
Citation: Im, Y.; Lim, M. E-MQTT:

End-to-End Synchronous and

Asynchronous Communication

Mechanisms in MQTT Protocol. Appl.

Sci. 2023, 13, 12419. https://doi.org/

10.3390/app132212419

Academic Editors: Ryan Gibson and

Hadi Larijani

Received: 17 October 2023

Revised: 10 November 2023

Accepted: 15 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

E-MQTT: End-to-End Synchronous and Asynchronous
Communication Mechanisms in MQTT Protocol
Yerin Im and Mingyu Lim *

Department of Smart ICT Convergence, Konkuk University, 120 Neungdong-ro, Gwangjin-gu,
Seoul 05029, Republic of Korea; erimolet@konkuk.ac.kr
* Correspondence: mlim@konkuk.ac.kr; Tel.: +82-2-2049-6270

Abstract: Message Queuing Telemetry Transport (MQTT) enables asynchronous confirmation of
message reception by brokers but lacks a way for publishers to know when subscribers receive their
messages without adding additional communication overhead. This paper addresses this problem
by improving MQTT to establish end-to-end communication between a publisher and subscribers,
reducing message exchanges, using what is called End-to-End MQTT (E-MQTT). In E-MQTT, a
publisher sets the number of responses that it will wait for when it sends a message. After the
broker collects the response messages from subscribers, it sends one aggregated response back to the
publisher. The publisher also can receive the response message synchronously or asynchronously.
Experimental results consistently show that E-MQTT outperforms traditional MQTT in terms of delay,
especially when the publisher needs to monitor when its query message is received by subscribers.
Although E-MQTT packets are slightly larger due to additional fields, the difference in packet size
compared to MQTT is not significant.

Keywords: asynchronous communication; end-to-end communication; MQTT; publish–subscribe
model; synchronous communication

1. Introduction

Message Queuing Telemetry Transport (MQTT) [1] is a message transmission protocol
based on the ISO standard (ISO/IEC PRF 20922) communication model. MQTT operates
over the TCP/IP protocol and employs a reliable and asynchronous publish–subscribe
communication model. Within this model, after the publisher publishes a message, it does
not care which subscriber will receive the message. Instead, the publisher promptly pro-
ceeds with subsequent tasks without waiting for feedback from the broker. The versatility
of MQTT is evident through its extensive range of applications, which encompass various
domains [2–13], including (but not limited to) the Internet of Things (IoT), home and in-
dustrial automation, telemetry and remote environment monitoring, energy management,
smart agriculture, healthcare, transportation, and social networking systems. As described
in Section 2, previous research efforts have explored various aspects of MQTT, including
research to enhance MQTT functionalities [2,4,14–22], comparative analyses with other
protocols [23–30], support for synchronous communication [31–40], and the facilitation of
end-to-end services for security or quality of service (QoS) [41–50].

As the MQTT environments have been growing and becoming more complicated, man-
aging an ever-expanding array of client devices (comprising publishers and subscribers)
presents considerable challenges. Therefore, there arises a need for a control device to
intermittently assess the status or functionalities of these devices communicating with
MQTT. For example, in a healthcare system, a medical professional with a control device
might seek to ascertain whether the attached sensing devices on patients can successfully
capture specific health information before he/she conducts a monitoring task. In this case,
he/she (a publisher) can publish a query message with a request topic and check the status

Appl. Sci. 2023, 13, 12419. https://doi.org/10.3390/app132212419 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132212419
https://doi.org/10.3390/app132212419
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0559-7718
https://orcid.org/0000-0002-3749-1902
https://doi.org/10.3390/app132212419
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132212419?type=check_update&version=1

Appl. Sci. 2023, 13, 12419 2 of 24

of devices by receiving response messages published with another feedback topic by the
devices. This real-world scenario reflects the fact that the publish–subscribe model needs
a new communication requirement. That is, publishers need to issue query messages
and confirm the moment when subscribers have received these query messages. In other
words, the publish–subscribe model could need to be combined with request–response
patterns [51] in future communication environments, especially when a publisher wants to
check the status of subscribers.

In the existing publish–subscribe models like MQTT, the publisher’s awareness is limited
to when the broker acknowledges a published message with QoS levels 1 and 2 [52]. As
MQTT uses TCP/IP as the underlying transport-layer protocol, a message is guaranteed
to be delivered reliably to recipients. However, if the publisher seeks to check the moment
when a message is delivered to subscribers, it requires an intricate procedure. Upon reception
of a query message from the publisher, the subscriber that holds a subscription for the
concerned topic should publish a response message on a new topic to signify reception of
the query message. Before that, the publisher should subscribe to this new topic to receive
the response message from subscribers. We refer to this specific challenge as the “end-to-end
communication problem” within the context of MQTT. Section 3.1 provides an in-depth
examination of this problem. Although there have been many previous research efforts
regarding MQTT, it is worth noting that none of these prior research endeavors have directly
addressed the end-to-end communication problem.

In this paper, we propose a new end-to-end MQTT (E-MQTT) that supports end-to-
end communication between the publisher and the subscriber of the MQTT by adding the
request–response pattern to the publish–subscribe model. This enhancement empowers
publishers with the ability to check synchronously or asynchronously the moment when a
message is delivered to subscribers. E-MQTT exhibits minimal divergence from the structure
of MQTT packets, incorporating only a handful of additional fields. Despite being an extension
of MQTT, E-MQTT still retains the intrinsic characteristics of the publish–subscribe model
while augmenting it with the novel feature of the request–response model for end-to-end
communication. The publisher can check when the subscriber has received the message
without a separate additional process of subscribing to a new topic. To support the E-MQTT
functionalities, we introduce a new QoS level 3 to MQTT. Although E-MQTT increases the
QoS levels from MQTT, it does not imply that E-MQTT provides more reliable communication
than MQTT. Instead, E-MQTT adds the functionality of request–response patterns to the
publish–subscribe model for end-to-end communication between a publisher and subscribers.
In the new feature of E-MQTT, the publisher specifies the minimum number of response
packets that it wants to wait for. Should this count be set to 0, the publisher proceeds without
waiting for a response, which is called asynchronous E-MQTT. In this scenario, the broker
forwards the first response packet from a subscriber to the publisher, allowing the publisher
to asynchronously check the moment of the response from one subscriber. Alternatively, if
the minimum number of response packets is more than 0, the publisher can perform the next
task only if it receives an aggregated response packet from the broker that has received the
predetermined number of response packets from the subscribers. If the publisher receives an
aggregated response packet, it knows that at least the predetermined number of subscribers
have received its query message, and then continues to conduct the next task. This mode
is referred to as synchronous E-MQTT. Additionally, the publisher has an option to specify
particular subscribers to wait for, if it has knowledge of subscribers’ identifiers (IDs).

As E-MQTT reduces the required number of message exchanges compared to MQTT,
experimental results show that E-MQTT consistently outperforms the conventional MQTT
primarily in terms of the end-to-end delay when the publisher needs to check the status
of subscribers. Instead, E-MQTT increases the size of some packets because it needs to
include the additional information of the minimum number of response packets that the
publisher wants to wait for. This minor modification causes a marginal increase in packet
size compared to MQTT. The difference in packet size becomes notable only if the publisher
adds numerous optional subscriber IDs. Despite this slight variation in packet size, the

Appl. Sci. 2023, 13, 12419 3 of 24

overall advantages offered by E-MQTT, especially in terms of improved delay performance,
outweigh any negligible increase in packet size.

In summary, the contributions of our research work are as follows:

• Modified MQTT specifications (E-MQTT) to add the functionality of request–response
patterns for end-to-end communication between a publisher and subscribers.

• Enabled checking the moment when its message is received by subscribers.
• Supported end-to-end communication in two modes according to the configuration of

the minimum number of response packets: synchronous and asynchronous modes.
• Implemented E-MQTT and compared performance with MQTT.
• Reduced delay of end-to-end request–response communication.

The remainder of this paper is organized as follows. In Section 2, we introduce related
works about MQTT. In Section 3, we propose the synchronous and asynchronous end-
to-end communication methods of E-MQTT. In Section 4, we describe the main classes,
methods, and additional fields required for the implementation of E-MQTT. In Section 5,
we analyze the performance of E-MQTT and compare it to the existing MQTT through the
measurement of communication delay and message size. Finally, we conclude the paper
with future research plans in Section 6.

2. Related Works

In this section, we describe various research efforts regarding MQTT. There have been
research approaches to use MQTT as an application, to improve functionalities of MQTT, to
compare MQTT with other protocols, to combine synchronous communication with MQTT,
and to focus on end-to-end services of MQTT in terms of security or QoS.

2.1. MQTT

MQTT version 3.1.1 [1] encompasses a comprehensive suite of 14 packets, offering
support for three distinct QoS levels to ensure reliability. MQTT provides three QoS levels
spanning from 0 to 2. These QoS levels effectively dictate the precision with which messages
are relayed in communication scenarios involving the publisher and the broker, as well as
between the broker and the subscriber. With the ascending QoS level, MQTT extends its
support for increasingly precise transmission semantics [52]. At QoS level 0, a published
message possesses the potential to be delivered to the receiver (either the broker or the
subscriber) at most once. QoS level 1, on the other hand, guarantees that a given message
is delivered at least once. Lastly, QoS level 2 is structured to ensure that a message is
delivered exactly once via a four-way handshaking process.

The most recent MQTT version 5.0 [53] added twenty items of new features includ-
ing user properties, shared subscriptions, payload format description, request–response
pattern, topic alias, enhanced authentication, and flow control. Among them, the support
of request–response patterns reflects the need for another communication model in the
publish–subscribe model. This new feature facilitates request–response communication
between the publisher and the subscriber by exchanging information such as response
topic and correlation data during the connection and publishing stages. However, this
feature still requires two separate publish–subscribe sessions, which is the main cause of
communication overhead.

2.2. Applications of MQTT

MQTT finds application across diverse domains, encompassing platforms such as
Floodnet [7,8], Facebook Messenger [12], and wireless heart rate monitoring systems [5].
MQTT’s versatility extends to sectors like healthcare [54], energy, and utilities, as well as
social networking systems [13]. Grgić’s research [6] innovatively employed MQTT within
agricultural drying processes, while MQTT-driven home automation systems empowered
remote monitoring of home environments, along with the execution of necessary tasks [3].

Appl. Sci. 2023, 13, 12419 4 of 24

2.3. Improvement of MQTT

Numerous research works have tailored MQTT to suit their distinct objectives, append-
ing bespoke functionalities. For example, MQTT-S [2] adapted MQTT to cater to the needs
of smaller sensor–actuator (SA) devices within sensor networks, while MQTT-G [4] infused
geolocation data into an existing MQTT. Kim’s study [14] introduced a priority-QoS flag
within the MQTT packet’s fixed header to incorporate the priority concept. The research of
Ali et al. [15] involved developing a TCP-based MQTT protocol with retransmission rules
to improve content delivery probability, ensuring reliable and secure Internet of Everything
(IoE) services for smart city applications. Palmese et al. [16] addressed the optimization
of a wireless sensor network (WSN) using the MQTT-SN protocol for IoT applications by
introducing a dynamic QoS controller.

Various investigations concentrate on enhancing MQTT’s security, as exemplified by
PICADOR [19], the incorporation of encryption features into the Narada Brokering System,
along with separate security nodes [18] and the application of Secure MQTT [17]. Recently,
research efforts are more focused on performance improvement. Rocha et al. [21] proposed
a QoS dynamic adaptation method (DAM) for WSN to ensure better message delivery.
The main idea was to select the proper QoS level based on network latency conditions.
Zhang et al. [20] established a unified architecture and proposed a delay-reliability-aware
MQTT quality of service selection algorithm to effectively reduce delay and packet loss,
meeting the diverse quality of service requirements in electric IoT. Alshammari [22] imple-
mented a real-time remote patient monitoring system utilizing IoT technology to ensure
the precision of vital real-time signals. These signals are transmitted from the proposed
system to a website through MQTT.

2.4. Comparison between MQTT and Other Protocols

There have been also research works measuring the performance of MQTT compared
to other protocols [23–25]. Recent comparisons have also emerged within specific contex-
tual settings. Nguyen et al. [27] assess the efficacy of AMQP and MQTT in the context of
an internet radio system. Naik et al. [29] briefly analyze advantages and disadvantages of
MQTT, CoAP, AMQP, and HTTP across various aspects, including architecture, message
size, cache support, quality of service, and more. Palmese et al. [30] conducted a compara-
tive analysis of two protocols, MQTT-SN and CoAP, in the publish–subscribe version as
outlined in a recent IETF draft. The experiments indicate that CoAP offers a viable alterna-
tive to MQTT-SN in publish–subscribe scenarios, with CoAP being preferred for highly
dynamic networks. Silva et al. [26] undertake a comparison of the performance of MQTT,
CoAP, and OPC UA within information-centric networks and industrial IoT environments.
Gemirter et al. [28] compare AMQP, MQTT, and HTTP by leveraging real-time public smart
city data.

