
Citation: Koptyra, K.; Ogiela, M.R.

An Efficient Steganographic Protocol

for WebP Files. Appl. Sci. 2023, 13,

12404. https://doi.org/10.3390/

app132212404

Academic Editors: Wenfeng Zheng,

Mingzhe Liu, Kenan Li

and Xuan Liu

Received: 12 October 2023

Revised: 6 November 2023

Accepted: 9 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Efficient Steganographic Protocol for WebP Files
Katarzyna Koptyra and Marek R. Ogiela *

Cryptography and Cognitive Informatics Laboratory, AGH University of Krakow, 30-059 Krakow, Poland;
kkoptyra@agh.edu.pl
* Correspondence: mogiela@agh.edu.pl

Featured Application: The methods of digital steganography in image files presented in this re-
search may find application in numerous areas and industries, because they offer great capacity
and may be combined with cryptography. ¬ Hidden communication (in public or monitored
channels, when encryption is not possible or difficult to use, contacts between whistleblowers
and journalists or informants and police, to send dangerous contents, privacy protection, data
security); military and intelligence (conceal strategic information during war and occupation
operations); ® business (protection against industrial/corporate espionage, hidden communica-
tion between business partners or company branches); ¯ property protection (watermarking of
images to embed information about the author, additional comments or some metadata, fraud
detection); ° other areas (bypassing censorship in countries violating human rights, sending
viruses, tracking users). As can be seen, potential applications lie in both white hat and black hat
fields of operation.

Abstract: In this paper, several ideas of data hiding in WebP images are presented. WebP is a long-
known, but not very poplar file format that provides lossy or lossless compression of data, in the
form of a still image or an animation. A great number of WebP features are optional, so the structure
of the image offers great opportunities for data hiding. The article describes distinct approaches to
steganography divided into two categories: format-based and data-based. Among format-based
methods, we name simple injection, multi-secret steganography that uses thumbnails, hiding a
message in metadata or in a specific data chunk. Data-based methods achieve secret concealment
with the use of a transparent, WebP-specific algorithm that embeds bits by choosing proper prediction
modes and alteration of the color indexing transform. The capacity of presented techniques varies. It
may be unlimited for injection, up to a few hundred megabytes for other format-based algorithms, or
be content-dependent in data-based techniques. These methods fit into the container modification
branch of steganography. We also present a container selection technique which benefits from
available WebP compression parameters. Images generated with the described methods were tested
with three applications, including the Firefox web browser, GNU Image Manipulation Program, and
ImageMagick. Some of the presented techniques can be combined in order to conceal more than one
message in a single carrier.

Keywords: steganography; WebP; image; data hiding

1. Introduction

Information security plays a crucial role in contemporary times, as data became a vital
part of businesses and the everyday life of people in modern society. Security breaches
and data leaks pose a threat to individuals, companies, and even whole countries. Among
numerous attacks, we may mention malware, vulnerabilities, distributed denial of service,
scams, credential stuffing, brute-force, frauds, spam, backdoors, disinformation, etc. In the
last year, the most threatened targets were industries, healthcare, public services, scientific
institutes, individuals, education establishments, finance or insurance organizations, and
many more [1]. Data protection is therefore an important challenge everyone faces.

Appl. Sci. 2023, 13, 12404. https://doi.org/10.3390/app132212404 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132212404
https://doi.org/10.3390/app132212404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0646-3255
https://orcid.org/0000-0002-8298-8627
https://doi.org/10.3390/app132212404
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132212404?type=check_update&version=1

Appl. Sci. 2023, 13, 12404 2 of 21

Sometimes, standard security measures, like encryption of the secret message, are
not sufficient. In such strategic applications, third parties should not even be aware
that communication is taking place. One of the possible solutions of this problem is
steganography, a branch of security focused on information hiding. In steganography, the
secret message is embedded in an insignificant container which is used as a carrier for the
payload. The container is provided to the receiver, who extracts the message out of it. The
main goal of this scheme is to conceal from external observers that secret data are hidden
inside the cover medium.

