may not be able to achieve
complete reconstruction when dealing with images with complex structures and textures.
In addition, reconstruction-based methods may result in invariant reconstruction of anoma-
lous regions due to their strong reconstruction ability.

To address the aforementioned issues, we propose a reconstruction-based method
using the noise-to-norm paradigm, which trains the reconstruction network on noisy im-
ages as input, significantly improving the network’s reconstruction ability. Additionally,
the introduction of noise disturbs the anomalous regions, making it difficult to distin-
guish them from normal patterns, thus solving the problem of invariant reconstruction of
anomalous regions.

Our proposed reconstruction model is based on M-net [16] and employs a multiscale
fusion structure. Before being fed into the reconstruction network, the noisy image is down-
sampled to varied sizes to enlarge the model‘s receptive field, providing better robustness
to anomalous regions of diverse sizes. The reconstruction network comprises three parts:
an encoder, a decoder, and a feature fusion module; both the encoder and decoder contain
residual attention modules and skip connections between them. The feature fusion module
fuses the multiscale features to generate the reconstructed image.

Numerous experiments on the MPDD [2] and VisA [3] datasets have demonstrated
that the proposed end-to-end anomaly detection method has excellent performance.

The main contributions of this study are summarized as follows:

1. We introduce a novel unsupervised anomaly detection method based on the noise-to-
norm paradigm.

2. We propose a residual attention module that can be embedded in the encoder and
decoder to achieve high-quality reconstruction of noisy images.

3. Our method achieves state-of-the-art (SOTA) performance on the MPDD dataset.

2. Related Work

Unsupervised learning addresses the high annotation costs and difficulty in collecting
negative samples, making it the mainstream method for image anomaly detection. Unsu-
pervised learning methods can be divided into two main categories: reconstruction-based
and feature embedding-based methods.

2.1. Feature Embedding-Based Methods

Feature embedding-based methods aim to determine a feature distribution that can
distinguish between normal and anomalous samples. Typically, these methods use a pre-
trained network as a feature extractor to extract shallow features from images. By fitting
normal sample features to a Gaussian distribution, Mahalanobis distance is a common
method to calculate the anomaly scores [7,17] between the test set samples and the Gaussian
distribution, to estimate the anomaly localization. Research in [8] employed a coreset-
subsampled memory bank to ensure low inference cost at higher performance. Some
studies attach a normalizing flow module to the feature extractor [10,11,18], features were
first extracted and a normalizing flow module was utilized to enable transformations
between data distributions and well-defined densities. Subsequently, anomaly detection
and localization were performed based on the probability density of the feature map.
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In general, feature embedding-based methods have achieved better results on the
MVTec AD [1] dataset than those of the reconstruction-based methods because of their
powerful representation capability of deep features. However, they rely on the uniformity
of an object’s location, which makes optimization difficult for cases in which the object’s
position varies significantly.

2.2. Reconstruction-Based Methods

The reconstruction-based method trains an encoder and a decoder to reconstruct
images with low dependence on pre-trained models. This method aims to train a recon-
struction model that works well on positive samples but poorly on anomalous regions and
achieves anomaly detection and localization by comparing the original image with the
reconstructed image. Early studies used Autoencoders [13,19,20] for image reconstruction,
whereas some methods employed a generative adversarial network [12,14,21] to obtain
better reconstruction performance. However, there is a problem of overgeneralization,
which can lead to an accurate reconstruction of anomalous regions. To address this issue,
some researchers proposed a method based on image inpainting [15,22–24], in which masks
are used to remove parts of the original image, preventing the reconstruction of anomalous
regions. However, for images with complex structures and irregular textures, excessive
loss of the original information may limit the reconstruction ability and cause many false
positives in normal regions.

3. Method
3.1. Overview

The proposed anomaly detection framework is based on the noise-to-norm paradigm,
as shown in Figure 1.

Figure 1. Framework of the proposed method.

Specifically, we introduce random Gaussian noise to corrupt the original image, and
the process of adding noise ε is defined as follows:

x = (1− λ)x0 + λε, ε ∼ N(0.5, 0.5) (1)

where λ ∈ (0, 1), x0 is the data obtained by normalizing each channel of the original image
according to a Gaussian distribution (µ = 0.5, σ = 0.5). We add random noise generated
from the same Gaussian distribution to the original image using weighted blending, thereby
allowing us to control the degree to which the noise corrupts the original image. In contrast
to the methods that simulate anomalies [20], our approach of adding noise is not intended
to simulate anomalies. Instead, its purpose is to completely obscure the distinguishable
appearance of anomalous regions, allowing the reconstruction network to transform the
anomalous image into a normal image.
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After adding noise, the images were down-sampled to varied sizes to serve as multiple
inputs. These inputs were then utilized by the reconstruction network to generate anomaly
free images. During the training phase, only anomaly free samples were used to train the
reconstruction network. The reconstructed images were compared to the original images
using a loss function, and the reconstruction capability of the model was continuously
improved. During the inference phase, anomaly localization was achieved by generating an
anomaly map that captured pixel-level differences between the reconstructed and original
images. The specific details of the reconstructed network are described below.