2.5. Synchronous and Asynchronous Communication

While prevailing messaging protocols and platforms such as Paho [31], AMQP [32],
RabbitMQ [33], and Apache Kafka [34] are built upon the publish–subscribe model that
predominantly features asynchronous communication, they also incorporate provision for
synchronous communication. However, it is important to note that the existing protocols
and platforms primarily cater to synchronous communication between a publisher and
a broker.

To address the scalability problem associated with synchronous communication,
Sen et al. [35] proposed Nucleus, which presents a container architecture comprising
stateless brokers. Jaloudi [39] proposed a strategy for merging synchronous and asyn-
chronous communication models in industrial IoT environments by integrating MODBUS
TCP and MQTT to suit specific scenarios. Bagaskara et al. [36] undertook a performance
analysis of RabbitMQ and Apache Kafka within fog computing environments, given that
synchronous communication models like HTTP can result in performance degradation in
such contexts. Pratama et al. [37] tackled the issue of synchronous communication in the

Appl. Sci. 2023, 13, 12419 5 of 24

domain of public transportation monitoring systems, achieving this through development
of an asynchronous message broker middleware. Shafabakhsh et al. [38] conducted a
comparative assessment of the synchronous and asynchronous models of interprocess
communication within distributed microservices. Kul et al. [40] introduced a hybrid ap-
proach encompassing both synchronous and asynchronous communication mechanisms in
event-based microservices, aimed at detecting vehicle information from real-time streamed
video sources.

2.6. End-to-End Services of MQTT

Existing research concerning end-to-end support within MQTT is predominantly fo-
cused on security investigations [41–46], with some research works [47–50] also touching on
end-to-end services. Park et al. [42] introduced a security architecture and protocols designed
to establish MQTT security within wireless sensor networks. Spina et al. [43] presented a
lightweight security mechanism for managing security levels in MQTT. Bashir et al. [46]
proposed a security mechanism that uses lightweight cryptographic operations to provide
end-to-end data confidentiality while efficiently managing patient mobility within hospital
or home premises. SEEMQTT [41] is a framework that ensures end-to-end data confiden-
tiality, integrity, and authorization in MQTT-based communication for mobile IoT systems.
Winarno et al. [44] presented the design of a secure end-to-end encryption MQTT protocol
using lightweight cryptographic algorithms and Galantucci secret sharing. Chien et al. [45] dis-
cussed the importance of over-the-air (OTA) updates for secure IoT systems and highlighted
the widespread use of MQTT as an IoT communication protocol.

Govindan et al. [47] conducted comprehensive analysis of end-to-end service assurance
parameters, with a special focus on content delay and probability of content delivery, for
MQTT-SN in healthcare IoT applications. D’Ortona et al. [48] presented a comprehensive
end-to-end IoT system that monitors information concerning road users, which is generated
through wearable sensors. Ali et al. [49] discussed the implementation of an improved
TCP-based MQTT network for efficient communication in smart cities, emphasizing quality
of service (QoS) considerations for reliable end-to-end service assurance. Jo et al. [50]
introduced a self-adaptive resource management framework for large-scale cyber–physical
systems (CPS) that maintains low end-to-end monitoring delays while ensuring high
monitoring resolution.

3. E-MQTT

Our design approach for E-MQTT prioritizes the preservation of the original MQTT
packet structure and protocols to the maximum extent feasible. Guided by this design
philosophy, the proposed E-MQTT seamlessly incorporates end-to-end communication
functionality into the existing MQTT, integrating with the existing QoS 0, 1, and 2. To
distinguish E-MQTT from the conventional MQTT, we introduce a new QoS level 3. In
asynchronous E-MQTT, the publisher is not suspended after sending the PUBLISH packet
and immediately proceeds to the subsequent task. In this mode, the publisher can asyn-
chronously receive a response message from the broker, which forwards the initial response
message originating from subscribers. In contrast, within the synchronous E-MQTT con-
figuration, on transmitting the PUBLISH packet, the publisher enters a suspended state.
This suspension persists until the publisher receives a consolidated response message
orchestrated by the broker. This aggregate message encapsulates the actual responses
generated by individual subscribers.

3.1. End-to-End Communication Problem of MQTT

When a publisher seeks the moment when a query message is received by a subscriber,
the MQTT protocol involves the following procedural steps, illustrated in Figure 1. To
facilitate the receipt of a response message from a subscriber, the publisher must subscribe
to a new topic designated as B (1). The message publishing and subscription to topic B is an
additional publish–subscribe session for the exchange of a response message. Subsequently,

Appl. Sci. 2023, 13, 12419 6 of 24

the publisher sends the original query message with the topic A (2), which the subscriber
receives (3). The message publishing and subscription to topic A is the original publish–
subscribe session for the exchange of a query message. To reply to the query message,
the subscriber needs to publish a new response message with the new topic B (7). Upon
reception of the published response message attached to topic B, the publisher confirms that
the query message has been received by a subscriber before this response message (8). As a
result, MQTT needs two distinct publishing sessions and requires 18 messages exchanged
among the publisher, broker, and subscriber.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 25

subscriber receives (3). The message publishing and subscription to topic A is the original
publish–subscribe session for the exchange of a query message. To reply to the query mes-
sage, the subscriber needs to publish a new response message with the new topic B (7).
Upon reception of the published response message attached to topic B, the publisher con-
firms that the query message has been received by a subscriber before this response mes-
sage (8). As a result, MQTT needs two distinct publishing sessions and requires 18 mes-
sages exchanged among the publisher, broker, and subscriber.

Figure 1. End-to-end confirmation process of query reception by one subscriber in MQTT (QoS 2).

Figure 2 illustrates how the publisher confirms when n subscribers have received the
query message in MQTT. This figure shows only the query and response PUBLISH mes-
sages and omits the other PUBREC, PUBREL, PUBCOMP, and subscription messages for
simplicity. By receiving n PUBLISH messages with topic B (1), the publisher can check the
reception by n subscribers. As the number of subscribers increases, the number of ex-
changed messages also increases proportionally.

Figure 2. End-to-end confirmation process of query reception by n subscribers in MQTT (QoS 2).

Figure 1. End-to-end confirmation process of query reception by one subscriber in MQTT (QoS 2).

Figure 2 illustrates how the publisher confirms when n subscribers have received
the query message in MQTT. This figure shows only the query and response PUBLISH
messages and omits the other PUBREC, PUBREL, PUBCOMP, and subscription messages
for simplicity. By receiving n PUBLISH messages with topic B (1), the publisher can check
the reception by n subscribers. As the number of subscribers increases, the number of
exchanged messages also increases proportionally.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 25

subscriber receives (3). The message publishing and subscription to topic A is the original
publish–subscribe session for the exchange of a query message. To reply to the query mes-
sage, the subscriber needs to publish a new response message with the new topic B (7).
Upon reception of the published response message attached to topic B, the publisher con-
firms that the query message has been received by a subscriber before this response mes-
sage (8). As a result, MQTT needs two distinct publishing sessions and requires 18 mes-
sages exchanged among the publisher, broker, and subscriber.

Figure 1. End-to-end confirmation process of query reception by one subscriber in MQTT (QoS 2).

Figure 2 illustrates how the publisher confirms when n subscribers have received the
query message in MQTT. This figure shows only the query and response PUBLISH mes-
sages and omits the other PUBREC, PUBREL, PUBCOMP, and subscription messages for
simplicity. By receiving n PUBLISH messages with topic B (1), the publisher can check the
reception by n subscribers. As the number of subscribers increases, the number of ex-
changed messages also increases proportionally.

Figure 2. End-to-end confirmation process of query reception by n subscribers in MQTT (QoS 2). Figure 2. End-to-end confirmation process of query reception by n subscribers in MQTT (QoS 2).

Through modifications to MQTT, E-MQTT enables publishers to verify the moment
of query message reception by subscribers with only one publishing session, effectively

Appl. Sci. 2023, 13, 12419 7 of 24

mitigating communication overhead. As shown in Figure 3, E-MQTT introduces a mech-
anism that permits publishers to check the moment when the query message is received
by subscribers upon the receipt of a PUBREC packet (4), thus streamlining the necessary
actions. In MQTT, the occurrence of a PUBREC packet ((4) in Figure 1) denotes the broker’s
reception of the published message, not that of a subscriber. On the other hand, in E-MQTT,
the PUBREC packet implies that one or more subscribers have received the published query
message. In E-MQTT, the number of exchanged messages is reduced to 9 and the broker
forwards the PUBLISH and PUBREC packets to the final target after additional processing
for the end-to-end communication.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 25

Through modifications to MQTT, E-MQTT enables publishers to verify the moment
of query message reception by subscribers with only one publishing session, effectively
mitigating communication overhead. As shown in Figure 3, E-MQTT introduces a mech-
anism that permits publishers to check the moment when the query message is received
by subscribers upon the receipt of a PUBREC packet (4), thus streamlining the necessary
actions. In MQTT, the occurrence of a PUBREC packet ((4) in Figure 1) denotes the broker’s
reception of the published message, not that of a subscriber. On the other hand, in E-
MQTT, the PUBREC packet implies that one or more subscribers have received the pub-
lished query message. In E-MQTT, the number of exchanged messages is reduced to 9 and
the broker forwards the PUBLISH and PUBREC packets to the final target after additional
processing for the end-to-end communication.

Figure 3. End-to-end confirmation process of query reception by one subscriber in E-MQTT (QoS 3).

Figure 4 illustrates how the publisher confirms when n subscribers have received the
query message in E-MQTT. This figure shows only the query PUBLISH and response
PUBREC messages and omits the other PUBREL, PUBCOMP, and subscription messages
for simplicity. When the publisher sends the query PUBLISH message, it also designates n
responses that it will wait for (1). As the broker collects n PUBREC messages from subscribers
(2), the publisher can check the reception by n subscribers by receiving one PUBREC message
(3). Therefore, it also reduces the number of exchanged messages between the publisher and
broker. We describe details of E-MQTT in the following sub-sections.

Figure 4. End-to-end confirmation process of query reception by n subscribers in E-MQTT (QoS 3).

3.2. Overview of End-to-End Communication Methods
E-MQTT employs a four-way handshaking process connecting the publisher and

subscriber through the broker. Figure 5 shows the end-to-end communication process in
E-MQTT. The communication flow within E-MQTT mirrors that of MQTT QoS 2, which
implies that all the MQTT packets are guaranteed to be delivered exactly once to a target

Figure 3. End-to-end confirmation process of query reception by one subscriber in E-MQTT (QoS 3).

Figure 4 illustrates how the publisher confirms when n subscribers have received the
query message in E-MQTT. This figure shows only the query PUBLISH and response PUBREC
messages and omits the other PUBREL, PUBCOMP, and subscription messages for simplicity.
When the publisher sends the query PUBLISH message, it also designates n responses that it
will wait for (1). As the broker collects n PUBREC messages from subscribers (2), the publisher
can check the reception by n subscribers by receiving one PUBREC message (3). Therefore,
it also reduces the number of exchanged messages between the publisher and broker. We
describe details of E-MQTT in the following sub-sections.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 25

Through modifications to MQTT, E-MQTT enables publishers to verify the moment
of query message reception by subscribers with only one publishing session, effectively
mitigating communication overhead. As shown in Figure 3, E-MQTT introduces a mech-
anism that permits publishers to check the moment when the query message is received
by subscribers upon the receipt of a PUBREC packet (4), thus streamlining the necessary
actions. In MQTT, the occurrence of a PUBREC packet ((4) in Figure 1) denotes the broker’s
reception of the published message, not that of a subscriber. On the other hand, in E-
MQTT, the PUBREC packet implies that one or more subscribers have received the pub-
lished query message. In E-MQTT, the number of exchanged messages is reduced to 9 and
the broker forwards the PUBLISH and PUBREC packets to the final target after additional
processing for the end-to-end communication.

Figure 3. End-to-end confirmation process of query reception by one subscriber in E-MQTT (QoS 3).

Figure 4 illustrates how the publisher confirms when n subscribers have received the
query message in E-MQTT. This figure shows only the query PUBLISH and response
PUBREC messages and omits the other PUBREL, PUBCOMP, and subscription messages
for simplicity. When the publisher sends the query PUBLISH message, it also designates n
responses that it will wait for (1). As the broker collects n PUBREC messages from subscribers
(2), the publisher can check the reception by n subscribers by receiving one PUBREC message
(3). Therefore, it also reduces the number of exchanged messages between the publisher and
broker. We describe details of E-MQTT in the following sub-sections.

Figure 4. End-to-end confirmation process of query reception by n subscribers in E-MQTT (QoS 3).

3.2. Overview of End-to-End Communication Methods
E-MQTT employs a four-way handshaking process connecting the publisher and

subscriber through the broker. Figure 5 shows the end-to-end communication process in
E-MQTT. The communication flow within E-MQTT mirrors that of MQTT QoS 2, which
implies that all the MQTT packets are guaranteed to be delivered exactly once to a target

Figure 4. End-to-end confirmation process of query reception by n subscribers in E-MQTT (QoS 3).