Over the years, steganographic methods evolved from physical messages on paper to
modern digital algorithms. Due to increasing computing power, new complex solutions
were established (for example, the combination of steganography and cryptography [2])
and also a lot of potential carriers were used, such as texts [3,4], images [5–8], videos [9,10],
binary executables [11], network packets [12–15], documents [16–18], or even DNA [19]. On
the other hand, a number of counter-techniques were developed, called steganalysis. Their
objective is to detect the possible presence of secret data in a container. The perpetual strug-
gle between two sides results in the development of more and more creative algorithms.

Of all carriers, the most popular are digital images, for two reasons. First, they are
omnipresent (not suspicious), and second, they offer great capacity (a large amount of
data may be hidden inside). Image steganography algorithms from the literature may be
divided into a few categories, depending on the adopted methodology.

Popular methods with low computational cost include spatial domain methods, which
conceal secret data directly into pixel values. The best known is the least significant bit
(LSB) technique, belonging to the container modification branch of steganography. In
this method, bits of the secret message are placed as least significant bits of subsequent
bytes of the container [20]. The invention of LSB replacement was a big achievement and
researchers have created multiple variants of this algorithm. For instance, to increase
capacity, it is possible to hide more than one bit per pixel [21–24] in various planes. The
other modifications use a key to scatter secret data evenly throughout various regions of
the carrier [25,26]. There is also the idea of choosing the embedding area without a key, but
by considering only the most frequent pixel values, ignoring their least significant bit [27].
Then the capacity and payload placement are dependent on the contents of the image.
Overall, the LSB technique has good sensory undetectability even when more than one
bit per pixel is used [28,29]. However, with specialized software, the adversary is able to
detect statistical anomalies introduced by the embedding process. They are manifested by
a similar number of even and odd values in the histogram [30]. Some papers try to combat
it and invent mechanisms of preserving the histogram during data hiding [5]. Another
approach to spatial steganography is based on the fact that edges have better hiding
potential than smooth areas. In this technique, called pixel value differentiation (PVD),
embedding regions are selected by analyzing differences between consecutive pixels [31].
PVD is characterized by good stego image quality and has its own modifications [32–34].

Spatial methods of image steganography, while useful, also have disadvantages. They
are limited to lossless formats and vulnerable to filtration or compression attacks. For
this reason, another category of algorithm has emerged, namely transform domain. Such
techniques convert picture data into the frequency domain and then conduct the hiding
process. There are various possible transforms, including discrete cosine transform (DCT),
discrete (DFT) or fast Fourier transform (FFT), and discrete wavelet transform (DWT).
Usually they find application in JPEG files to compress data. DCT divides the image into
frequency bands and hides the secret message in quantized coefficients [35]. We may find
different variants of this idea, using coefficient randomization [36], a specific frequency
band [37], or matrix encoding [6]. DFT is rarely used compared to other transforms, but
the literature mentions existing methods [20]. DWT is much more popular, probably
because of better compression and less artifacts. This kind of transform decomposes the
image into a low-frequency signal and high-frequency details in horizontal, vertical, and
diagonal directions. There are methods for both grayscale [38] and color images [39,40].

Appl. Sci. 2023, 13, 12404 3 of 21

The frequency approach is useful in steganography, as the secret data are scattered among
pixels and therefore difficult to wipe without degrading the quality of the container. We
may also mention other domains useful for data hiding, like eigenvectors [41]. The main
goal of these algorithms is to achieve high robustness, as it is difficult to remove the payload
without the destruction of important areas of the photograph. There are also attacks aimed
at frequency-domain methods, based on coefficient analysis [42] or classification with
neural networks [43].

Thanks to development of neural networks and deep learning, a new category has
found its place in image steganography. Deep neural networks have been used to select
the embedding area for the LSB method and to scatter data between all of the available
bits, while another network served the purpose of secret extracting [44]. Other types
of architectures also found application in steganography. The authors of [45] proposed
two networks (U-Net-based encoder and decoder) for hiding and recovering secret data,
both working on color photographs. An interesting approach uses the style modification
technique [46]. This algorithm takes three input pictures: cover, style, and secret. The
resulting image resembles the carrier, but contains concealed data and is also drawn in the
requested style.

