
Citation: Coufal, O. One Hundred

and Fifty Years of Skin Effect. Appl.

Sci. 2023, 13, 12416. https://doi.org/

10.3390/app132212416

Academic Editors: Andreas Sumper

and Salvador G. Garcia

Received: 9 October 2023

Revised: 8 November 2023

Accepted: 10 November 2023

Published: 16 November 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

One Hundred and Fifty Years of Skin Effect
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Abstract: In 1873, J.C. Maxwell derived relations for current density and current in a solitary long
cylindrical conductor supplied with variable current. According to Maxwell, the current density
in a conductor increases towards the conductor surface. This phenomenon is called the skin effect.
The skin effect affects in particular the inductance of a line formed by one or several long parallel
conductors. A number of papers have been published regarding the skin effect and its effect on
inductance. Another phenomenon, closely related to the skin effect, is the proximity effect, which
refers to the dependence of the current density in a conductor on the proximity of other conductors
through which a time-variable current is flowing. Many published papers deal with the calculation
of current density in two conductors, using the method for calculating current density in a solitary
conductor. All the phenomena given above can be analysed and quantitatively described based on the
knowledge of current density in conductors, and therefore the method for calculating current density
in a group of conductors is of fundamental significance. It follows from the analysis performed that
the skin effect is not a general characteristic of current density in long conductors, except for in the
solitary conductor. This conclusion affects the knowledge of the phenomena associated with the
skin effect.

Keywords: transmission line; skin effect; proximity effect; self-inductance; induced voltage;
equivalent circuit

1. Introduction

Current density in a conductor through which variable current passes increases
towards the conductor surface. This phenomenon is called the skin effect. The skin
effect is inextricably linked with current density. It is therefore strange that the existence of
this phenomenon is generally assumed, even though an exact method for the calculation of
current density was until recently known only for the infinitely long solitary conductor of
circular cross section with constant resistivity. The aim of the present paper is an analysis
of current density in long parallel conductors of arbitrary cross section with respect to the
skin effect and other related phenomena. The starting point of the analysis has been the
recently proposed accurate method for the calculation of current density in the conductors
under investigation.

In 1873, J.C. Maxwell published the book “A Treatise on Electricity and Magnetism” [1].
The book is in two volumes and divided into articles; it was published in three editions [1–3].
The next editions, for example [4], are unabridged republications of the third edition [3].
Articles 689 and 690 in [1–3] deal with the calculation of current density and current in a
solitary straight infinitely long conductor of circular cross section supplied with variable
current. According to Maxwell, the amplitude of the current density of alternating current
(of non-zero frequency) passing through a conductor increases towards the surface of the
conductor. This phenomenon is called the skin effect.

The term skin effect is not used in [1–3]; it was probably introduced later. For example,
according to [5], Horace Lamb published a paper in 1883 [6] which dealt with the motions
of electricity produced in a spherical conductor by any electric or magnetic operations
outside it, which was later to be known as the skin effect [5]. J.J. Thomson, who prepared the
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third edition of Maxwell’s book, added in the form of a footnote a derivation of the formula
for calculating the inductance of a cylindrical conductor supplied with sinusoidal current.
As part of this derivation, he also obtained a relation for the dependence of conductor
resistance on the frequency of the supply current.

Another phenomenon closely related to the skin effect is the proximity effect, which
refers to the dependence of current density in the conductor on the proximity of further
conductors through which a time-varying current flows. Many published papers deal with
the approximate calculation of current density in two conductors using the method for
calculating current density in a solitary conductor. What is addressed in papers on the
calculation of current density in two conductors is usually the skin effect, the proximity
effect and the dependence of resistance on frequency, and their effect on self-inductance.
Since the publication of the book [1], a plethora of articles and parts of books have been
published that deal with the subject matter of the present review. In [7], published in 1959,
the list of references contains 454 items, and one recent item is [8]. Thus, it is not possible to
evaluate all the relevant papers.

All the phenomena given above can be analysed and quantitatively described based on
the knowledge of current density in conductors, and therefore the method for calculating
current density in a group of conductors is of fundamental significance. An accurate
method for calculating current density in conductors forming a group has only recently
been published [9–12]. The subject of investigation in [9–12] is a physical and mathematical
model of a task referred to as the basic task.