3.2. Overview of End-to-End Communication Methods

E-MQTT employs a four-way handshaking process connecting the publisher and
subscriber through the broker. Figure 5 shows the end-to-end communication process in
E-MQTT. The communication flow within E-MQTT mirrors that of MQTT QoS 2, which
implies that all the MQTT packets are guaranteed to be delivered exactly once to a target
node. In E-MQTT, the main purpose is not that the publisher wants to confirm whether
its message is successfully received by subscribers, but that the publisher can check when
its message is received by at least some specified number of subscribers. To this end,

Appl. Sci. 2023, 13, 12419 8 of 24

E-MQTT modified the message publishing process from MQTT as shown in the gray-
colored tasks in Figure 5. Initially, the publisher configures the minimum number of
packets to wait for (waited_packet_num) and stores the PUBLISH packet to be sent (1).
If the number of response packets to be waited for is 1 or more, E-MQTT initiates the
synchronous end-to-end communication. If the number is 0, the asynchronous end-to-end
communication proceeds. While the waited_packet_num field is a mandatory component,
the publisher also can optionally set a list of subscriber identifiers (subscriber_id(s)). This
additional field facilitates the identification of designated subscribers by the publisher.
Each subscriber identifier (ID) is a globally unique label. To use the subscriber_id(s) field,
the publisher must request a list of subscriber IDs from the broker, facilitating the selection
of a subset of subscribers. However, it is worth noting that since this additional constraint
could potentially infringe upon the principle of the publish–subscribe model’s loosely
anonymous communication, the inclusion of the subscriber_id(s) field remains optional.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 25

node. In E-MQTT, the main purpose is not that the publisher wants to confirm whether its
message is successfully received by subscribers, but that the publisher can check when its
message is received by at least some specified number of subscribers. To this end, E-MQTT
modified the message publishing process from MQTT as shown in the gray-colored tasks
in Figure 5. Initially, the publisher configures the minimum number of packets to wait for
(waited_packet_num) and stores the PUBLISH packet to be sent (1). If the number of re-
sponse packets to be waited for is 1 or more, E-MQTT initiates the synchronous end-to-
end communication. If the number is 0, the asynchronous end-to-end communication pro-
ceeds. While the waited_packet_num field is a mandatory component, the publisher also
can optionally set a list of subscriber identifiers (subscriber_id(s)). This additional field fa-
cilitates the identification of designated subscribers by the publisher. Each subscriber
identifier (ID) is a globally unique label. To use the subscriber_id(s) field, the publisher
must request a list of subscriber IDs from the broker, facilitating the selection of a subset
of subscribers. However, it is worth noting that since this additional constraint could po-
tentially infringe upon the principle of the publish–subscribe model’s loosely anonymous
communication, the inclusion of the subscriber_id(s) field remains optional.

Figure 5. The communication process of E-MQTT. Figure 5. The communication process of E-MQTT.

Subsequently, the publisher proceeds to release the PUBLISH packet with topic T (2).
This PUBLISH packet is transmitted to the broker. In the synchronous communication sce-
narios, the publisher enters the suspended state after transmitting the PUBLISH packet (3).

Appl. Sci. 2023, 13, 12419 9 of 24

In contrast, during asynchronous communication, the publisher remains unsuspended and
seamlessly advances to the subsequent task (4).

Upon receiving the PUBLISH packet, the broker promptly disseminates it to all sub-
scribers of topic T like MQTT (5). Once the PUBLISH packet is stored, a subscriber initiates
a response via the PUBREC packet (6). When the broker receives the PUBREC packet from
a subscriber, the broker answers with the PUBREL packet (7). Following this, the broker
evaluates the waited_packet_num and subscriber_id(s) fields to determine whether it forwards
the PUBREC packet to the publisher or not (8). If waited_packet_num is less than or equal to
0 (asynchronous E-MQTT), the broker forwards the first PUBREC packet (9). Conversely,
if waited_packet_num is greater than 0 (synchronous E-MQTT), the broker scrutinizes the
optional subscriber_id(s) field to determine whether it counts the number of received PUB-
REC packets or not (10). If subscriber_id(s) is empty or it contains the sender of the PUBREC
packet, the broker increases the count of received response packets. Subsequently, the
broker compares the number of PUBREC packets it has gathered from the subscribers
with waited_packet_num. If the number of received response packets becomes equal to or
greater than waited_packet_num, the broker sends one aggregated PUBREC packet to the
publisher (11). This action enables the publisher to validate that the number of subscribers,
as set by itself, has successfully received the published message.

Upon reception of the PUBREC packet, the publisher proceeds to remove the stored
PUBLISH packet. Subsequently, the publisher transmits the PUBREL packet to the broker
and stores the PUBREL packet (12). Once the PUBCOMP packet is received from the
broker (13), the communication cycle on the publisher’s end concludes.

Upon reception of the PUBREL packet (14), the subscriber proceeds to remove the
stored PUBLISH packet (15) and promptly generates a response by transmitting the PUB-
COMP packet (16). Subsequently, the broker concludes the QoS 3 publishing process upon
the receipt of the PUBCOMP packet and deletes the stored PUBREL packet (17).

Within synchronous E-MQTT, the publisher remains in a suspended state starting
from the moment the PUBLISH packet is dispatched (3) until the corresponding PUBREC
packet is received from the broker (18). However, the publisher can transition out of this
suspended state should a timer expire, prompted by exceptional circumstances like packet
loss or subscriber failure. Conversely, in the context of asynchronous E-MQTT, the complete
communication process unfolds asynchronously, devoid of such suspensions.

In synchronous E-MQTT, the publisher and the subscriber are weakly coupled with the
minimum number of waiting packets. However, if the publisher specifies a list of subscriber
IDs as well as the number of waiting packets, it becomes strongly coupled to the designated
subscribers. Conversely, in asynchronous E-MQTT, as the publisher does not need to
wait for the PUBREC packet, the publisher and the subscriber are completely decoupled.
Hence, applications employing E-MQTT possess the flexibility to opt for varying degrees
of decoupling between publishers and subscribers, tailoring the approach to meet their
specific requirements.

3.3. Packet Format

In the existing MQTT, the first byte of the fixed header allots bits 7 to 4 for denoting
the packet type. This allocation encompasses a total of 14 packets, ranging numerically
from 0001 to 1110. The structure of a fixed header for a conventional MQTT PUBLISH
packet is illustrated in Figure 6. Within the first byte, bit 3 is used for indicating DUP
flags, whereas bits 2–1 are deployed to signify QoS levels. These QoS levels span from
0 to 2, while the unused value 3 has been repurposed to accommodate the proposed QoS
level 3. That is, E-MQTT does not change the format of the PUBLISH packet but assigns
the value 3 in the QoS level field to distinguish from the existing QoS levels 0, 1, and 2 of
MQTT. This QoS level 3 necessitates the specification of the minimum response packet
count (waited_packet_num) and, optionally, the inclusion of subscriber IDs (subscriber_id(s))
within the variable header of the PUBLISH packet.

Appl. Sci. 2023, 13, 12419 10 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 25

(waited_packet_num) and, optionally, the inclusion of subscriber IDs (subscriber_id(s))
within the variable header of the PUBLISH packet.

Figure 6. The fixed header of PUBLISH packet of the existing MQTT.

Figure 7 represents the fixed headers of PUBREC, PUBREL, and PUBCOMP, which
are relevant packets in the publishing process with QoS 2 within the conventional MQTT.
The initial byte of the fixed header reveals that bits 7–4 serve to signify the packet type,
while bits 3–0 remain unutilized. The PUBREL and PUBCOMP packets are used by both
MQTT and E-MQTT in the same way.

Figure 7. The fixed header of PUBREC, PUBREL, and PUBCOMP packets of the existing MQTT.

Given MQTT’s allocation of four bits for denoting packet types, any addition of two
or more packets for E-MQTT would necessitate an expansion of the packet type bit count.
To circumvent this concern, the solution lies in QoS level 3 adopting the identical packet
types as those within QoS level 2. Instead, we leverage the unused bits within the packets
to incorporate a QoS field, effectively distinguishing packets meant for QoS level 3 from
those of QoS level 2. Figure 8 shows the modified fixed header of the PUBREC packet,
reflecting E-MQTT integration. The new QoS field is allocated to bits 2–1, mirroring the
QoS bits within the existing PUBLISH packet. Under the QoS level 2, the communication
protocol aligns with QoS 2 standard. However, in cases where the QoS value is 3, the
communication process adheres to the new QoS 3.

The PUBLISH packet of E-MQTT is created when a publisher sends a message ((1) in
Figure 9). The PUBLISH packet is received by a broker ((1) in Figure 10) that delivers it to
subscribers ((1) in Figure 11). The PUBREC packet of E-MQTT is created and sent by a
subscriber ((2) in Figure 9) after it receives a PUBLISH packet. The PUBREC packet is re-
ceived by a broker ((2) in Figure 10) that forwards it to a publisher ((2) in Figure 11).

Figure 8. The fixed header of PUBREC, PUBREL, and PUBCOMP packets of E-MQTT.

In summary, we add QoS level 3 in PUBLISH and PUBREC packets by using the
existing QoS field or the reserved field to distinguish E-MQTT packets from the other ex-
isting MQTT packets. In the PUBLISH packet, we also add the field for the minimum
number of response packets and an optional list of subscriber IDs in the variable header.

Figure 6. The fixed header of PUBLISH packet of the existing MQTT.

Figure 7 represents the fixed headers of PUBREC, PUBREL, and PUBCOMP, which are
relevant packets in the publishing process with QoS 2 within the conventional MQTT. The
initial byte of the fixed header reveals that bits 7–4 serve to signify the packet type, while
bits 3–0 remain unutilized. The PUBREL and PUBCOMP packets are used by both MQTT
and E-MQTT in the same way.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 25

(waited_packet_num) and, optionally, the inclusion of subscriber IDs (subscriber_id(s))
within the variable header of the PUBLISH packet.

Figure 6. The fixed header of PUBLISH packet of the existing MQTT.

Figure 7 represents the fixed headers of PUBREC, PUBREL, and PUBCOMP, which
are relevant packets in the publishing process with QoS 2 within the conventional MQTT.
The initial byte of the fixed header reveals that bits 7–4 serve to signify the packet type,
while bits 3–0 remain unutilized. The PUBREL and PUBCOMP packets are used by both
MQTT and E-MQTT in the same way.

Figure 7. The fixed header of PUBREC, PUBREL, and PUBCOMP packets of the existing MQTT.

Given MQTT’s allocation of four bits for denoting packet types, any addition of two
or more packets for E-MQTT would necessitate an expansion of the packet type bit count.
To circumvent this concern, the solution lies in QoS level 3 adopting the identical packet
types as those within QoS level 2. Instead, we leverage the unused bits within the packets
to incorporate a QoS field, effectively distinguishing packets meant for QoS level 3 from
those of QoS level 2. Figure 8 shows the modified fixed header of the PUBREC packet,
reflecting E-MQTT integration. The new QoS field is allocated to bits 2–1, mirroring the
QoS bits within the existing PUBLISH packet. Under the QoS level 2, the communication
protocol aligns with QoS 2 standard. However, in cases where the QoS value is 3, the
communication process adheres to the new QoS 3.

The PUBLISH packet of E-MQTT is created when a publisher sends a message ((1) in
Figure 9). The PUBLISH packet is received by a broker ((1) in Figure 10) that delivers it to
subscribers ((1) in Figure 11). The PUBREC packet of E-MQTT is created and sent by a
subscriber ((2) in Figure 9) after it receives a PUBLISH packet. The PUBREC packet is re-
ceived by a broker ((2) in Figure 10) that forwards it to a publisher ((2) in Figure 11).

Figure 8. The fixed header of PUBREC, PUBREL, and PUBCOMP packets of E-MQTT.

In summary, we add QoS level 3 in PUBLISH and PUBREC packets by using the
existing QoS field or the reserved field to distinguish E-MQTT packets from the other ex-
isting MQTT packets. In the PUBLISH packet, we also add the field for the minimum
number of response packets and an optional list of subscriber IDs in the variable header.

Figure 7. The fixed header of PUBREC, PUBREL, and PUBCOMP packets of the existing MQTT.

Given MQTT’s allocation of four bits for denoting packet types, any addition of two
or more packets for E-MQTT would necessitate an expansion of the packet type bit count.
To circumvent this concern, the solution lies in QoS level 3 adopting the identical packet
types as those within QoS level 2. Instead, we leverage the unused bits within the packets
to incorporate a QoS field, effectively distinguishing packets meant for QoS level 3 from
those of QoS level 2. Figure 8 shows the modified fixed header of the PUBREC packet,
reflecting E-MQTT integration. The new QoS field is allocated to bits 2–1, mirroring the
QoS bits within the existing PUBLISH packet. Under the QoS level 2, the communication
protocol aligns with QoS 2 standard. However, in cases where the QoS value is 3, the
communication process adheres to the new QoS 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 25

(waited_packet_num) and, optionally, the inclusion of subscriber IDs (subscriber_id(s))
within the variable header of the PUBLISH packet.

Figure 6. The fixed header of PUBLISH packet of the existing MQTT.

Figure 7 represents the fixed headers of PUBREC, PUBREL, and PUBCOMP, which
are relevant packets in the publishing process with QoS 2 within the conventional MQTT.
The initial byte of the fixed header reveals that bits 7–4 serve to signify the packet type,
while bits 3–0 remain unutilized. The PUBREL and PUBCOMP packets are used by both
MQTT and E-MQTT in the same way.