Other examples of steganography include combinations with cryptography [47,48],
watermarking [27,49] or secret sharing [50–52], multi-secret steganography used for con-
cealing more than one message in a single container [53], techniques that do not require
a predefined medium but generate the carrier from scratch [54,55], format-specific meth-
ods destined for particular files [36,56,57], the creation of subliminal channels in existing
schemes to achieve better undetectability [58,59], systems that use biometric authentication
for data hiding [60,61], combining various techniques to obtain secure data transmission in
telemedicine applications [62,63], and many more.

Among container modification techniques, spatial-domain algorithms focus on uncom-
pressed or lossless compressed images, like BMP or PNG. On the other hand, the majority
of transform-domain methods operate on JPEG images. There are also some proposals
of data hiding in GIF images. The WebP format had not aroused much interest in the
information hiding community. Although it was introduced years ago, its popularity was
not very high compared to other, well-established image files. As can be seen in related
works, there is a shortage of papers concerning WebP steganography. This is the reason for
this study, to present techniques appropriate for these images. In recent years, the presence
of WebP on the internet became visible, so the time has come for this versatile format to
take its place among other carriers suitable for steganography.

2. Materials and Methods

This sections presents proposed approaches to data hiding in WebP images. Besides
the background, it is divided into two parts. The first one concerns methods which are
based on format specification, but leave the pixels untouched. The second one is about
data-based methods, which change image contents in an unnoticeable way, but have a
negligible impact on file size.

2.1. Background Information about WebP Format

WebP is an image format developed by Google in order to save web resources. It
supports both lossy and lossless compression of pictures. WebP files are designed to store
still images or animations. Optionally, they may contain alpha channel, color profile, and
metadata. The maximum dimensions of such images are 16,383 × 16,383 px. One of the
biggest strengths of WebP is its predictive coding drawn from the VP8 video format. This
algorithm uses nearby values to predict pixel value in the block. Only the difference is
saved; in this way, a high level of compression can be achieved. According to claims by
Google, WebP images can be 26% smaller than PNG and 25–34% smaller than JPEG.

The structure of WebP files consists of RIFF (Resource Interchange File Format) chunks.
They are built of three sections: four bytes for the identifier, four bytes for the size, and

Appl. Sci. 2023, 13, 12404 4 of 21

the remaining bytes for data. The size concerns only the data part, which means that the
whole chunk length is the data length + 8 bytes. The first chunk of a WebP file is a RIFF
chunk that contains the ‘WEBP’ identifier and one of the possible chunks: ‘VP8’ for simple
lossy format (the last character is 0x20—space), ‘VP8L’ for lossless compression without
advanced functions, or ‘VP8X’ for extended format. The first 16 bytes of a lossless WebP
file may look similar to Figure 1. As can be seen, the chunk size is 0x3dc6 (in little endian),
so the file size is 15,814 + 8 = 15,822 bytes.

52 49 46 46 c6 3d 00 00 57 45 42 50 56 50 38 4c |RIFF.=..WEBPVP8L|

Figure 1. The first bytes of lossless WebP image; on the right is ASCII representation.

‘VP8’ and ‘VP8L’ chunks contain VP8 bitstream data [64] and WebP Lossless Bit-
stream [65], respectively. More complex are ’VP8X’ chunks, which consist of the following:

• information about features used in the file;
• optional ICCP chunk with color profile;
• optional ANIM chunk with animation data;
• image data;
• optional EXIF chunk with Exif metadata;
• optional XMP chunk with XMP metadata;
• optional list of unknown chunks.

These parts are present in the order indicated above. Optional unknown chunks are
intended to be used in the future as the standard evolves and should be ignored by readers
to achieve backwards compatibility.

There are also some disadvantages of the WebP format. Although it is more than
10 years old, it still suffers from compatibility problems. In fact, these images are rarely
used outside the web and the majority of users are clueless as to how to open downloaded
pictures. The study conducted by the mozjpeg project regarding lossy encoding techniques
revealed that WebP turned out to be better in some scoring algorithms, but comparative or
worse according to others [66]. A serious threat was revealed in September 2023, when a
buffer overflow was discovered [67] in both libwebp (CVE-2023-4863) and imageio (CVE-
2023-41064). This vulnerability was acknowledged as critical and received the maximum
severity score.