3.2. Reconstruction Network

As we know, U-Net [25] and its variants have been widely used in deep learning
models for image segmentation and other fields [26–29]. Our proposed network is based
on the M-net [16], which originated from the field of image segmentation and has been
proven to be effective in the domain of denoising. The overall architecture of the proposed
reconstruction network is shown in Figure 2. Inspired by the SRMnet [30], we incorporated
pixel shuffle operations into the encoder and decoder for upsampling and downsampling;
this allows us to effectively manage resolution changes in the network and improve the
reconstruction quality. The residual attention modules were merged after concatenating
the features to enhance the feature representation and capture the relevant information.
The encoder and decoder were connected through skip connections to facilitate the flow of
information between different feature levels. The multiscale features were combined in the
feature fusion module to generate the final reconstructed image. This design enables the
network to effectively capture anomalies and produce high-quality reconstructions.

Figure 2. The overall architecture of the proposed reconstruction network.

3.2.1. Residual Attention Module

The Residual Attention Modules are integrated after the concatenation of features to
enhance feature representation and capture relevant information. These modules leverage
residual connections and attention mechanisms to selectively emphasize notable features
and suppress irrelevant ones. By focusing on informative regions and enhancing feature
discrimination, the residual attention modules improve the network’s ability to generate
high-quality reconstructions. In addition, the residual connections address the issue of
vanishing gradients. By propagating gradients more effectively through the network, the
residual connections enable faster convergence and improve the accuracy of the model. The
specific structure of the residual attention module is shown in Figure 3. It comprises global
pooling, convolutional, and activation layers. In both pathways, a 1× 1 convolutional layer
is employed to adjust the number of feature channels.
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Figure 3. Illustration of the residual attention module.

3.2.2. Selective Kernel Feature Fusion (SKFF)

Our decoder generates four feature maps with different resolutions, and we employed
the SKFF [31] module for feature fusion. The SKFF allows for the selection of different
convolutional kernels at different spatial positions to facilitate the fusion of features from
different scales, enabling the integration of multiscale reconstruction features. This ap-
proach avoids directly connecting each feature map and instead aggregates weighted
features, addressing the issues of a large number of parameters and higher computational
complexity in the M-net.

3.3. Metric Function

We employed a metric function that combines the MS-SSIM and `1 proposed by Hang
Zhao et al. in [32]. SSIM [33] is a widely used indicator for measuring the structural
similarity between images. SSIM mainly considers three key features of images: luminance,
contrast, and structure. MS-SSIM uses multiple different Gaussian filters (σ = σ1, . . . , σM)
on the basis of SSIM. Specifically, for input images x and y of the same size, the luminance
similarity of each pixel p is defined as:

l(p) =
2µxµy + C1

µ2
x + µ2

y + C1
(2)

where C1 = 0.01 is a constant used to prevent the denominator from being zero, µx and
µy represent the weighted sum of patches centered at pixel p in image x and image y,
respectively. µx is defined as follows:

µx =
N

∑
i=1

ωixi (3)

where the weight coefficient ωi is obtained from a Gaussian function.
Contrast and structural similarity can be represented by a single formula:

cs(p) =
2σxy + C2

σ2
x + σ2

y + C2
(4)

where C2 = 0.03 is also a constant used to prevent the denominator from being zero, σ2
x , σ2

y ,
and σxy represent the variance and covariance of patches centered at pixel p in image x and
image y. σ2

x and σxy are defined as:

σ2
x =

N

∑
i=1

ωi(xi − µx)
2 (5)

σxy =
N

∑
i=1

ωi(xi − µx)(yi − µy) (6)
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We use the index j = 1, . . . , M to represent different Gaussian filters. MS-SSIM is
defined as:

MS-SSIM(p) = lM(p) ·
M

∏
j=1

csj(p) (7)

During the training phase, for an image of size H ×W, the MS-SSIM loss can be
expressed as follows:

LMS-SSIM =
1

H ×W ∑
p

1−MS-SSIM(p) (8)

The total loss is calculated by adding the `1 loss multiplied by the Gaussian filter and
the weighted MS-SSIM loss. This formula is shown as Equation (9).

Ltotal = α · LMS-SSIM + (1− α) · GσM · L`1 (9)

where α represents the weight coefficient.
During the inference stage, we calculated the anomaly localization by computing the

MS-SSIM and `1 error for each pixel.