The basic task is the calculation of the current density Jbas(x, y, z), in a group of
conductors that do not move and have the following properties;

• Each of them has a long part parallel to the axis z in the coordinate system xyz;
• their cross section is arbitrary but does not change along the long part;
• some are connected at the end to a voltage or current source;
• some are connected at the end to other conductors in the group;
• the permeability of the conductors and their surroundings equals the vacuum

permeability, µ0;
• they are placed in a magnetic field produced by a number of conductors that belong

to the group or by an external source.

Solving the basic task is trivial if the magnetic field in which the conductors are placed
does not change with time. In the case of a magnetic field varying with time, the solving
of the basic task is problematic if some parts of the conductors are not parallel to z. In the
physical model of the basic task it is assumed that

• the conductors in the group have only a long part, which is infinitely long, and each
conductor is therefore determined by its cross section;

• the conductor resistivity, $, is given and only depends on x and y;
• the phenomena are quasi-stationary, i.e., the propagation speed of current and magnetic

field is infinitely high;
• the displacement current and leakage current between conductors are neglected.

The physical model is based, in the first place, on Faraday’s law of electromagnetic
induction and is an application of the Biot and Savart law, loop current method, Kirchhoff’s
voltage law, and Ohm’s law. Applying these laws to a finite segment of conductors yields a
system of equations whose solution is a current density whose nonzero component is only
the z-component:

J(x, y) = 〈0, 0, J(x, y)〉.
In the mathematical model, the conductor cross sections are approximated by the

a(N, d) aggregate of disjunct rectangles Ai,

a(N, d) =
N⋃

i=1

Ai,
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in which only the resistivity, $i, and the current density, Ji, have constant values, and

d = max
i=1,2,...,N

di,

where di is the length of the diagonal of rectangle Ai. The mathematical model is a system
of N ordinary differential equations of the first order [9–12]. A detailed description of the
physical and mathematical models is given in [9–12], together with the solution to specific
cases. An exact solution to the mathematical model is the set

Jmat = {J1, J2, . . . , JN}. (1)

Jmat can also be considered a piecewise constant function, Jmat = Jmat(x, y, d), defined in
the plane xy:

Jmat(x, y, d) =
{

0 for (x, y) /∈ a(N, d)
Ji for (x, y) ∈ Ai.

(2)

It holds that
lim
d→0

Jmat(x, y, d) = J(x, y).

This means that Jmat can approximate the solution J(x, y) of the physical model, theoretically
with an arbitrary accuracy. In practice, the accuracy is limited by the level of the calculation
means used. For a sufficiently small d, Jmat(x, y, d) is an accurate solution to the physical
model and can be considered a solution to the basic task. The method for the calculation
of the current density is numerical. In the calculation, the number of rectangles that
approximate the cross sections of conductors is approximately 10,000. The accuracy of the
calculation is assessed via comparing the results for different values of d.

Part of the calculation of current density in conductors is the calculation of independent
magnetic fluxes. The determination of independent fluxes is described in [9–12]. If in the
calculation of current density in a solitary conductor or in a loop formed by two conductors
the conductor cross sections are symmetrical and the values of conductor resistivity are also
symmetrical, the determination of independent fluxes is simple if symmetry is used [13–21].

2. Solitary Conductor Concept

In ref. [1], Art. 689 and 690, Maxwell proposed a method for the calculation of current
density, Jsol, in a solitary long cylindrical conductor. In the following analysis of Maxwell’s
result, the quantities are denoted by currently used symbols. In ref. [1], Jsol is the solution
to a differential equation; it depends on the distance, r, from the conductor axis and on t,

Jsol(r, t) = − µ0

4πρ

∞

∑
k=0

[
µ0 r2

4ρ

]k i(k+1)(t)
(k !)2 , (3)

where

i(t) = i(0)(t), i(k+1)(t) =
dk+1

dtk+1 i(t). (4)

i(t) is the given function and, according to (19) in [22], it holds that

Jsol(0, t) =
µ0

4π$
i(1)(t). (5)