2.2. Framework

The framework of proposed methods consists of two complementary algorithms: em-
bedding and extracting. The embedding algorithm takes the WebP carrier, secret message,
and optional key as input. The message is hidden in the image, and the resulting file is
transmitted to the receiver. Then, the container with hidden data (optionally with the key)
is given to the extracting algorithm that retrieves the secret message out of it. The schema
of the whole process is presented in Figure 2.

As can be seen in the schema, the WebP carrier consists of a chunk containing metadata
and other file-related information, and an image chunk containing compressed image data.
Presented in this paper are format-based methods relying on the chunk part, whereas
data-based techniques are focused on modifications of image data.

2.3. Format-Based Methods
2.3.1. Simple Injection

This is a very simple technique of data hiding not limited to the WebP format. It works
by appending another file at the end of the carrier. It is based on optimization made in
applications to ignore any excess data. The WebP standard says that “The file SHOULD
NOT contain any data after the data specified by File Size. Readers MAY parse such files,
ignoring the trailing data”. This means that the majority of software opening the stego
image should result in displaying the carrier, but ignoring the secret image. The quality of

Appl. Sci. 2023, 13, 12404 5 of 21

the cover image is not affected; however, the file size increases and is equal to container size
+ secret size. This method is not secure, the as hidden file may be detected with specialized
software or inspection.

Embedding

algorithm

Extracting

algorithm

WebP carrier
(pure)

metadata
& other chunks

image data

(optional)
Key

Secret
message

(optional)
Key

Secret
message

WebP carrier
(modified)

metadata
& other chunks

image data

Figure 2. Framework of presented methods.

2.3.2. Thumbnail

Thanks to its ability to store metadata, WebP images may also contain a thumbnail
(reduced-size version of the picture). Thumbnails are defined in the Exif Specification with
the use of two connected tags: JPEGInterchangeFormat (the offset in the image directory to
the JPEG) and JPEGInterchangeLength (the length of the thumbnail in bytes). As can be
seen, thumbnails are required to be in the JPEG format. The Image Metadata and Exiv2
Architecture book [68] says that the thumbnail cannot have embedded metadata. However,
in our tests, we succeeded in embedding a JPEG file with metadata.

The proposed solution starts by creating a thumbnail in the JPEG format. Then, a secret
message should be hidden in this thumbnail with the selected embedding algorithm. For
steganographic purposes, JPEG files are great carriers. They offer a lot of possible methods
and creditable capacity. Finally, the carrier with the hidden message should be inserted in
a WebP image. In this way, recovering requires two steps: extracting the thumbnail and
decoding the secret. It is then an example of multi-level steganography [51].

2.3.3. Metadata

Hiding data in WebP metadata may be realized with Exif [69] or XMP [70]. They are
both defined for storing metadata created by cameras, smartphones, scanners, and other
devices designed for recording images. Exif has tags for Maker, Model, Aperture, and many
other settings. XMP is an extendable format that offers XML-like or array-like structures,
called Bag, Seq, or Struct.

According to the specification, metadata may be present in the extended version of
WebP images (those with the VP8X chunk). If so, there should be at most one chunk of
each type. If there are more such chunks, readers may ignore all except the first one. This
opens the possibility for two approaches to data hiding. We may add more than one chunk
with the embedded secret in the WebP file, as it will probably be ignored by software.
Alternatively, we may conceal a secret in the existing metadata chunk (or insert a new
one with our message). In both cases, it is advisable to encrypt concealed information, as
metadata may be recovered and seen by anyone, even accidentally while checking camera
parameters, etc.