Figure 7. The fixed header of PUBREC, PUBREL, and PUBCOMP packets of the existing MQTT.

Given MQTT’s allocation of four bits for denoting packet types, any addition of two
or more packets for E-MQTT would necessitate an expansion of the packet type bit count.
To circumvent this concern, the solution lies in QoS level 3 adopting the identical packet
types as those within QoS level 2. Instead, we leverage the unused bits within the packets
to incorporate a QoS field, effectively distinguishing packets meant for QoS level 3 from
those of QoS level 2. Figure 8 shows the modified fixed header of the PUBREC packet,
reflecting E-MQTT integration. The new QoS field is allocated to bits 2–1, mirroring the
QoS bits within the existing PUBLISH packet. Under the QoS level 2, the communication
protocol aligns with QoS 2 standard. However, in cases where the QoS value is 3, the
communication process adheres to the new QoS 3.

The PUBLISH packet of E-MQTT is created when a publisher sends a message ((1) in
Figure 9). The PUBLISH packet is received by a broker ((1) in Figure 10) that delivers it to
subscribers ((1) in Figure 11). The PUBREC packet of E-MQTT is created and sent by a
subscriber ((2) in Figure 9) after it receives a PUBLISH packet. The PUBREC packet is re-
ceived by a broker ((2) in Figure 10) that forwards it to a publisher ((2) in Figure 11).

Figure 8. The fixed header of PUBREC, PUBREL, and PUBCOMP packets of E-MQTT.

In summary, we add QoS level 3 in PUBLISH and PUBREC packets by using the
existing QoS field or the reserved field to distinguish E-MQTT packets from the other ex-
isting MQTT packets. In the PUBLISH packet, we also add the field for the minimum
number of response packets and an optional list of subscriber IDs in the variable header.

Figure 8. The fixed header of PUBREC, PUBREL, and PUBCOMP packets of E-MQTT.

The PUBLISH packet of E-MQTT is created when a publisher sends a message ((1) in
Figure 9). The PUBLISH packet is received by a broker ((1) in Figure 10) that delivers it
to subscribers ((1) in Figure 11). The PUBREC packet of E-MQTT is created and sent by
a subscriber ((2) in Figure 9) after it receives a PUBLISH packet. The PUBREC packet is
received by a broker ((2) in Figure 10) that forwards it to a publisher ((2) in Figure 11).

In summary, we add QoS level 3 in PUBLISH and PUBREC packets by using the
existing QoS field or the reserved field to distinguish E-MQTT packets from the other
existing MQTT packets. In the PUBLISH packet, we also add the field for the minimum
number of response packets and an optional list of subscriber IDs in the variable header.

3.4. Detailed Process of End-to-End Communication

Displayed in Figure 9 are diagrams delineating the execution process of the E-MQTT
from the perspective of the publisher. Firstly, the user’s publish request, employing QoS 3,
is directed to the main thread for processing. Within this main thread are the mandatory
waited_packet_num field and the optional subscriber_id field(s). If the publisher configures

Appl. Sci. 2023, 13, 12419 11 of 24

the waited_packet_num field to 0 (asynchronous mode), it does not stop its execution but
proceeds to subsequent tasks after the delivery of the PUBLISH packet to a dedicated send-
ing thread. Conversely, when the waited_packet_num is greater than 0 (synchronous mode)
and the subscriber_id field is not empty, the publisher undertakes a comparison between
the waited_packet_num field and the subscriber_id field(s). If the waited_packet_num field
exceeds the count of the subscriber_id fields, the publisher returns an error and terminates
the publish session. However, the opposite case (where the waited_packet_num is less than
or equal to the number of subscriber_id fields) is acceptable because the publisher can wait
for a lower number of responses among the designated subscribers.

Following scrutiny of the packet fields, the main thread registers the PUBLISH packet
within an unacknowledged (termed unacked) packet list. Subsequently, the main thread
dispatches the PUBLISH packet to the sending thread, which then orchestrates transmission
to the broker. In scenarios where the publisher specifies the minimum count of response
packets to be awaited (indicating synchronous mode), the main thread registers the PUB-
LISH packet within a synchronizer object. Here, the main thread calls the wait() function
to enter a suspended state [54]. During this phase, the publisher sets a timer to define the
upper limit of waiting time. Upon expiration of this timer, the publisher interprets it as an
indication of some subscribers’ unavailability, thus prompting termination of the publish
session. The main thread resumes execution upon the receipt of a PUBREC packet from the
broker, triggered by a processing thread. This resumption is facilitated by the invocation of
the notify() function, effectively awakening the main thread from its suspended state.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 25

3.4. Detailed Process of End-to-End Communication
Displayed in Figure 9 are diagrams delineating the execution process of the E-MQTT

from the perspective of the publisher. Firstly, the user’s publish request, employing QoS
3, is directed to the main thread for processing. Within this main thread are the mandatory
waited_packet_num field and the optional subscriber_id field(s). If the publisher configures
the waited_packet_num field to 0 (asynchronous mode), it does not stop its execution but
proceeds to subsequent tasks after the delivery of the PUBLISH packet to a dedicated
sending thread. Conversely, when the waited_packet_num is greater than 0 (synchronous
mode) and the subscriber_id field is not empty, the publisher undertakes a comparison
between the waited_packet_num field and the subscriber_id field(s). If the waited_packet_num
field exceeds the count of the subscriber_id fields, the publisher returns an error and termi-
nates the publish session. However, the opposite case (where the waited_packet_num is less
than or equal to the number of subscriber_id fields) is acceptable because the publisher can
wait for a lower number of responses among the designated subscribers.

Following scrutiny of the packet fields, the main thread registers the PUBLISH packet
within an unacknowledged (termed unacked) packet list. Subsequently, the main thread
dispatches the PUBLISH packet to the sending thread, which then orchestrates transmis-
sion to the broker. In scenarios where the publisher specifies the minimum count of response
packets to be awaited (indicating synchronous mode), the main thread registers the PUBLISH
packet within a synchronizer object. Here, the main thread calls the wait() function to enter a
suspended state [54]. During this phase, the publisher sets a timer to define the upper limit of
waiting time. Upon expiration of this timer, the publisher interprets it as an indication of some
subscribers’ unavailability, thus prompting termination of the publish session. The main
thread resumes execution upon the receipt of a PUBREC packet from the broker, triggered by
a processing thread. This resumption is facilitated by the invocation of the notify() function,
effectively awakening the main thread from its suspended state.

Figure 9. Flowcharts showing the publisher-side execution flow of E-MQTT. Figure 9. Flowcharts showing the publisher-side execution flow of E-MQTT.

The publisher’s processing thread is responsible for handling incoming packets, which
are received from a dedicated receiving thread. During the synchronous communication
within E-MQTT (under QoS level 3), when the processing thread receives a PUBREC packet,
it initiates the transmission of a corresponding PUBREL packet to the broker. Simultane-

Appl. Sci. 2023, 13, 12419 12 of 24

ously, the received packet is logged within the unacked packet list. Upon the arrival of a
PUBREC packet, the processing thread undertakes the removal of the associated PUBLISH
packet from the unacked packet list. This action is accompanied by the invocation of the
notify() function, thereby rousing the main thread from its suspended state. Subsequently,
upon receipt of a PUBCOMP packet, the processing thread removes the PUBREL packet
from the unacked packet list.

Within the asynchronous E-MQTT, the main thread seamlessly progresses to the sub-
sequent operation after transmitting the PUBLISH packet. Upon the processing thread’s re-
ception of the PUBREC packet, it promptly dispatches the corresponding PUBREL packet to
the broker, which is the same process of MQTT QoS 2 until it receives the PUBCOMP packet.

Illustrated in Figure 10 is the operational sequence of the broker within the context
of E-MQTT. Upon receipt of a QoS level 3 PUBLISH packet from the publisher, the broker
stores the packet and then proceeds with its customary procedure of transmitting the packet
to all subscribers.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 25

The publisher’s processing thread is responsible for handling incoming packets,
which are received from a dedicated receiving thread. During the synchronous commu-
nication within E-MQTT (under QoS level 3), when the processing thread receives a
PUBREC packet, it initiates the transmission of a corresponding PUBREL packet to the
broker. Simultaneously, the received packet is logged within the unacked packet list.
Upon the arrival of a PUBREC packet, the processing thread undertakes the removal of
the associated PUBLISH packet from the unacked packet list. This action is accompanied
by the invocation of the notify() function, thereby rousing the main thread from its sus-
pended state. Subsequently, upon receipt of a PUBCOMP packet, the processing thread
removes the PUBREL packet from the unacked packet list.

Within the asynchronous E-MQTT, the main thread seamlessly progresses to the subse-
quent operation after transmitting the PUBLISH packet. Upon the processing thread’s recep-
tion of the PUBREC packet, it promptly dispatches the corresponding PUBREL packet to the
broker, which is the same process of MQTT QoS 2 until it receives the PUBCOMP packet.

Illustrated in Figure 10 is the operational sequence of the broker within the context
of E-MQTT. Upon receipt of a QoS level 3 PUBLISH packet from the publisher, the broker
stores the packet and then proceeds with its customary procedure of transmitting the
packet to all subscribers.

Figure 10. Flowcharts showing the broker-side execution flow of E-MQTT.

The waited_packet_num and subscriber_id(s) fields play a pivotal role in the broker’s
response aggregation process. Upon the broker’s reception of a PUBREC packet from a
subscriber, it immediately sends a PUBREL packet to the subscriber and stores the
PUBREC packet as well as the PUBREL packet. Subsequently, the broker assesses the
stored PUBLISH packet. If the waited_packet_num field is 1 or more (synchronous E-
MQTT), the broker proceeds to examine the subscriber_id(s) field. If the field is empty, the
broker performs a count of received PUBREC packets. Conversely, if the subscriber_id(s)
field is not empty, this implies that the publisher has specifically earmarked subscribers
whose responses it is awaiting. Consequently, the broker increases the count of received
PUBREC packets only if the PUBREC sender is contained in the subscriber_id(s) field. The
broker then compares the waited_packet_num value with the count of PUBREC packets

Figure 10. Flowcharts showing the broker-side execution flow of E-MQTT.

The waited_packet_num and subscriber_id(s) fields play a pivotal role in the broker’s
response aggregation process. Upon the broker’s reception of a PUBREC packet from a
subscriber, it immediately sends a PUBREL packet to the subscriber and stores the PUBREC
packet as well as the PUBREL packet. Subsequently, the broker assesses the stored PUBLISH
packet. If the waited_packet_num field is 1 or more (synchronous E-MQTT), the broker
proceeds to examine the subscriber_id(s) field. If the field is empty, the broker performs a
count of received PUBREC packets. Conversely, if the subscriber_id(s) field is not empty,
this implies that the publisher has specifically earmarked subscribers whose responses it is
awaiting. Consequently, the broker increases the count of received PUBREC packets only if
the PUBREC sender is contained in the subscriber_id(s) field. The broker then compares the
waited_packet_num value with the count of PUBREC packets received so far. If the number
of received PUBREC packet becomes the same as waited_packet_num, the broker transmits
an aggregated PUBREC packet to the publisher. However, if the waited_packet_num equals
0 (asynchronous E-MQTT), the initial PUBREC packet is promptly transmitted to the

Appl. Sci. 2023, 13, 12419 13 of 24

publisher upon reception. The subsequent tasks when the broker receives the PUBREL and
PUBCOMP packets are the same as that in the existing MQTT.

Figure 11 illustrates the operation sequence of the subscriber within the E-MQTT. The
subscriber’s functionality is the same as that in MQTT QoS 2 except for the check of the
QoS level field. Upon the receipt of the QoS level 3 PUBLISH packet from the broker, the
subscriber stores the packet and then sends the PUBREC packet for QoS 3 as a response
back to the broker. When the subscriber receives the PUBREL packet, the execution flow is
the same as that of MQTT QoS 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 25

received so far. If the number of received PUBREC packet becomes the same as
waited_packet_num, the broker transmits an aggregated PUBREC packet to the publisher. How-
ever, if the waited_packet_num equals 0 (asynchronous E-MQTT), the initial PUBREC packet is
promptly transmitted to the publisher upon reception. The subsequent tasks when the broker
receives the PUBREL and PUBCOMP packets are the same as that in the existing MQTT.

Figure 11 illustrates the operation sequence of the subscriber within the E-MQTT. The
subscriber’s functionality is the same as that in MQTT QoS 2 except for the check of the
QoS level field. Upon the receipt of the QoS level 3 PUBLISH packet from the broker, the
subscriber stores the packet and then sends the PUBREC packet for QoS 3 as a response
back to the broker. When the subscriber receives the PUBREL packet, the execution flow
is the same as that of MQTT QoS 2.

Figure 11. Flowcharts showing the subscriber-side execution flow of E-MQTT.