If the function i(t) is sinusoidal, then the function Jsol is also sinusoidal,

Jsol(r, t) = Ĵsol(r) sin[ωt + ε(r)], ω = 2π f ,
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and its phasor, Jsol, is a solution to the equation

d2 Jsol
dr2 +

1
r

dJsol
dr
− jκ2 Jsol = 0, κ2 =

ωµ0

$
, (6)

which has been derived, for example, in ref. [16].
Using Maxwell’s equations in differential form, an equation can be derived for the

solitary conductor with an arbitrary cross section, which is satisfied by current density over
the cross section of a long conductor,

∇2 J − µ0 γ
∂J
∂t

= 0, (7)

where γ is the electric conductivity of the conductor. Expressing current density in (7) via
the vector potential, A, will yield an equation that is similar to (7).

The solution to Equation (6) can be expressed using the Bessel or the Kelvin
functions [23], Art. 16.4. Since the publication of [1], a number of methods have been
published based on the solitary conductor concept; some of the recent ones are, for
example, [24–28].

Example 1. Cylindrical Al conductor ($ = 2.650× 10−8 Ω·m at 20 ◦C [29]), whose axis is the
axis z and the cross section radius r1 = 6 mm. The function i(t) has been chosen such that it holds
that Jsol(0, t) = î sin ωt, where î = 1 A·m−2.

The solution to Equation (6) in Example 1 is given in Figure 1.

1

102

104
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108

0 1 2 3 4 5 6
−200

−100

0

100

200

r (mm)

Ĵsol (10
8 A·m−2) ε (◦)

f = 105 Hz

104 Hz

103 Hz

ε

ε

ε

Figure 1. Solution to Equation (6) in Example 1. Dependence of amplitude, Ĵsol, on the distance,
r, from the conductor axis for f = 103, 104, and 105 Hz; dependence of initial phase, ε, on r for
f = 103 Hz (red line) and for f = 104 Hz (blue lines).

The curve ε(r) for f = 104 Hz in Figure 1 has two parts and is discontinuous. It is only
a seeming discontinuity since ε is modified such that ε ∈ (−π, π], which is possible because
the period of the function sin is 2π; ε(r) is continuous for f = 103 Hz. The number of
seeming discontinuities of ε(r) increases with increasing f . The function Ĵsol(r) is increasing
(monotonous) in contrast to the function Jsol(r), which is not monotonous, and for the
discontinuous function ε(r) it is oscillating. This property of current density is not limited
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to the solitary conductor of circular cross section; it also occurs, for example, with the loop
formed by two conductors of rectangular cross section. If the surface of the conductors
is parallel with the planes xy and xz, then the current density, J(x, y), may oscillate for
y = const, as can be seen in Figure 3 in ref. [21].

The amplitude, Ĵsol, is the largest on the conductor surface, r = r1, and it decreases
with deceasing r; for r = r1 − δ, its value for high frequencies is e-times smaller than on the
conductor surface, where δ is the so-called penetration depth [30]:

δ =

√
2$

ωµ0
. (8)

Related to sinusoidal current density in a solitary conductor is the technical term skin
effect, which should characterize current density in conductors. According to ref. [31],
item 121-13-18, “Skin effect is a phenomenon in which the current density is greater near
the surface than in the interior of the conductor for an alternating electric current in the
conductor”. In the literature are further definitions, which are either similar to the definition
in ref. [31] or they define the skin effect as a phenomenon in which most of the current in
the conductor flows through a thin layer near the conductor surface. In all the definitions,
only the word ‘conductor’ is given, although all the definitions were proposed in analyses
of the current density in a ‘solitary cylindrical conductor’. Examples are given below that
raise doubts as to the given skin effect definitions.