In Exif metadata, there are multiple tags suitable for data hiding. The list of standard
Exif tags is available at https://exiv2.org/tags.html (accessed on 10 August 2023). De-
pending on the secret format, we may need Ascii type for Latin text, Long for numbers,
or Undefined for binary data. Moreover, the standard defines a MakerNote tag, destined
for camera manufacturers, in order to place any custom metadata in the file. Usually they
describe camera settings, for example, serial number, focusing more, etc. The Exif standard

https://exiv2.org/tags.html

Appl. Sci. 2023, 13, 12404 6 of 21

does not define the structure of the MakerNote. Some manufacturers encrypt portions of
the information, which means that such areas may be used for steganographic purposes
and even combined with cryptography.

XMP, on the other hand, is an extensible format. Besides overwriting existing metadata,
we may create our own structures and place secret data inside. The available types are Bag,
Seq, or Struct, described as follows [68]:

An “XmpBag” is a set of key/value pairs which are represented by XML attributes.
An “XmpSeq” is an array of metadata similar to a JavaScript or Python array. It is
represented by an XML list and can be accessed by index. An XmpStruct is a set
of keys to trees of metadata rather like a JavaScript or Python object.

2.3.4. Chunk Injection

The chunk injection method exploits the expandability of the WebP format. To warrant
openness to future releases, the standard allows WebP files to contain unknown chunks.
These chunks should be ignored to achieve backwards compatibility. In this way, one may
append new chunks with hidden data to the file.

Embedding a secret with this technique is divided into a few steps. Firstly, we need to
create a chunk with secret data. The name of this chunk should be different than specified
in the standard, and even better, with low probability of future use. Therefore, a new chunk
consists of an identifier (four bytes), a size (four bytes encoded in little endian), and contents
(of length equal to the aforementioned size). All these parts are concatenated without any
separator. Secondly, the prepared chunk is embedded as the last one in the WebP file.
Thirdly, we must modify the size of the RIFF chunk, as adding new data increases the
length of the carrier file. The new size is computed as the old size + secret size + 8.

To recover the hidden secret, the receiver needs to find the offset and length of the
embedded data. Both pieces of information may be acquired with exiv2 software (version
0.27.3). It is recommended to encrypt the secret, as chunks are stored in plain text, so
additional protection is a good idea.

2.4. Data-Based Methods

A lossless version of a WebP image may serve as a container for existing methods,
like least significant bit embedding. However, there are other possible approaches to
steganography in this format.

2.4.1. Transparency

The WebP format supports transparency, in both lossy and lossless modes. The
interesting option used in this method is “exact”, described as follows.

-exact preserves RGB values in the transparent area; default = off
Normally, the WebP encoder skips bytes in transparent areas of the carrier to save

space. However, with this option enabled, it is possible to use these locations to conceal
some data. The secret may be embedded in each transparent pixel. Then we are able to
achieve the capacity of 3 bytes per pixel. In such a case, the “lossless” option is also required
to avoid the destruction of hidden data. Another approach is to conceal graphic data by
pasting the secret image into the transparent area, preserving transparency.

The secret is not visible on the preview, but the method does not provide much security
(the more data are hidden, the bigger the file becomes). On the other hand, it has satisfactory
capacity and does not visually change the container. Additionally, the presented technique
is also applicable to PNG images. In PNG images, the container modification method of
embedding in transparent pixels works similarly as in WebP files. The embedding area
consists of all transparent pixels. Secret data are translated to bytes, and for each color
component with alpha channel equal to zero, one byte is concealed. This means that a single
pixel can hold three bytes of secret data. The secret message length should be less than or
equal to the number of transparent pixels to be able to conceal it. If the capacity is greater
than the secret message length, the data may be spread over available space. The recovering

Appl. Sci. 2023, 13, 12404 7 of 21

process is carried out in reverse. First, secret bytes are read from transparent areas, and
then they are shaped into the message. When the stego image is open in graphical software,
the hidden pixels are not visible. But this technique causes the file size to grow, which gives
a clue that something may be hidden inside. This method can also be used to conceal a
digital image instead of text or binary data. Then, to reveal the hidden image, the receiver
needs to remove the alpha channel and to save the resulting image.