4. Implementation
The communication framework (CM) [55] serves as an application-level communica-

tion framework employed in the development of distributed systems. The CM offers a
range of options and communication services that are adaptable to the specific requisites
of applications, rendering it more versatile. As a service of the CM, we have implemented
E-MQTT, building upon the foundation of MQTT version 3.1.1. E-MQTT has been imple-
mented and assessed utilizing the Java Development Kit (JDK) 20 within the integrated
development environment (IDE) Eclipse (2023-03 version). Figure 12 shows a snapshot of
the Eclipse IDE housing the E-MQTT implementation. The source codes of the whole CM
are available at the Github repository (https://github.com/ccslab/CM.git (accessed on 14
November 2023)) and, specifically, the E-MQTT codes can be found at
https://github.com/ccslab/CM/tree/emqtt/CM/src/kr/ac/konkuk/ccslab/cm (accessed on 14
November 2023). To get more information on how to configure and run CM applications
that contain E-MQTT functionalities, the quick start guide document can be found at our
web page (https://sites.google.com/site/kuccslab/research/cm (accessed on 14 November
2023)).

Figure 11. Flowcharts showing the subscriber-side execution flow of E-MQTT.

4. Implementation

The communication framework (CM) [55] serves as an application-level communi-
cation framework employed in the development of distributed systems. The CM offers a
range of options and communication services that are adaptable to the specific requisites
of applications, rendering it more versatile. As a service of the CM, we have imple-
mented E-MQTT, building upon the foundation of MQTT version 3.1.1. E-MQTT has
been implemented and assessed utilizing the Java Development Kit (JDK) 20 within the
integrated development environment (IDE) Eclipse (2023-03 version). Figure 12 shows a
snapshot of the Eclipse IDE housing the E-MQTT implementation. The source codes of the
whole CM are available at the Github repository (https://github.com/ccslab/CM.git
(accessed on 14 November 2023)) and, specifically, the E-MQTT codes can be found
at https://github.com/ccslab/CM/tree/emqtt/CM/src/kr/ac/konkuk/ccslab/cm (ac-
cessed on 14 November 2023). To get more information on how to configure and run CM
applications that contain E-MQTT functionalities, the quick start guide document can be
found at our web page (https://sites.google.com/site/kuccslab/research/cm (accessed on
14 November 2023)).

In both the PUBLISH and SUBSCRIBE packets, a publisher as well as a subscriber
possess the capacity to specify QoS 3, thereby establishing a distinction from the existing
range of QoS levels spanning 0 through 2. Notably, the QoS field has also been incorporated
into the PUBREC, PUBREL, and PUBCOM packets. When a node receives PUBLISH,
PUBREC, PUBREL, and PUBCOMP packets, their course of action aligns with the existing
MQTT protocol if the QoS level is 2. Conversely, if the QoS level is 3, the proposed E-MQTT
is followed.

Figure 13 portrays a class diagram delineating the structure of E-MQTT within the CM.
Within this diagram, the principal classes encompass CMMqttManager and CMMqttEven-
tHandler. CMMqttManager is responsible for processing MQTT-related requests originating
from a CM client (publisher or subscriber) application. In cases where the publisher re-
quests the PUBLISH service, CMMqttManager verifies all the required parameters. The
mandatory parameters encompass the topic and the application message, mandating input

https://github.com/ccslab/CM.git
https://github.com/ccslab/CM/tree/emqtt/CM/src/kr/ac/konkuk/ccslab/cm
https://sites.google.com/site/kuccslab/research/cm

Appl. Sci. 2023, 13, 12419 14 of 24

values from the publisher client. Optional parameters encompass QoS, DUP, and retain
flags, along with the minimum number of responses. Should these optional parameters
be omitted by the publisher, the default value of 0 is automatically assigned. If the mini-
mum number of response messages is set as equal to or greater than 1, E-MQTT starts the
synchronous mode by registering the response (PUBREC) event type in an event synchro-
nization object, of which the class is CMEventSynchronizer. The synchronization object is
shared by both the CMMqttManager and CMMqttEventHandler classes to synchronize them.
The CMMqttManager thread then gets a lock on the synchronization object and waits for
the response message by calling the wait() method of the synchronization object.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 25

Figure 12. E-MQTT implementation environment.

In both the PUBLISH and SUBSCRIBE packets, a publisher as well as a subscriber
possess the capacity to specify QoS 3, thereby establishing a distinction from the existing
range of QoS levels spanning 0 through 2. Notably, the QoS field has also been incorporated
into the PUBREC, PUBREL, and PUBCOM packets. When a node receives PUBLISH,
PUBREC, PUBREL, and PUBCOMP packets, their course of action aligns with the existing
MQTT protocol if the QoS level is 2. Conversely, if the QoS level is 3, the proposed E-MQTT is
followed.

Figure 13 portrays a class diagram delineating the structure of E-MQTT within the
CM. Within this diagram, the principal classes encompass CMMqttManager and CMMqttE-
ventHandler. CMMqttManager is responsible for processing MQTT-related requests origi-
nating from a CM client (publisher or subscriber) application. In cases where the publisher
requests the PUBLISH service, CMMqttManager verifies all the required parameters. The
mandatory parameters encompass the topic and the application message, mandating in-
put values from the publisher client. Optional parameters encompass QoS, DUP, and re-
tain flags, along with the minimum number of responses. Should these optional parame-
ters be omitted by the publisher, the default value of 0 is automatically assigned. If the
minimum number of response messages is set as equal to or greater than 1, E-MQTT starts
the synchronous mode by registering the response (PUBREC) event type in an event syn-
chronization object, of which the class is CMEventSynchronizer. The synchronization object
is shared by both the CMMqttManager and CMMqttEventHandler classes to synchronize
them. The CMMqttManager thread then gets a lock on the synchronization object and waits
for the response message by calling the wait() method of the synchronization object.

Figure 12. E-MQTT implementation environment.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 25

Figure 13. Class diagram of E-MQTT.

The CMMqttEventHandler class has a crucial role in the confirmation and processing
of incoming MQTT packets. Because the CM uses different threads for the CMMqttMan-
ager and CMMqttEventHandler classes, the CMMqttEventHandler class receives messages
asynchronously and independently from the task of the CMMqttManager class. As this
class uses the TCP socket to receive any MQTT packet, the underlying TCP protocol guar-
antees the confirmation of packet reception. When the CMMqttEventHandler class receives
an MQTT or E-MQTT packet, it calls the processEvent() method, which manages subse-
quent tasks. This class method distinguishes the packet types, prompting the invocation
of the other internal processing methods that correspond to each packet type. In the spe-
cific case of PUBLISH packets, the processing method evaluates the associated QoS level.
Subsequently, based on the QoS level, an appropriate response packet is transmitted. To
elucidate, for QoS 0, no response is issued; for QoS 1, a PUBACK packet is issued; and for
QoS 2 and 3, a PUBREC packet is transmitted. When receiving PUBREC, PUBREL, and
PUBCOMP packets, the CMMqttEventHandler class handles different procedures accord-
ing to the QoS level, specifically QoS levels 2 and 3. Especially in E-MQTT, when the
CMMqttEventHandler of the publisher receives a PUBREC packet that is registered in the
synchronization object, it recognizes that E-MQTT is operating in the synchronous mode.
The CMMqttEventHandler then wakes up the CMMqttManager class by calling the notify()
method of the synchronization object so that the CMMqttManager class can conduct the
next task.

The CMMqttInfo class fulfills the role of maintaining all pertinent information neces-
sary for the operation of E-MQTT. Acting as a vital intermediary, the CMMqttEvent class
serves as a wrapper encompassing an MQTT packet, facilitating its exchange between var-
ious CM nodes. As it is an abstract class, CMMqttEvent is inherited by the wrapper classes
of 14 MQTT packets such as CMMqttEventPUBLISH, CMMqttEventPUBREC, and so on.

5. Experimental Results
We conducted a series of experiments to analyze the performance of E-MQTT. To

facilitate a comprehensive evaluation, we drew a comparative analysis between the pro-
posed E-MQTT QoS 3 and the existing MQTT QoS 2, given their closely aligned transmis-
sion processes. We implemented test clients (a publisher and subscribers) alongside bro-
ker applications that used both MQTT and E-MQTT because other benchmark

Figure 13. Class diagram of E-MQTT.

Appl. Sci. 2023, 13, 12419 15 of 24

The CMMqttEventHandler class has a crucial role in the confirmation and processing of
incoming MQTT packets. Because the CM uses different threads for the CMMqttManager
and CMMqttEventHandler classes, the CMMqttEventHandler class receives messages asyn-
chronously and independently from the task of the CMMqttManager class. As this class uses
the TCP socket to receive any MQTT packet, the underlying TCP protocol guarantees the
confirmation of packet reception. When the CMMqttEventHandler class receives an MQTT
or E-MQTT packet, it calls the processEvent() method, which manages subsequent tasks.
This class method distinguishes the packet types, prompting the invocation of the other
internal processing methods that correspond to each packet type. In the specific case of
PUBLISH packets, the processing method evaluates the associated QoS level. Subsequently,
based on the QoS level, an appropriate response packet is transmitted. To elucidate, for
QoS 0, no response is issued; for QoS 1, a PUBACK packet is issued; and for QoS 2 and 3, a
PUBREC packet is transmitted. When receiving PUBREC, PUBREL, and PUBCOMP pack-
ets, the CMMqttEventHandler class handles different procedures according to the QoS level,
specifically QoS levels 2 and 3. Especially in E-MQTT, when the CMMqttEventHandler of the
publisher receives a PUBREC packet that is registered in the synchronization object, it recog-
nizes that E-MQTT is operating in the synchronous mode. The CMMqttEventHandler then
wakes up the CMMqttManager class by calling the notify() method of the synchronization
object so that the CMMqttManager class can conduct the next task.

The CMMqttInfo class fulfills the role of maintaining all pertinent information necessary
for the operation of E-MQTT. Acting as a vital intermediary, the CMMqttEvent class serves
as a wrapper encompassing an MQTT packet, facilitating its exchange between various
CM nodes. As it is an abstract class, CMMqttEvent is inherited by the wrapper classes of
14 MQTT packets such as CMMqttEventPUBLISH, CMMqttEventPUBREC, and so on.

5. Experimental Results

We conducted a series of experiments to analyze the performance of E-MQTT. To facil-
itate a comprehensive evaluation, we drew a comparative analysis between the proposed
E-MQTT QoS 3 and the existing MQTT QoS 2, given their closely aligned transmission
processes. We implemented test clients (a publisher and subscribers) alongside broker
applications that used both MQTT and E-MQTT because other benchmark frameworks
or performance evaluation methods [56–59] do not support the features of E-MQTT. The
source codes of the test applications (the broker, publisher, and subscriber) are avail-
able at https://github.com/ccslab/CM/tree/emqtt/CM/src (accessed on 14 November
2023). Through the experiments, we measured five performance criteria: end-to-end delay,
publish–completion delay, broker–subscriber delay, packet sizes, and energy consump-
tion. They are normal metrics to evaluate the performance of MQTT-related research
works [56–59]. Although we analyzed the number of exchanged messages in Section 3.1,
the measurement of delay was necessary to figure out the overall overhead incurred by
not only the number of messages but also other internal processing costs. Especially for
delay, we measured delay values in different periods to analyze the overall cost from
different point of views, as shown in Figures 1 and 3. The main purpose of measuring
end-to-end delay ((1)~(8) in Figure 1 and (1)~(4) in Figure 3) was to measure total overhead
in the end-to-end communication scenario that we addressed, and this metric was most
important. We also measured publish–completion delay ((1)~(6) in Figure 1 and (1)~(5) in
Figure 3) to compare the overhead of the normal message publication procedure because
the E-MQTT broker has additional tasks when it receives PUBLISH and PUBREC packets.
The aim of measuring broker–subscriber delay ((3)~(5) in Figure 1 and (2)~(3) in Figure 3)
was to compare the response performance of the subscriber, looking for any side effects
due to the procedure of E-MQTT. As well as the delay measurement, we also conducted
the comparison of packet sizes because E-MQTT surely increases the size of some packets.
Furthermore, we measured battery usage of the publisher to compare how much energy is
consumed, out of regard for energy-constrained environments like IoT devices.

https://github.com/ccslab/CM/tree/emqtt/CM/src

Appl. Sci. 2023, 13, 12419 16 of 24

Our test applications contained all the required codes to measure all the delay met-
rics and battery usage. To conduct the experiments, we configured the broker address
in the publisher and subscriber applications. After starting the broker, we also started
the publisher and subscriber. Then, they started MQTT connection with the broker and
subscribed to topics required for the experiments. In the publisher application, we could
select and start one of experiment menus (end-to-end delay, publish–completion delay,
broker–subscriber delay, and battery usage). We could also select one of measurement
methods among MQTT, asynchronous E-MQTT, and synchronous E-MQTT for comparison.
For the delay measurement, the publisher sent a PUBLISH packet and measured the end-to-
end and publish–completion delay values. The broker also measured the broker–subscriber
delay value.

5.1. Experimental Environments

In this subsection, we describe environment information of the experiments that
we conducted with our test clients and broker applications. The experiments of delay
measurement (described in Sections 5.2–5.4) were conducted utilizing a pair of distinct
devices. Specifically, the test broker and subscriber applications were executed on a desktop
PC, whereas the test publisher application was carried out on a laptop PC. These devices
are respectively designated as PC1 (for the desktop) and PC2 (for the laptop). We assumed
no network congestion or failure during the experiments. Table 1 shows the detailed device
specifications and network configurations of PC1 and PC2.