Figure 2 gives the current density Jsol = Jsol(r, t) in Example 1 at five instants, t = θT,
where θ = 0, 0.3, 0.4, 0.5, and T = 1/ f , f = 104 Hz.
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−50

0

50

100

150

200

3 3.5 4 4.5 5 5.5 6
r (mm)

Jsol (A·m−2)

•
δ

δ
•

θ = 0.5

0.4

0.3

0

Ĵsol

Figure 2. Dependence of instantaneous current density on r for t = θT; θ = 0, 0.3, 0.4, and 0.5,
in Example 1. The amplitude, Ĵsol, is indicated by the red line and the quantity, δ, is determined by
Formula (8). For r ∈ [0, 3)mm, the current density magnitude is smaller than 6.943 A·m−2.

It follows from Figure 2 that for a solitary cylindrical conductor the conductor surface
exhibits the maximum Ĵsol but not always the maximum current density. For a solitary
conductor of rectangular shape, the situation is similar.

Example 2. Solitary Al conductor ($ = 2.650× 10−8 Ω·m at 20 ◦C [29]) with the rectangle cross
section [0, 10]mm × [0, 16]mm. The current through the conductor is

Irec(t) = Îrec sin ωt, where Îrec = 1 A, f = 104 Hz.
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This example is given, inter alia, because the current density,

Jrec(x, y, t) = Ĵrec(x, y) sin[ωt + εrec(x, y)],

in a solitary rectangular conductor has not been calculated using the method proposed
by Maxwell nor by methods derived from his method. The reason for this is ignorance of
the initial and boundary conditions necessary for the solution of the respective differential
equation. Figure 3 provides the dependence of the amplitude, Ĵrec, on x for several values
of y in Example 2. The values of Ĵrec were obtained by a method published in refs. [9–12],
and in Figure 3 they are only given in one quarter of the conductor cross section because
not only the amplitude but also the initial current density phase are symmetrical along the
symmetry axes of the cross section x = 5 mm and y = 8 mm.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5
•
δ

•
δ

x (mm)

Ĵrec (104A·m−2)

y = 0.1mm

0.5

1.1

1.9

8

Figure 3. Dependence of the current density amplitude on x and y in Example 2 in a quarter of the
conductor cross section; δ is defined by (8).

Figure 4 gives the current density in a quarter of the rectangular cross section of a
solitary conductor at the instant t = 0.39 T in Example 2.

For a solitary tubular conductor with internal non-zero radius and constant resistivity,
the skin effect obviously does not occur. Ĵsol is maximal and minimal near the outer and
the inner surface, respectively; see Figures 2, 4, and 6 in ref. [16] and Figure 3 in ref. [17].
The skin effect is associated in practice not only with solitary conductors but also with two
conductors, although in its definition (item 121-13-18 in ref. [31]) there is only ‘conductor‘.
It does not occur in the loop formed by two coaxial tubular conductors; see Figures 3, 5,
and 7 in ref. [13] and Figures 4, 5, and 6 in ref. [17]. In some cases, it does not occur even in
the loop formed by two parallel conductors; see Figures 10 and 11 in ref. [18].
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Figure 4. Instantaneous current density, Jrec(x, y, t), for t = 0.39 T in Example 2.

3. Solitary Conductor versus Reality

Significant for practice are the theoretical models that are the most faithful image of
reality. An infinitely long cylindrical conductor through which steady sinusoidal current
flows is the basis of the solitary conductor concept. A conductor connected to the ideal
current source can be considered solitary [32]. The ideal current source cannot be realized
because, on a finite segment of the conductor, it produces an infinitely large voltage, but in
spite of this a finite voltage is assumed in ref. [1], Art. 690. J.J. Thomson, who prepared the
third edition [3] of [1], added in the form of a footnote a derivation of the formula for the
calculation of inductance of a solitary conductor and the dependence of effective resistance
on the frequency of the sinusoidal source the examined conductor is connected to. The skin
effect is defined for the solitary conductor. Questioning the existence of solitary conductor
also means questioning the skin effect.

Closest to the cylindrical conductor is in fact a pair of coaxial conductors connected to
a source. The relation between current density in a solitary cylindrical conductor and in a
pair of coaxial conductors is demonstrated in the following example.