2.4.2. Prediction Modes

This method uses block prediction modes in the WebP format (derived from VP8)
to store secret data. During encoding, the frame is divided into smaller segments called
macroblocks. Then, based on previously processed blocks, the encoder is able to predict
unknown pixel values in the macroblock. Redundant data may be subtracted from the block,
which gives smaller residues that are efficiently compressed. It is called predictive coding.

Different prediction modes used in WebP compression are presented in Figure 3. Each
of them uses fairly simple arithmetic to extrapolate from already-calculated values. For
example, horizontal prediction fills unknown parts of the block with a copy of the left-
hand-side column. The mode with the best match is used for encoding the current block.

Figure 3. Prediction modes used in WebP lossy compression (https://developers.google.com/speed/
webp/docs/compression?hl=en (accessed on 2 August 2023);).

In reference implementation, each of the prediction modes is represented as a number.
To use them in steganography, we divided available modes into two groups, depending
on their parity. In other words, even modes are in a separate group from odd modes. To
hide a message, the encoder needs to select modes according to message bits. Normally,
the chosen prediction mode is the one with the best match. This time we impose a limit
to choose the best match only from the corresponding group. In this way, the stego file
may be slightly bigger than the optimal image produced by the encoder, but the difference
would be very small and inconspicuous. Also, there may occur little discrepancies between
the optimal image and the stego image introduced by compression, which should not be
visible. The capacity is one bit per block.

https://developers.google.com/speed/webp/docs/compression?hl=en
https://developers.google.com/speed/webp/docs/compression?hl=en
https://creativecommons.org/licenses/by/4.0/

Appl. Sci. 2023, 13, 12404 8 of 21

2.4.3. Color Indexing Transform

The color indexing transform technique is based on a WebP property which says that
“If there are not many unique pixel values, it may be more efficient to create a color index
array and replace the pixel values by the array’s indices”. It works as follows:

The color indexing transform checks for the number of unique ARGB values
in the image. If that number is below a threshold (256), it creates an array of
those ARGB values, which is then used to replace the pixel values with the
corresponding index; the green channel of the pixels is replaced with the index,
all alpha values are set to 255, and all red and blue values are set to 0.

This feature may be used in steganography. To hide a message, we need a container
with up to 128 colors. Additionally, the difference between every two colors should be
greater than 1. The difference may be computed based on the following formula [71]:

d =
√
(R1 − R2)2 + (G1 − G2)2 + (B1 − B2)2,

where Rx, Gx, Bx are the red, green, and blue components of a color.
New colors are created by modifying a randomly selected component by 1. For each

pixel, when a message bit is equal to 0, we use the original version of the color. When the
bit is equal to 1, we choose the modified version. In this way, the carrier with the embedded
message contains up to 256 colors, meeting the limit imposed by the format. Both versions
of colors are slightly different, but very similar and hard to distinguish with the naked eye.
The maximum capacity of this method is equal to the total number of pixels. A similar
strategy may also be applied to GIF images.

2.4.4. Container Selection

This technique requires the preparation of an image set of size N in advance. They will
be used indirectly as carriers. Each image is compressed 100 times with various levels of
parameters. The cwebp compressor offers numerous options to choose from. The selected
one is the -q option, which denotes compression level and may be set between 0 and 100.
In this way, a single image encodes a number which may be translated to a character by
adding 32 to it and casting it to the char type. It is then possible to encode uppercase and
lowercase letters, numbers, spaces, punctuation, brackets, and some special characters.

To transmit a secret message, the sender chooses images that correspond to subsequent
characters of the secret message and sends them to the receiver. To decode the secret, the
receiver compares obtained images with his set. Then, he decodes the message by adding
32 and translating to ASCII characters. The images themselves contain no data, and the
secret is recovered with the use of a predefined set. The modifications of this method are
able to use a shared key to change the order of images or halve the image set and transmit
one bit per carrier.

The capacity of this method depends on the shared image set size. The maximum
length of the transmitted message is N characters. The bigger the set, the longer the message
that may be transmitted. However, it is advisable to use this technique sporadically for
short messages, to avoid sending the same images repeatedly. The disadvantage of this
method is the disc space needed for the database and the used bandwidth, as we need
to send much more data than the actual length of the secret message. Although a similar
approach may be used with other image formats, here we exploit the quality parameter,
which gives a broad data range and is not present in every format.