Table 1. Device specifications for delay measurement.

PC 1 PC 2

Processor AMD Ryzen 5 3500 6-Core
Processor 3.60 GHz

Intel® Core™ i5-8250U CPU @ 1.60
GHz

RAM 16 GB RAM 4 GB RAM
OS Windows 10 Windows 10
Network Ethernet (1 Gbps link speed) Wi-Fi

For the experiments of delay measurement, we started one publisher, one broker,
and ten subscriber applications. To measure one delay value, the publisher sent a query
message and received a delay value. In the PUBLISH packet of the query message, we set
the topic field with a one-byte string and the payload message with six bytes. The other
headers of the packet remained empty or default values. In each experiment, we measured
delay with sixty tests and obtained an average value. We conducted the same experiment
while increasing the number of subscribers by ten until it reached eighty. In synchronous
E-MQTT, the number of subscribers corresponded to the minimum number of response
packets to be awaited, and the list of subscriber identifiers remained empty.

We set another environment of experiment (described in Section 5.6) because this
supplementary experiment was conducted later for the approximate measurement of
energy consumption. As a specific IoT environment was not available, we executed the
publisher solely on a laptop operating on battery power, while the broker and subscribers
were run on a desktop PC. To measure battery usage, the publisher regularly sent a
PUBLISH packet every second for 1200 times per experiment. When each experiment
started and ended, we recorded the battery level provided by the operating system and
obtained the amount of battery usage using the difference between the two values. Table 2
presents the specifications of the devices utilized in this experiment. Apart from the devices,
the remaining experimental conditions remained consistent with the previous experiments.

5.2. End-to-End Delay

In the first experiment, we measured response latency within the context of situations
wherein the publisher’s awareness of message reception by subscribers is essential. In E-
MQTT, the subscriber does not need to create a separate PUBLISH packet for a response. As

Appl. Sci. 2023, 13, 12419 17 of 24

a response packet to PUBLISH, the subscriber transmits the PUBREC packet. However, the
existing MQTT requires an additional process to respond to the publisher. The subscriber
must respond to the publisher by creating and sending a new PUBLISH packet. To facilitate
this, the publisher is mandated to pre-configure subscription to an additional topic (referred
to as topic B) enabling the reception of subscriber responses. Subsequently, the subscriber
conveys its acknowledgement by publishing a PUBLISH packet with topic B. Upon the
receipt of the aforementioned PUBLISH packet with topic B, the publisher effectively
confirms successful reception of the original PUBLISH packet by the subscriber.

Table 2. Device specifications for battery usage experiment.

Publisher Broker and Subscribers

Processor Apple M2 3.8 GHz Intel i5
RAM 32 GB RAM 16 GB RAM
Power 69.6 Wh Battery AC

Within the existing MQTT, we defined the end-to-end delay as the elapsed time from
the moment the publisher sends a PUBLISH packet to the point when it receives the final
response PUBLISH packet sent by the subscribers. In contrast, within the context of the
proposed E-MQTT, this end-to-end delay was the elapsed time from the moment the
publisher sends a PUBLISH packet to the point when it receives an aggregated PUBREC
packet sent by the broker. The first experiment was conducted by increasing the number of
subscribers, ranging from 10 to 80. Figure 14 shows the results of the experiment.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 25

Figure 14. Comparison of end-to-end delay results.

The average end-to-end delay values of MQTT (QoS 2), asynchronous E-MQTT, and
synchronous E-MQTT were 9.13, 6.84, and 8.49 milliseconds, respectively. Both synchro-
nous and asynchronous E-MQTT demonstrated notably shorter delays when compared
to the conventional MQTT. It is noteworthy that asynchronous E-MQTT consistently out-
performed other scenarios across all cases. The synchronous E-MQTT, in contrast, re-
quires an additional synchronization process in the publisher application unlike the asyn-
chronous E-MQTT and conventional MQTT. In terms of message delivery and processing
overhead, E-MQTT optimizes the response mechanism within the CM layer that is under
the application layer. This differs from MQTT, which carries out the response procedure
within the application layer by transmitting an independent PUBLISH packet as the re-
sponse, which results in supplementary overhead. The broker, in turn, needs to ascertain
the topic of the response PUBLISH packet, locate the relevant subscribers (which include
the publisher), and send them the packet, which is also an additional overhead of the
response mechanism of MQTT. Notably, the quantity of packets traversing between the
broker and publisher equates to the number of subscribers. While the proposed E-MQTT
involves the supplementary task of collecting response packets from subscribers, the bro-
ker can efficiently transmit a single response packet to the publisher.

In summary, the asynchronous E-MQTT showed the shortest end-to-end delay com-
pared to the other two cases, the synchronous E-MQTT and MQTT. This supremacy can
be attributed to its omission of a synchronization process and any supplementary re-
sponse procedures within the application layer. The synchronous E-MQTT has no addi-
tional response procedure like the MQTT but needs a certain degree of additional over-
head for synchronous communication. With E-MQTT introducing the mechanism of col-
lecting subscriber responses at the broker, the net outcome is a reduction in the number
of packets exchanged between the broker and the publisher. Since the time taken for the
additional response process of MQTT consistently outweighs other delay factors, the con-
ventional MQTT emerges as the slowest performer across all cases.

5.3. Publish–Completion Delay
In the second experiment, we focused on quantifying the publish–completion delay

experienced by the publisher when no response from the subscriber was necessary. This
delay is characterized by the duration between the moment the publisher sends a PUB-
LISH packet and the point at which it receives a corresponding PUBCOMP packet. By

Figure 14. Comparison of end-to-end delay results.

The average end-to-end delay values of MQTT (QoS 2), asynchronous E-MQTT, and
synchronous E-MQTT were 9.13, 6.84, and 8.49 milliseconds, respectively. Both syn-
chronous and asynchronous E-MQTT demonstrated notably shorter delays when compared
to the conventional MQTT. It is noteworthy that asynchronous E-MQTT consistently out-
performed other scenarios across all cases. The synchronous E-MQTT, in contrast, requires
an additional synchronization process in the publisher application unlike the asynchronous
E-MQTT and conventional MQTT. In terms of message delivery and processing overhead,
E-MQTT optimizes the response mechanism within the CM layer that is under the appli-
cation layer. This differs from MQTT, which carries out the response procedure within

Appl. Sci. 2023, 13, 12419 18 of 24

the application layer by transmitting an independent PUBLISH packet as the response,
which results in supplementary overhead. The broker, in turn, needs to ascertain the
topic of the response PUBLISH packet, locate the relevant subscribers (which include the
publisher), and send them the packet, which is also an additional overhead of the response
mechanism of MQTT. Notably, the quantity of packets traversing between the broker and
publisher equates to the number of subscribers. While the proposed E-MQTT involves
the supplementary task of collecting response packets from subscribers, the broker can
efficiently transmit a single response packet to the publisher.

In summary, the asynchronous E-MQTT showed the shortest end-to-end delay com-
pared to the other two cases, the synchronous E-MQTT and MQTT. This supremacy can be
attributed to its omission of a synchronization process and any supplementary response
procedures within the application layer. The synchronous E-MQTT has no additional
response procedure like the MQTT but needs a certain degree of additional overhead for
synchronous communication. With E-MQTT introducing the mechanism of collecting
subscriber responses at the broker, the net outcome is a reduction in the number of packets
exchanged between the broker and the publisher. Since the time taken for the additional
response process of MQTT consistently outweighs other delay factors, the conventional
MQTT emerges as the slowest performer across all cases.

5.3. Publish–Completion Delay

In the second experiment, we focused on quantifying the publish–completion de-
lay experienced by the publisher when no response from the subscriber was necessary.
This delay is characterized by the duration between the moment the publisher sends a
PUBLISH packet and the point at which it receives a corresponding PUBCOMP packet.
By progressively increasing the number of subscribers from 10 to 80, we measured the
publish–completion delay experienced by the publisher. The experiment’s outcomes are
visually depicted in Figure 15. The average publish–completion delay values of MQTT,
asynchronous E-MQTT, and synchronous E-MQTT were 6.87, 7.53, and 8.20, respectively.
Upon reviewing the graph, it is evident that the difference between MQTT and E-MQTT
remains minor, manifesting as a mere difference of a few milliseconds. Despite E-MQTT in-
corporating supplementary logic at the broker’s end, it maintains its efficiency and remains
on par with MQTT even in cases where no interaction is required.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 25

progressively increasing the number of subscribers from 10 to 80, we measured the pub-
lish–completion delay experienced by the publisher. The experiment’s outcomes are vis-
ually depicted in Figure 15. The average publish–completion delay values of MQTT, asyn-
chronous E-MQTT, and synchronous E-MQTT were 6.87, 7.53, and 8.20, respectively.
Upon reviewing the graph, it is evident that the difference between MQTT and E-MQTT
remains minor, manifesting as a mere difference of a few milliseconds. Despite E-MQTT
incorporating supplementary logic at the broker’s end, it maintains its efficiency and re-
mains on par with MQTT even in cases where no interaction is required.

Figure 15. Comparison of publish–completion delay results.

5.4. Broker–Subscriber Delay
In the third experiment, we measured the time lapse extending from the moment the

broker sends the PUBLISH packet to the point at which it receives the PUBREC packet
from the subscriber. This temporal duration was referred to as the broker–subscriber de-
lay. During this investigation, both MQTT and E-MQTT transmitted two packets (PUB-
LISH and PUBREC) between the broker and the subscriber. However, it is important to
note that the broker of E-MQTT incurs an additional computational overhead, attributed
to its verification process involving the designated subscriber fields within the PUBLISH
packet before sending it to the intended subscribers.

As the number of subscribers increased, we measured the broker–subscriber delay
and calculated the average value according to the number of subscribers. As demonstrated
in Figure 16, the delay duration experienced by both MQTT and E-MQTT exhibited a com-
parable pattern. The average broker–subscriber delay values of MQTT, asynchronous E-
MQTT, and synchronous E-MQTT were 1.72, 1.48, and 0.85, respectively. Given that both
E-MQTT and MQTT transmitted an equal number of packets, discernible dissimilarities
in the delay period were not observed. In essence, the message transmission rates of
MQTT and E-MQTT were not significantly different.

Figure 15. Comparison of publish–completion delay results.

Appl. Sci. 2023, 13, 12419 19 of 24

5.4. Broker–Subscriber Delay

In the third experiment, we measured the time lapse extending from the moment the
broker sends the PUBLISH packet to the point at which it receives the PUBREC packet
from the subscriber. This temporal duration was referred to as the broker–subscriber delay.
During this investigation, both MQTT and E-MQTT transmitted two packets (PUBLISH
and PUBREC) between the broker and the subscriber. However, it is important to note
that the broker of E-MQTT incurs an additional computational overhead, attributed to its
verification process involving the designated subscriber fields within the PUBLISH packet
before sending it to the intended subscribers.

As the number of subscribers increased, we measured the broker–subscriber delay
and calculated the average value according to the number of subscribers. As demonstrated
in Figure 16, the delay duration experienced by both MQTT and E-MQTT exhibited a
comparable pattern. The average broker–subscriber delay values of MQTT, asynchronous
E-MQTT, and synchronous E-MQTT were 1.72, 1.48, and 0.85, respectively. Given that both
E-MQTT and MQTT transmitted an equal number of packets, discernible dissimilarities in
the delay period were not observed. In essence, the message transmission rates of MQTT
and E-MQTT were not significantly different.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 25

Figure 16. Comparison of broker–subscriber delay results.

5.5. Packet Size
We also measured the size of the transmitted packets (PUBLISH, PUBREC, PUBREL,

and PUBCOMP) within the publishing process. As an MQTT packet comprises a fixed
header, variable header, and payload, we conducted separate measurements for these
three components. Given that our previous experiments involved the encapsulation of an
MQTT packet within a CM event, the overall packet size encompassed the CM event
header as well. The size of the CM event header remained constant for all types of packets
including PUBLISH, PUBREC, PUBREL, and PUBCOMP. When comparing E-MQTT to
MQTT, it was observed that E-MQTT led to an increase in the PUBLISH packet size due
to the inclusion of a mandatory minimum number of response packets. Moreover, E-
MQTT introduces additional fields such as an optional list of designated subscriber IDs.
In the case of E-MQTT, the synchronous and asynchronous modes share the same packet
format, resulting in uniform packet sizes. Figure 17 illustrates the outcome of our meas-
urement results. Specifically, in the context of the PUBLISH packet, E-MQTT entailed an
augmentation of 2 bytes in the variable header to accommodate the minimum number of
waiting packets. However, for the other packet types, including PUBREC, PUBREL, and
PUBCOMP, the sizes remained consistent between E-MQTT and MQTT.

Figure 17. Comparison of packet size results.

Figure 16. Comparison of broker–subscriber delay results.