Example 3. A pair of coaxial conductors at a temperature of 25 ◦C, whose axis is the axis z,
is formed by an inner cylindrical Cu conductor: cross section radius r1 = 10 mm, resistivity
$1 = 1.712× 10−8 Ω·m [29], and by an outer tubular Al conductor: inner radius r2 = 11 mm,
resistivity $1 = 2.709× 10−8 Ω·m [29], wall thickness ∆r. A source of steady sinusoidal voltage
with f = 103 Hz causes the drop V̂ sin ωt, where V̂ = 1 V·m−1.

The steady current density in coaxial conductors,

Jcoa(r, t) = Ĵcoa(r) sin[ωt + εcoa(r)],

is symmetrical with respect to the axis z; for the given parameters r1, r2, ∆r, $1, $2, f , it only
depends on the distance, r, from the axis z and on t, and is directly proportional to the
voltage drop on a segment of both conductors. According to refs. [13,18,22], it holds for a
given voltage drop:

lim
r2→∞

Ĵcoa(r) = 0, for all r. (9)
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It should be noted that (9) holds for the quasi-stationary state, which is assumed in
the present review ( see Section 1), but assuming the quasi-stationary state is not adequate
for a large r2. According to ref. [33], the assumption of the quasi-stationary state is only
adequate when the maximum dimension `max of the system in the plane xy is much smaller
than the free space wavelength, i.e.,

`max � c/ f , where c is the speed of light. (10)

If the maximum magnitudes of r1 and ∆r are several centimetres, then the inequality, (10)
corresponds to the inequality r2 � c/ f .

In Figure 5, the function Ĵcoa(r) in Example 3 is illustrated for three values of ∆r. The method
for calculating current density in two coaxial conductors was described in refs. [9,12–15]. In
Example 3, r2 = 0.02c/ f was chosen, i.e., r2 = 6000 m, in agreement with (10). It
was established by calculation that for ∆r = 5 mm and for all r, Ĵcoa is smaller than
6.73 × 105 A·m−2 and 1.13 × 103 A·m−2 in the inner and outer conductor, respectively.
The maximum value of Ĵcoa for r2 = 6000 m is only 3 % of the maximum value of Ĵcoa
for r2 = 11 mm.

0
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15

20

25

30

0 2 4 6 8 10 12 14 16

r (mm)

Ĵcoa (MA·m−2)

∆r = 5mm

3

3

1

1 5

Figure 5. Dependence of amplitude, Ĵcoa, on r in Example 3, for three values of ∆r.

From the above, it follows that a solitary conductor connected to the ideal current
source cannot be implemented. The inner conductor in a pair of coaxial conductors cannot
be considered a solitary conductor either if the outer conductor is far from the inner
conductor. The author of ref. [34] is of the opposite opinion when he says:“. . . the solitary
conductor is a realizable abstraction. A solitary conductor is one where the radially varying
inner electric and magnetic fields do not suffer any azimuthal variations, since no other
neighbouring conductor exists. However, in a centred coaxial cable of long length, the shield
conductor has no influence on the inner cylindrical conductor. . . ”. The author of ref. [34]
does not say what effect on the inner conductor is concerned. If a magnetic field is concerned
that is produced by coaxial conductors supplied by a dc source, then the author of ref. [34]
is absolutely right. However, the subject of this review is the effect of the magnetic field
produced by a source varying with time. Current density in conductors is a superposition
of a source-driven current density and the density of eddy currents [12,14,15]. The eddy
currents are determined by magnetic fluxes produced by the two conductors. The effect of
the outer conductor on Ĵcoa in the inner conductor in Example 3 can be seen in Figure 5. It
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is difficult to imagine calculating current density in conductors that are not of circular cross
section using the current density in a cylindrical conductor.

Current density in a conductor is connected with the vague term proximity effect.
According to ref. [31], item 121-13-19, “The proximity effect is a non-uniform distribution
of electric current density in a conductor, attributable to electric currents in neighbouring
conductors”. It is necessary to add that the cause of the non-uniform density of current
in the conductor can also be the resistivity, which is not constant over the conductor cross
section. If the cause of the non-uniform distribution of current density in the conductor
is the current induced according to Faraday’s law, then the induced current can also be
produced by the conductor itself or by distant conductors, and also by, for example, a
moving permanent magnet. The neighbouring conductor may be solitary, unconnected
to the source, or it may form with the respective conductor a circuit in which there is a
source, or it may form a part of a circuit with a source, or the neighbouring conductor is
connected to the same pole of the source as the respective conductor. According to [9–12],
the neighbouring conductor can be included in the calculation of current density in the
respective conductor, and thus it is redundant to deal with the proximity effect.