4. Experiments
4.1. Datasets
4.1.1. MPDD

MPDD [2] is a challenging dataset that focuses on detecting defects in the manufac-
turing process of painted metal parts. It reflects the real-world situations encountered by
human workers on production lines. The dataset includes six categories of metal parts.
The images were captured under various spatial orientations, positions, and distance
conditions with different light intensities and non-uniform backgrounds. The training
set consisted of 888 normal samples, whereas the test set consisted of 176 normal and
282 abnormal samples.

4.1.2. VisA

VisA [3] consists of 10,821 images. There are 9621 normal and 1200 abnormal images.
VisA contains 12 subsets, each corresponding to one class of objects. We assigned 90% of
the normal images to the training set, whereas 10% of the normal images and all anomalous
samples were grouped as the test set.

4.2. Experimental Details

Our study work was implemented in PyTorch using an NVIDIA GeForce GTX 2080.
We resized all the original images of the VisA and the MPDD datasets to 256× 256 for both
training and testing. We divided 20% of the training dataset into validation sets. For each
category of these two datasets, we utilized AdamW optimizer [34] with β = (0.5, 0.999).
We set the initial learning rate to 10−6 and used cosine annealing [35] to adjust the learning
rate with T_ max = 100 and eta_ min = 10−6. The maximum number of training epochs
was set to 500, and the training was stopped early if the loss did not decrease within
20 consecutive epochs.

We evaluated our approach using different metrics for comparison with other base-
lines. We used the area under the curve (AUC) of the receiver operating characteris-
tic (ROC) to evaluate the performance of image-level anomaly detection and pixel-level
anomaly localization.

4.3. Comparative Experiments
4.3.1. MPDD

We compared our proposed method with several state-of-the-art (SOTA) methods on
the MPDD dataset, including reconstruction-based methods [12,21] and feature embedding-
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based methods [7,8,11]. The image-level detection results are listed in Table 1, and the
anomaly segmentation results are presented in Table 2. Experiments demonstrated that
our proposed method outperformed previous SOTA methods on the MPDD dataset. The
partial visualization results of the proposed method on the MPDD [2] dataset are shown in
Figure 4.

Table 1. Comparison of image-level detection results (AUROC%) on the MPDD dataset.

Method DAGAN Skip-GANomaly PaDiM CFLOW PatchCore Ours

Bracket Black 68.55 61.30 75.60 72.67 81.88 93.42

Bracket Brown 77.07 62.14 85.40 88.84 78.43 93.14

Bracket White 72.11 73.33 82.22 87.78 76.00 89.33

Connector 99.76 73.62 91.67 94.76 96.67 100.00

Metal Plate 85.43 73.24 56.30 99.51 100.00 99.57

Tubes 31.93 46.42 57.51 73.14 59.73 94.16

Avg. 72.48 64.84 74.78 86.12 82.12 94.94
Best results are highlighted in bold.

Table 2. Comparison of pixel-level detection results (AUROC%) on the MPDD dataset.

Method DAGAN Skip-GANomaly PaDiM CFLOW PatchCore Ours

Bracket Black 89.73 88.96 94.23 96.88 98.41 98.97

Bracket Brown 81.50 78.07 92.44 97.78 91.46 93.10

Bracket White 70.63 78.81 98.11 98.61 97.44 97.82

Connector 85.73 80.20 97.89 98.39 95.00 98.95

Metal Plate 89.95 89.72 92.93 98.21 96.57 98.78

Tubes 82.31 77.30 93.94 96.43 95.05 99.17

Avg. 83.31 82.19 96.74 97.72 95.66 97.80
Best results are highlighted in bold.

Specifically, as shown in Table 1, our proposed method achieved an overall improve-
ment of 8.82% compared to that of the previous best-performing method, CFLOW [11]. The
most significant improvement was observed in the tubes that contained multiple instances
with a random distribution of positions. These results highlighted the advantages of the
proposed method. As shown in Table 2, the best average performance was achieved. How-
ever, the proposed method has some limitations. We were unable to achieve satisfactory
performance in the brown bracket category. Most defects in the brown bracket category
are deformation defects, and our method cannot accurately restore deformations, which
hinders the accurate identification of such defects.

4.3.2. VisA

Further, to validate the generalizability and versatility of our method, we compared it
with other SOTA methods [7,8,10,11,20,36] on the VisA [3] dataset. The anomaly detection
results for the VisA dataset are listed in Table 3. Experiments demonstrated that our
proposed method performed competitively on the VisA dataset.
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(a) (b) (c) (d) (e) (f)

Figure 4. Visualization of examples on MPDD. (a) Original image (b) Ground truth (c) Reconstructed
image (d) Anomaly map (e) Prediction of anomalous regions (f) Prediction of anomalous regions on
the original image.