5.5. Packet Size

We also measured the size of the transmitted packets (PUBLISH, PUBREC, PUBREL,
and PUBCOMP) within the publishing process. As an MQTT packet comprises a fixed
header, variable header, and payload, we conducted separate measurements for these three
components. Given that our previous experiments involved the encapsulation of an MQTT
packet within a CM event, the overall packet size encompassed the CM event header as
well. The size of the CM event header remained constant for all types of packets including
PUBLISH, PUBREC, PUBREL, and PUBCOMP. When comparing E-MQTT to MQTT, it was
observed that E-MQTT led to an increase in the PUBLISH packet size due to the inclusion
of a mandatory minimum number of response packets. Moreover, E-MQTT introduces
additional fields such as an optional list of designated subscriber IDs. In the case of E-
MQTT, the synchronous and asynchronous modes share the same packet format, resulting
in uniform packet sizes. Figure 17 illustrates the outcome of our measurement results.
Specifically, in the context of the PUBLISH packet, E-MQTT entailed an augmentation of
2 bytes in the variable header to accommodate the minimum number of waiting packets.

Appl. Sci. 2023, 13, 12419 20 of 24

However, for the other packet types, including PUBREC, PUBREL, and PUBCOMP, the
sizes remained consistent between E-MQTT and MQTT.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 25

Figure 16. Comparison of broker–subscriber delay results.

5.5. Packet Size
We also measured the size of the transmitted packets (PUBLISH, PUBREC, PUBREL,

and PUBCOMP) within the publishing process. As an MQTT packet comprises a fixed
header, variable header, and payload, we conducted separate measurements for these
three components. Given that our previous experiments involved the encapsulation of an
MQTT packet within a CM event, the overall packet size encompassed the CM event
header as well. The size of the CM event header remained constant for all types of packets
including PUBLISH, PUBREC, PUBREL, and PUBCOMP. When comparing E-MQTT to
MQTT, it was observed that E-MQTT led to an increase in the PUBLISH packet size due
to the inclusion of a mandatory minimum number of response packets. Moreover, E-
MQTT introduces additional fields such as an optional list of designated subscriber IDs.
In the case of E-MQTT, the synchronous and asynchronous modes share the same packet
format, resulting in uniform packet sizes. Figure 17 illustrates the outcome of our meas-
urement results. Specifically, in the context of the PUBLISH packet, E-MQTT entailed an
augmentation of 2 bytes in the variable header to accommodate the minimum number of
waiting packets. However, for the other packet types, including PUBREC, PUBREL, and
PUBCOMP, the sizes remained consistent between E-MQTT and MQTT.

Figure 17. Comparison of packet size results. Figure 17. Comparison of packet size results.

Table 3 provides insight into the packet sizes of the PUBLISH packet in scenarios where
the E-MQTT publisher incorporates optional subscriber IDs. Notably, each subscriber ID
was represented by a single UTF-16 digit. The table’s second column displays the count
of designated subscribers. As is inherent to E-MQTT, the size of its PUBLISH packet
consistently exceeded that of MQTT by 2 bytes. This discrepancy arises from the inclusion
of the number of pre-specified waiting packets (waited_packet_num) within E-MQTT’s
PUBLISH packet. As the PUBLISH packet of E-MQTT stores a list of subscribers, the packet
size increases whenever the publisher adds a subscriber ID. As such, it is prudent for the
E-MQTT publisher to exercise caution with regard to an excessive number of subscribers,
as this could lead to a significant enlargement in packet size.

Table 3. PUBLISH packet sizes according to the number of subscriber IDs.

QoS Number of
Subscriber IDs

PUBLISH
(Bytes)

2
(MQTT) N/A 12

3
(E-MQTT)

0 14
1 16
2 18
3 20
4 22
5 24

10 34
20 54
40 94
80 174

5.6. Energy Consumption

Finally, we conducted measurements on the battery usage of the publisher to esti-
mate the energy consumption of MQTT and E-MQTT. Figure 18 illustrates the battery
usage results, indicating that the overall battery usage was nearly identical for MQTT and
E-MQTT. However, when the number of subscribers exceeded 60, the MQTT publisher
experienced a slight increase in battery consumption (3%) due to the higher number of
packet exchanges, as discussed in Section 3.1. As the battery level information provided
by the operating system was in units of 1%, we could not measure more accurate values
in floating point numbers. However, we could estimate that a large number of packets

Appl. Sci. 2023, 13, 12419 21 of 24

also affected energy consumption. On the other hand, the battery usage of the E-MQTT
publisher remained consistent (2%) since it exchanges the same number of packets regard-
less of the number of subscribers. Notably, both synchronous and asynchronous E-MQTT
demonstrated equivalent battery usage. This implies that the additional overhead involved
in the synchronization management of the synchronous E-MQTT has minimal impact on
energy consumption.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 25

Figure 18. Comparison of battery usage of publisher results.

6. Conclusions
In this paper, we proposed E-MQTT, a novel mechanism addressing the end-to-end

communication problem inherent in MQTT. From the experimental results, although E-
MQTT has a slightly larger packet size than MQTT, its distinctive response simplification
strategy and reduced number of exchanged packets contributed to shorter end-to-end de-
lay and less energy consumption. The advantages gained from these performance im-
provements far outweigh the minor difference in packet size.

The current E-MQTT still has limitations and needs to improve further. Firstly, we
developed E-MQTT based on MQTT version 3.1.1, which is not the most recent one. Sec-
ondly, although we combined the publish–subscribe model with the request–response
pattern, the response message is just a simple acknowledgement without carrying addi-
tional information. Lastly, E-MQTT is an improvement of MQTT QoS 2 but not the other
QoS levels (0 and 1). As future research, we plan to resolve the current limitations of E-
MQTT. We will redesign E-MQTT according to the specifications of MQTT version 5.0,
which is the latest one to accommodate new features. Using the new features of MQTT
version 5.0, we will extend the combination of the publish–subscribe model and request–
response patterns so that the response message can contain additional information. Fur-
thermore, we will improve E-MQTT such that it can improve the other QoS levels 0 and 1
of MQTT in the request–response pattern communication.

Author Contributions: Conceptualization, M.L.; methodology, M.L. and Y.I.; software, Y.I. and
M.L.; validation, Y.I. and M.L.; formal analysis, Y.I.; investigation, Y.I. and M.L.; resources, M.L.;
data curation, Y.I.; writing—original draft preparation, Y.I.; writing—review and editing, M.L.; vis-
ualization, Y.I.; supervision, M.L.; project administration, M.L.; funding acquisition, M.L. All au-
thors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2021R1F1A1047032).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to private experimental environment.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 18. Comparison of battery usage of publisher results.

6. Conclusions

In this paper, we proposed E-MQTT, a novel mechanism addressing the end-to-end
communication problem inherent in MQTT. From the experimental results, although E-
MQTT has a slightly larger packet size than MQTT, its distinctive response simplification
strategy and reduced number of exchanged packets contributed to shorter end-to-end
delay and less energy consumption. The advantages gained from these performance
improvements far outweigh the minor difference in packet size.

The current E-MQTT still has limitations and needs to improve further. Firstly, we de-
veloped E-MQTT based on MQTT version 3.1.1, which is not the most recent one. Secondly,
although we combined the publish–subscribe model with the request–response pattern,
the response message is just a simple acknowledgement without carrying additional infor-
mation. Lastly, E-MQTT is an improvement of MQTT QoS 2 but not the other QoS levels
(0 and 1). As future research, we plan to resolve the current limitations of E-MQTT. We
will redesign E-MQTT according to the specifications of MQTT version 5.0, which is the
latest one to accommodate new features. Using the new features of MQTT version 5.0, we
will extend the combination of the publish–subscribe model and request–response patterns
so that the response message can contain additional information. Furthermore, we will
improve E-MQTT such that it can improve the other QoS levels 0 and 1 of MQTT in the
request–response pattern communication.

Author Contributions: Conceptualization, M.L.; methodology, M.L. and Y.I.; software, Y.I. and
M.L.; validation, Y.I. and M.L.; formal analysis, Y.I.; investigation, Y.I. and M.L.; resources, M.L.;
data curation, Y.I.; writing—original draft preparation, Y.I.; writing—review and editing, M.L.;
visualization, Y.I.; supervision, M.L.; project administration, M.L.; funding acquisition, M.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. NRF-2021R1F1A1047032).

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2023, 13, 12419 22 of 24

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to private experimental environment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. ISO/IEC 20922: 2016; MQTT Version 3.1.1. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/69

466.html (accessed on 31 July 2023).
2. Hunkeler, U.; Truong, H.L. MQTT-S—A Publish/Subscribe Protocol for Wireless Sensor Networks. In Proceedings of the Interna-

tional Conference on Communication Systems Software and Middleware and Workshops, Bangalore, India, 6–10 January 2008.
[CrossRef]

3. Kodali, R.K.; Soratkal, S. MQTT Based Home Automation System Using ESP8266. In Proceedings of the IEEE Region 10
Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016. [CrossRef]

4. Bryce, R.; Shaw, T.; Srivastava, G. MQTT-G: A Publish/Subscribe Protocol with Geolocation. In Proceedings of the International
Conference on Telecommunications and Signal Processing, Athens, Greece, 4–6 July 2018. [CrossRef]

5. Chooruang, K.; Mangkalakeeree, P. Wireless Heart Rate Monitoring System Using MQTT. Procedia Comput. Sci. 2016, 86, 160–163.
[CrossRef]

6. Grgić, K.; Špeh, I.; Hed̄i, I. A Web-Based IoT Solution for Monitoring Data Using MQTT Protocol. In Proceedings of the
International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 12–14 October 2016.

7. Zhou, J.; De Roure, D. Floodnet: Coupling Adaptive Sampling with Energy Aware Routing in a Flood Warning System. J. Comput.
Sci. Technol. 2007, 22, 121–130. [CrossRef]

8. De Roure, D.; Hutton, C.; Cruickshank, D.; Kuan, E.L.; Neal, J.; Roddis, R.; Stanford-Clark, A.; Vivekanandan, S.; Zhou, J. Floodnet–
Improving Flood Warning Times Using Pervasive and Grid Computing. 2005. Available online: https://www.researchgate.net/
publication/238669079_FloodNet_-_Improving_Flood_Warning_Times_using_Pervasive_and_Grid_Computing (accessed on 14
November 2023).

9. Mishra, T.; Garg, D.; Madhav, G. A Publish/Subscribe Communication Infrastructure for VANET Applications. In Proceedings of
the IEEE Workshop of International Conference on Advanced Information Networking and Applications, Biopolis, Singapore,
22–25 March 2011. [CrossRef]

10. Nunes, P.; Nicolau, C.; Santos, J.P.; Completo, A. From a Traditional Bicycle to a Mobile Sensor in the Cities. In Proceedings of the
6th International Conference on Vehicle Technology and Intelligent Transport Systems, Online, 2–4 May 2020. [CrossRef]

11. Chodorek, A.; Chodorek, R.R.; Sitek, P. UAV-Based and WebRTC-Based Open Universal Framework to Monitor Urban and
Industrial Areas. Sensors 2021, 21, 4061. [CrossRef] [PubMed]

12. Shinde, S.A.; Nimkar, P.A.; Singh, S.P.; Salpe, V.D.; Jadhav, Y.R. MQTT—Message Queuing Telemetry Transport Protocol. Int. J.
Res. 2016, 3, 240–244.

13. Soni, D.; Makwana, A. A Survey on MQTT: A Protocol of Internet of Things (IoT). In Proceedings of the International Conference
on Telecommunication, Power Analysis and Computing Techniques, Chennai, India, 6–8 April 2017.