4. Self-Inductance of a Pair of Conductors

Self-induction of a pair of conductors is characterized by the quantity self-inductance,
L. L determines the voltage induced in the conductors and is part of conductor impedance.
There is no universal method for the calculation of L, because its value, among other
things, depends on the current density in the conductors. The simple formulae given in the
literature have been derived on the assumption of constant current density. This is a rather
simplifying assumption because, in such a case, the induction phenomenon does not occur.

In the calculation of L, it is necessary to respect Formula (10), according to which the
maximum distance of the conductors and the frequency of the current flowing through
the conductors are limited. With a conductor distance of several metres, the frequency
should be less than 107 Hz. In ref. [13], the values are given for the energy in the magnetic
and electric fields of coaxial conductors. From a comparison of these values, it results
that neglecting the displacement current in the insulation between the conductors is
acceptable for supply voltage frequencies not exceeding 107 Hz if there is vacuum between
the conductors. For a different insulation, the upper frequency limit would be lower. It is
therefore necessary to assume the fulfilment of the condition f < 107 Hz; similar to ref. [35],
p. 132, frequencies of up to 1 MHz are assumed so that quasi-stationary approximation
may be assumed.

Formulae for the calculation of the self-inductance of a pair of long conductors are
given in the literature, sometimes also with a derivation, e.g., [33,36–47]. Papers regarding
the calculation of current density in a pair of long conductors often contain the method
for calculating the self-inductance of a segment of the two conductors or the equivalent
impedance of this segment [1,2,4,14,15,18,20,22,24,34].

Figure 6 gives the equivalent schematic of the segment of conductors between the
planes z = z1 and z = z2, where z2 > z1.

✲z2 ✲V (z2, t)

✻
UR(t)

✲z1 ✲
V (z1, t)

☎✆☎✆
☎✆☎✆

❄
UL(t) ✚✙△I(t)

Figure 6. Equivalent schematic of a segment of two conductors between the planes z = z1 and z = z2.
UL(t) is the induced voltage, UR(t) is the voltage across the segment of the two conductors. V(z1, t)
and V(z2, t) are the voltages across the conductors for z = z1 and z = z2, respectively.
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The inductor is characterized by the self-inductance coefficient L, which is used to
calculate the voltage induced on the inductor,

UL(t) = L
dI(t)

dt
, (11)

where I(t) is the current in the loop segment or in the circuit in Figure 6. The result of
solving the basic task is the vector of current density in the loop conductors, and I(t) is
the flux of this vector through the conductor cross section. Solving the basic task thus also
yields I(t). If the voltage U(t) = V(z1, t)−V(z2, t) is given, then Kirchhoff’s voltage law
holds for the loop and for the circuit in Figure 6,

UL(t) = U(t)−UR(t), where UR(t) = RI(t), (12)

with R being the given resistance of the loop segment. This means that determining L is
redundant, and in the equivalent diagram (Figure 6) the inductor characterized by L is
replaced by the voltage source UL(t). Unlike the calculation using L, the calculation of
UL(t) using (12) is accurate, in particular in cases when the proximity effect manifests itself
or when UL(t) is not sinusoidal.

In the literature, the calculation of L is, in most cases, part of the calculation of the
impedance of the circuit in Figure 6,

Z = <(Z) + jωL, (13)

where ω is the angular frequency of all the voltages and currents in the circuit. The
application of (13) is conditional on the steady state of the circuit and on the distance of the
conductors at which the proximity effect can be neglected. Another possible calculation
of L consists of replacing each of the conductors with a solitary conductor and replacing
L by the sum of internal and external inductance [43,48–52]. In the calculation of internal
inductance, what is taken into account is only the magnetic flux inside the conductor and
produced by this conductor. In the calculation of external inductance, only the magnetic
flux between conductors is taken into consideration. This calculation procedure is mainly
applied when the conductors are cylindrical because current density in solitary cylindrical
conductors is easy to calculate.