Table 3. Comparison of image-level detection results (AUROC%) on the VisA dataset.

Method DRAEM RD4AD PaDiM CFLOW FastFlow PatchCore Ours

Candle 94.4 92.2 91.6 97.0 92.8 98.6 83.7

Capsules 76.3 90.1 70.7 93.0 71.2 81.6 93.3

Cashew 90.7 99.6 93.0 90.9 91.0 97.3 93.4

Chewing gum 94.2 99.7 98.8 98.3 91.4 99.1 97.7

Fryum 97.4 96.6 88.6 91.1 88.6 96.2 97.3

Macaroni1 95.0 98.4 87.0 69.6 98.3 97.5 91.6

Macaroni2 96.2 97.6 70.5 77.2 86.3 78.1 91.5

PCB1 54.8 97.6 94.7 91.4 77.4 98.5 94.7

PCB2 77.8 91.1 88.5 96.7 61.9 97.3 95.6

PCB3 94.5 95.5 91.0 99.6 74.3 97.9 98.7

PCB4 93.4 96.5 97.5 94.2 80.9 99.6 98.2

Pipe fryum 99.4 97.0 97.0 99.0 72.0 99.8 92.6

Avg. 88.7 96.0 89.1 91.5 82.2 95.1 94.0
Best results are highlighted in bold.

4.4. Ablation Studies
4.4.1. Effect of λ

In this study, we employed a noise-to-norm reconstruction paradigm. To validate the
effectiveness of adding noise and the effect of the noise coefficient (λ) on the detection
results, we conducted comparative experiments. The results, as shown in Table 4, demon-
strate that the overall detection performance was the best when λ = 0.3. Compared to that
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of the case without added noise (λ = 0), the detection accuracy increased by 22.28%, and
the segmentation accuracy increased by 9.55%. Therefore, we finally set λ = 0.3. These
experimental results confirm the significant improvement in anomaly detection achieved
using the noise-to-norm reconstruction approach.

Table 4. Effect of noise coefficient (λ) on image/pixel-level detection results (AUROC%).

Noise Coefficient λ = 0 λ = 0.2 λ = 0.3 λ = 0.4

Bracket Black 47.61/77.21 83.71/98.16 93.42/98.97 90.56/99.02

Bracket Brown 82.50/83.93 90.57/91.84 93.14/93.10 84.09/92.86

Bracket White 74.89/89.82 92.78/98.35 89.33/97.82 83.22/96.74

Connector 96.67/93.70 100.00/98.78 100.00/98.95 100.00/98.80

Metal Plate 97.83/97.88 98.92/98.96 99.57/98.78 99.30/98.40

Tubes 39.45/85.88 97.06/98.61 94.16/99.17 93.75/99.44

Avg. 73.16/88.07 93.84/97.45 94.94/97.80 91.82/97.54
Best results are highlighted in bold.

4.4.2. Importance of Residual Attention Module

To demonstrate the effectiveness of the proposed residual attention module, we con-
ducted an ablation experiment. In the control group, we replaced the residual attention
module with a 1× 1 convolutional layer, which was used to change the number of feature
channels. The experimental results, as listed in Table 5, indicate that adding the residual
attention module improved the detection accuracy by 28.68% and the segmentation accu-
racy by 8.94%. This demonstrates the significance of incorporating the residual attention
module into the model.

Table 5. Effect of residual attention module on image/pixel-level detection results (AUROC%).

Image-Level Pixel-Level

Residual Attention module

Bracket Black 93.42 50.47 98.97 89.36

Bracket Brown 93.14 75.32 93.10 80.36

Bracket White 92.33 65.92 96.75 85.74

Connector 100.00 62.38 98.95 94.99

Metal Plate 99.57 88.61 98.78 96.69

Tubes 94.16 57.87 99.17 84.93

Avg. 95.44 66.76 97.62 88.68
Best results are highlighted in bold.

5. Conclusions

In this study, an industrial image anomaly detection method based on noise-to-norm
reconstruction is proposed. Our proposed method effectively solves the problem of in-
variant reconstruction of anomalous regions. We enhanced the M-net by incorporating a
residual attention module and feature fusion, obtaining a reconstruction network. Our
proposed method has significant advantages for handling data with multiple instances
and varying object positions. Experimental results demonstrate that our method achieves
SOTA performance in anomaly detection and localization on the MPDD dataset, and it also
exhibits competitive performance on the VisA dataset.

Our proposed method has limitations in detecting object deformation anomalies.
Additionally, when there is noise in the background of certain images in the dataset, it is
easy for us to misidentify it as an anomaly. In future work, we will explore methods that
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combine the feature distribution of positive samples with a reconstruction approach to
improve the anomaly detection performance of the model
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