14. Kim, S.J.; Oh, C.H. Method for Message Processing According to Priority in MQTT Broker. J. Korea Inst. Inf. Commun. Eng. 2017,
21, 1320–1326. [CrossRef]

15. Ali, J.; Zafar, M.H.; Hewage, C.; Hassan, R.; Asif, R. Mathematical Modeling and Validation of Retransmission-Based Mutant
MQTT for Improving Quality of Service in Developing Smart Cities. Sensors 2022, 22, 9751. [CrossRef]

16. Palmese, F.; Redondi, A.E.C.; Cesana, M. Adaptive Quality of Service Control for MQTT-SN. Sensors 2022, 22, 8852. [CrossRef]
17. Singh, M.; Rajan, M.A.; Shivraj, V.L.; Balamuralidhar, P. Secure MQTT for Internet of Things (IoT). In Proceedings of the Fifth

International Conference on Communication Systems and Network Technologies, Gwalior, India, 4–6 April 2015.
18. Chandramouli, B.; Yang, J. End-to-End Support for Joins in Large-Scale Publish/Subscribe Systems. Proc. VLDB Endow. 2008, 1,

434–450. [CrossRef]
19. Pallickara, S.; Pierce, M.; Gadgil, H.; Fox, G.; Yan, Y.; Huang, Y. A Framework for Secure End-to-End Delivery of Messages in

Publish/Subscribe Systems. In Proceedings of the 7th IEEE/ACM International Conference on Grid Computing, Barcelona,
Spain, 28–29 September 2006. [CrossRef]

20. Zhang, H.; Zhang, H.; Wang, Z.; Zhou, Z.; Wang, Q.; Xu, G.; Yang, J.; Gan, Z. Delay-Reliability-Aware Protocol Adaption and
Quality of Service Guarantee for Message Queuing Telemetry Transport-Empowered Electric Internet of Things. Int. J. Distrib.
Sens. Netw. 2022, 18, 1–11. [CrossRef]

21. Rocha, H.d.; Monteiro, T.L.; Pellenz, M.E.; Penna, M.C.; Alves Junior, J. An MQTT-SN-based QoS Dynamic Adaptation Method
for Wireless Sensor Networks. In Proceedings of the International Conference on Advanced Information Networking and
Applications, Matsue, Japan, 27–29 March 2019. [CrossRef]

22. Alshammari, H.H. The Internet of Things Healthcare Monitoring System Based on MQTT Protocol. Alex. Eng. J. 2023, 69, 275–287.
[CrossRef]

https://www.iso.org/standard/69466.html
https://www.iso.org/standard/69466.html
https://doi.org/10.1109/COMSWA.2008.4554519
https://doi.org/10.1109/R10-HTC.2016.7906845
https://doi.org/10.1109/TSP.2018.8441479
https://doi.org/10.1016/j.procs.2016.05.045
https://doi.org/10.1007/s11390-007-9017-7
https://www.researchgate.net/publication/238669079_FloodNet_-_Improving_Flood_Warning_Times_using_Pervasive_and_Grid_Computing
https://www.researchgate.net/publication/238669079_FloodNet_-_Improving_Flood_Warning_Times_using_Pervasive_and_Grid_Computing
https://doi.org/10.1109/WAINA.2011.87
https://doi.org/10.5220/0009349700810088
https://doi.org/10.3390/s21124061
https://www.ncbi.nlm.nih.gov/pubmed/34204805
https://doi.org/10.6109/JKIICE.2017.21.7.1320
https://doi.org/10.3390/s22249751
https://doi.org/10.3390/s22228852
https://doi.org/10.14778/1453856.1453905
https://doi.org/10.1109/ICGRID.2006.311018
https://doi.org/10.1177/15501329221097815
https://doi.org/10.1007/978-3-030-15032-7_58
https://doi.org/10.1016/j.aej.2023.01.065

Appl. Sci. 2023, 13, 12419 23 of 24

23. Thangavel, D.; Ma, X.; Valera, A.; Tan, H.X.; Tan, C.K.Y. Performance Evaluation of MQTT and CoAP via a Common Middleware.
In Proceedings of the IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing,
Singapore, 21–24 April 2014. [CrossRef]

24. Naik, N. Choice of Effective Messaging Protocols for IoT Systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the IEEE
International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017. [CrossRef]

25. Collina, M.; Corazza, G.E.; Vanelli-Coralli, A. Introducing the QEST Broker: Scaling the IoT by Bridging MQTT and REST. In
Proceedings of the IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sydney,
NSW, Australia, 9–12 September 2012.

26. Silva, D.; Carvalho, L.I.; Soares, J.; Sofia, R.C. A Performance Analysis of Internet of Things Networking Protocols: Evaluating
MQTT, CoAP, OPC UA. Appl. Sci. 2021, 11, 4879. [CrossRef]

27. Uy, N.Q.; Nam, V.H. A Comparison of AMQP and MQTT Protocols for Internet of Things. In Proceedings of the 2019 6th
NAFOSTED Conference on Information and Computer Science (NICS), Hanoi, Vietnam, 12–13 December 2019. [CrossRef]

28. Gemirter, C.B.; Senturca, Ç.; Baydere, Ş. A Comparative Evaluation of AMQP, MQTT and HTTP Protocols Using Real-Time
Public Smart City Data. In Proceedings of the 2021 6th International Conference on Computer Science and Engineering (UBMK),
Ankara, Turkey, 15–17 September 2021. [CrossRef]

29. Naik, G.; Bapat, A. A Brief Comparative Analysis on Application Layer Protocols of Internet of Things: MQTT, CoAP, AMQP and
HTTP. Int. J. Comput. Sci. Mob. Computing. 2020, 9, 135–141. [CrossRef]

30. Palmese, F.; Longo, E.; Redondi, A.E.; Cesana, M. CoAP vs. MQTT-SN: Comparison and Performance Evaluation in Publish-
Subscribe Environments. In Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA,
USA, 14 June–31 July 2021. [CrossRef]

31. Eclipse Paho Project. Available online: https://www.eclipse.org/paho/ (accessed on 31 July 2023).
32. Advanced Message Queuing Protocol (AMQP). Available online: https://www.amqp.org (accessed on 31 July 2023).
33. RabbitMQ. Available online: https://www.rabbitmq.com (accessed on 31 July 2023).
34. Apache Kafka. Available online: https://kafka.apache.org (accessed on 31 July 2023).
35. Sen, S.; Balasubramanian, A. A Highly Resilient and Scalable Broker Architecture for IoT Applications. In Proceedings of the 10th

International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 3–7 January 2018. [CrossRef]
36. Bagaskara, A.E.; Setyorini, S.; Wardana, A.A. Performance Analysis of Message Broker for Communication in Fog Computing. In

Proceedings of the 12th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta,
Indonesia, 6–8 October 2020. [CrossRef]

37. Pratama, H.P.; Prihatmanto, A.S.; Sukoco, A. Implementation Messaging Broker Middleware for Architecture of Public Trans-
portation Monitoring System. In Proceedings of the 6th International Conference on Interactive Digital Media (ICIDM), Bandung,
Indonesia, 14–15 December 2020. [CrossRef]

38. Shafabakhsh, B.; Lagerström, R.; Hacks, S. Evaluating the Impact of Inter Process Communication in Microservice Architectures.
In Proceedings of the 8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020), Singapore, 1
December 2020.

39. Jaloudi, S. Communication Protocols of an Industrial Internet of Things Environment: A Comparative Study. Future Internet 2019,
11, 66. [CrossRef]

40. Kul, S.; Tashiev, I.; Şentaş, A.; Sayar, A. Event-Based Microservices with Apache Kafka Streams: A Real-Time Vehicle Detection
System Based on Type, Color, and Speed Attributes. IEEE Access 2021, 9, 83137–83148. [CrossRef]

41. Hamad, M.; Finkenzeller, A.; Liu, H.; Lauinger, J.; Prevelakis, V.; Steinhorst, S. SEEMQTT: Secure End-to-End MQTT-Based
Communication for Mobile IoT Systems Using Secret Sharing and Trust Delegation. IEEE Internet Things J. 2022, 10, 3384–3406.
[CrossRef]

42. Park, C.; Nam, H. Security Architecture and Protocols for Secure MQTT-SN. IEEE Access 2020, 8, 226422–226436. [CrossRef]
43. Spina, M.G.; De Rango, F.; Marotta, G.M. Lightweight Dynamic Topic-Centric End-to-End Security Mechanism for MQTT. In

Proceedings of the IEEE/ACM 25th International Symposium on Distributed Simulation and Real Time Applications, Valencia,
Spain, 27–29 September 2021. [CrossRef]

44. Winarno, A.; Sari, R.F. A Novel Secure End-to-End IoT Communication Scheme Using Lightweight Cryptography Based on Block
Cipher. Appl. Sci. 2022, 12, 8817. [CrossRef]

45. Chien, H.Y.; Wang, N.Z. A Novel MQTT 5.0-Based Over-the-Air Updating Architecture Facilitating Stronger Security. Electronics
2022, 11, 3899. [CrossRef]

46. Bashir, A.; Mir, A.H. Lightweight Secure MQTT for Mobility Enabled e-health Internet of Things. Int. Arab. J. Inf. Technol. 2021,
18, 773–781. [CrossRef]

47. Govindan, K.; Azad, A.P. End-to-End Service Assurance in IoT MQTT-SN. In Proceedings of the 12th Annual IEEE Consumer
Communications and Networking Conference, Las Vegas, NV, USA, 9–12 January 2015. [CrossRef]

48. D’Ortona, C.; Tarchi, D.; Raffaelli, C. Open-Source MQTT-Based End-to-End IoT System for Smart City Scenarios. Future Internet
2022, 14, 57. [CrossRef]

49. Ali, J.; Zafar, M.H. Improved End-to-End Service Assurance and Mathematical Modeling of Message Queuing Telemetry Transport
Protocol Based Massively Deployed Fully Functional Devices in Smart Cities. Alex. Eng. J. 2023, 72, 657–672. [CrossRef]

https://doi.org/10.1109/ISSNIP.2014.6827678
https://doi.org/10.1109/SysEng.2017.8088251
https://doi.org/10.3390/app11114879
https://doi.org/10.1109/NICS48868.2019.9023812
https://doi.org/10.1109/UBMK52708.2021.9559032
https://doi.org/10.47760/IJCSMC.2020.v09i09.014
https://doi.org/10.1109/WF-IoT51360.2021.9595725
https://www.eclipse.org/paho/
https://www.amqp.org
https://www.rabbitmq.com
https://kafka.apache.org
https://doi.org/10.1109/COMSNETS.2018.8328216
https://doi.org/10.1109/ICITEE49829.2020.9271733
https://doi.org/10.1109/ICIDM51048.2020.9339673
https://doi.org/10.3390/fi11030066
https://doi.org/10.1109/ACCESS.2021.3085736
https://doi.org/10.1109/JIOT.2022.3221857
https://doi.org/10.1109/ACCESS.2020.3045441
https://doi.org/10.1109/DS-RT52167.2021.9576144
https://doi.org/10.3390/app12178817
https://doi.org/10.3390/electronics11233899
https://doi.org/10.34028/iajit/18/6/4
https://doi.org/10.1109/CCNC.2015.7157991
https://doi.org/10.3390/fi14020057
https://doi.org/10.1016/j.aej.2023.04.014

Appl. Sci. 2023, 13, 12419 24 of 24

50. Jo, H.C.; Jin, H.W.; Kim, J. Self-Adaptive End-to-End Resource Management for Real-Time Monitoring in Cyber-Physical Systems.
Comput. Netw. 2023, 225, 109669. [CrossRef]

51. Tanenbaum, A.S.; Steen, M.V. Distributed Systems: Principles and Paradigms, 2nd ed.; Pearson Prentice Hall: Old Bridge, NJ, USA,
2007; pp. 35–37+303.

52. Lee, S.; Kim, H.; Hong, D.K.; Ju, H. Correlation Analysis of MQTT Loss and Delay According to QoS Level. In Proceedings of the
International Conference on Information Networking, Bangkok, Thailand, 28–30 January 2013. [CrossRef]

53. Banks, A.; Briggs, E.; Borgendale, K.; Gupta, R. MQTT Version 5.0. OASIS Standard. Available online: https://docs.oasis-open.
org/mqtt/mqtt/v5.0/mqtt-v5.0.html (accessed on 7 November 2023).

54. Gomes, Y.F.; Santos, D.F.; Almeida, H.O.; Perkusich, A. Integrating MQTT and ISO/IEEE 11073 for Health Information Sharing in
the Internet of Things. In Proceedings of the IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 9–12
January 2015. [CrossRef]

55. Lim, M. Directly and Indirectly Synchronous Communication Mechanisms for Client-Server Systems Using Event Based
Asynchronous Communication Framework. IEEE Access 2019, 7, 81969–81982. [CrossRef]

56. Roy, D.G.; Mahato, B.; De, D.; Buyya, R. Application-Aware End-to-End Delay and Message Loss Estimation in Internet of Things
(IoT)—MQTT-SN protocols. Future Gener. Comput. Syst. 2018, 89, 300–316. [CrossRef]

57. Longo, E.; Redondi, A.E.C.; Cesana, M.; Manzoni, P. BORDER: A Benchmarking Framework for Distributed MQTT Brokers. IEEE
Internet Things J. 2022, 9, 17728–17740. [CrossRef]

58. Ferraz, N.; Silva, A.A.A.; Guelfi, A.E.; Kofuji, S.T. Performance Evaluation of Publish-Subscribe Systems in IoT Using Energy-
Efficient and Context-Aware Secure Messages. J. Cloud Comput. 2022, 11, 6. [CrossRef] [PubMed]

59. Mishra, B.; Mishra, B.; Kertesz, A. Stress-Testing MQTT Brokers: A Comparative Analysis of Performance Measurements. Energies
2021, 14, 5817. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.comnet.2023.109669
https://doi.org/10.1109/ICOIN.2013.6496715
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://doi.org/10.1109/ICCE.2015.7066380
https://doi.org/10.1109/ACCESS.2019.2924497
https://doi.org/10.1016/j.future.2018.06.040
https://doi.org/10.1109/JIOT.2022.3155872
https://doi.org/10.1186/s13677-022-00278-6
https://www.ncbi.nlm.nih.gov/pubmed/35127310
https://doi.org/10.3390/en14185817

	Introduction
	Related Works
	MQTT
	Applications of MQTT
	Improvement of MQTT
	Comparison between MQTT and Other Protocols
	Synchronous and Asynchronous Communication
	End-to-End Services of MQTT

	E-MQTT
	End-to-End Communication Problem of MQTT
	Overview of End-to-End Communication Methods
	Packet Format
	Detailed Process of End-to-End Communication

	Implementation
	Experimental Results
	Experimental Environments
	End-to-End Delay
	Publish–Completion Delay
	Broker–Subscriber Delay
	Packet Size
	Energy Consumption

	Conclusions
	References