The real component <(Z) increases with increasing ω = 2π f , and this is the reason
for the incorrect statement “resistance increases with frequency”, which is frequently given
in the literature and applied in technical practice. Unfortunately, even in the definition of
skin effect, in item 121-13-18 [31], there is a note 1: “The skin effect increases the resistance
and decreases the inductance of a conductor with the frequency of the electric current”.
The standard [53] defines resistance (1) and resistance (2). Resistance (1) is determined
by Ohm’s law, which holds for metallic conductors over a large range of parameters.
The dependence of resistance (1) on f would above all mean the dependence of resistivity
on f . According to ref. [40], Ohm’s law holds for metallic conductors if f � 1014 Hz.
The value of resistance (2) is equal to <(Z) according to [53], and therefore for f > 0 it is
necessary to distinguish between R and <(Z).

5. Conclusions

The subject of the present paper is current density and current in a group of long conductors.
The group is described in Introduction. The publication of Maxwell’s book [1] marked the
beginning of a one hundred and fifty year history of attempts at proposing a method for
the calculation of current density in long parallel solid conductors.

Maxwell’s method can only be applied to a solitary conductor connected to an
ideal current source, which cannot be implemented. If it is assumed that the current
density in the conductors of a loop formed by two conductors is the current density
of two solitary conductors, then the accuracy of such an approximation increases with
increasing distance of the conductors. In that case, the proximity effect cannot be
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analysed, and the effect of current density on the result of the calculation of inductance
is small because the decisive influence is that of the magnetic flux through the area
between the conductors.

All the papers published up to now, with the exception of those by the author of this
review and his fellow workers, deal with the solitary conductor, or they try to transfer the
result of the solitary conductor to a group of conductors or they solve Equation (6) or (7). The
current density calculated by these methods is approximate, and its application in
the analysis of the proximity effect and in the calculation of inductance is therefore
also approximate. The knowledge of exact current density obtained via solving the
basic task makes it possible to quantify the proximity effect and thus not only to state
that the current density in the conductor is affected by current in the neighbouring
conductors. The proximity effect affects the voltage on the inductor, and the calculation
of this voltage in terms of self-inductance is highly inaccurate and therefore it is
suitable to characterize the inductor by a time-dependent induced voltage instead of
self-inductance.

The definition in ref. [31] is special in that the skin effect is not defined for conductors
but only for the conductor. On the other hand, it is very general because it does not contain
any assumption as to the conductor length and shape. It is assumed in the definition
that the current in the conductor is alternating, but in ref. [31], item 121-13-18, there is a
note 2: “The skin effect occurs also in the more general case of any time-varying current”.
It follows from the specific cases quoted above that the skin effect is not an entirely general
phenomenon, the more so because no analysis has so far been made of current density in
conductors during transient phenomena and with conductor resistivity that is not constant
over the conductor cross section. When using the term skin effect, it would therefore
be advisable to state the relevant conditions: the form of the dependence of the voltage
or current source on time, the shape of the conductor cross section, the position of the
conductors in space, and in the case of transient phenomena, the initial current density.
Playing with words in connection with the skin effect and the proximity effect can be
replaced by an indisputable statement: “Current density is not constant in conductors that
are in a time-varying magnetic field”.

The skin effect is connected with the so-called resistance dependence on the frequency
of the passing current. A strict distinction needs to be made between the resistance
according to Ohm’s law and the real component of impedance. For alternating current with
non-zero frequency, the resistance according to Ohm’s law does not depend on frequency
and its value is not equal to the value of the real component of impedance, which depends
on frequency.

Knowing the current density obtained by the solution of the basic task enables
analysis of the phenomena connected with the skin effect, in particular analysing an
accurate calculation of voltage on the conductor. This does not mean a refutation of the
papers published so far. The methods for inductance calculation in these papers need
to be taken as approximate but sufficiently accurate, in particular for larger conductor
distances. Nevertheless, the accuracy of the results obtained by these methods can
be obtained only via a comparison with the results obtained by the solution of the
basic task.
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