3. Results

This section provides a description of the conducted experiments of data hiding and
their results. It contains the used commands and interesting dumps of involved files, with
some additional conclusions.

Appl. Sci. 2023, 13, 12404 9 of 21

3.1. Format-Based Methods
3.1.1. Simple Injection

The purpose of this experiment was to test the simple injection method. The tests
were able to create the stego file (the carrier with embedded message), checking it in a
few applications and extracting the secret from the container. Creating a stego file with an
attached secret image is super easy; we just need to glue two input images together and
save it as a new file.

cat img1.webp img2.webp > img3.webp

The newly created image is correctly recognized as RIFF (little endian) data, a Web/P
image. Its size is the sum of the original files.

The interesting part of this research was checking whether the new image would open
in various programs and if it would be displayed or not. The testing suite included GIMP,
Firefox, and ImageMagick. This limitation is caused by the fact that the WebP format is not
implemented in every piece of software. Regardless of the hidden data, some applications
just do not (yet?) support the format. During tests, ImageMagick and Firefox handled the
modified file easily and displayed the cover (insignificant image denoted as img1.webp
in this experiment), which was expected behavior. On the other hand, GIMP returned an
error because its plugin could not read the file in a proper way.

As we knew the offset and the length of the hidden file, we might easily recover the
secret with dd:

dd if=img3.webp count=$((179632-163802)) bs=1 skip=$((163802+8))>img4.webp

There are multiple ways of finding the offset and the length: with the exiv2 program, from
original files sizes, using any programming language, etc.

Finally, the restored image was compared to the original img2.webp and they turned
out to be identical. The experiment proved that with this technique, we may obtain lossless
recovery if the stego image is not modified.

Obviously, the secret image may be found if someone conducts an analysis of the
stego file. This method is not safe, but does not require special software apart from the one
available by default in the operating system. Additionally, it may be used without effort,
especially on websites.

3.1.2. Thumbnail

The purpose of this experiment was to test the thumbnail method. During the tests,
the thumbnail with the hidden secret message was created. Later, it was embedded in
the carrier. Further tests were able to check the stego image in applications, recovering
the thumbnail and comparing it with the original one. Hiding a secret in a thumbnail has
been realized in a few steps. At the beginning, the original image was scaled down and
converted to JPEG.

convert img.webp -scale 5% img-thumb-pure.jpg

Multiple steganography methods are possible for the JPEG format; in this case, we
used the F5 algorithm [6]. The secret text “Steganography among other rare disciplines is
honored to be described as both an art and Science field.” was concealed and the new file
saved as img-thumbnail.jpg. To embed it into the original image, the following command
was executed (insert thumbnail with exiv2 program):

exiv2 -it in img.webp

The resulting image contains the thumbnail with the hidden message. In this experi-
ment, the main carrier contained no metadata to avoid discrepancy between existing meta
records and the added thumbnail.

As a result of embedding, the file size increased, but the image contents remained
unchanged. The presence of the thumbnail may be detected with binwalk:

Appl. Sci. 2023, 13, 12404 10 of 21

DECIMAL HEXADECIMAL DESCRIPTION
--
4626978 0x469A22 TIFF image data, little-endian offset (...)
4627808 0x469D60 TIFF image data, little-endian offset (...)
4631404 0x46AB6C JPEG image data, JFIF standard 1.01

However, it is not considered as a disadvantage, because thumbnails are normal phenomena
often seen in photos, and therefore not suspicious.

Later, the stego file was recovered from the carrier and compared to the pure version
to check whether embedding was lossless. The diff program reported no changes, so it was
possible to correctly decode the secret message.

3.1.3. Metadata

The purpose of this experiment was to test the metadata method, including two
metadata types: Exif and XMP. These tests were able to choose the appropriate tags or
structures, embedding secret messages, analyzing created files in applications, and reading
the secrets from carriers. Metadata modification may be achieved with applicable software;
in the following experiments, the exiv2 program was used. The first technique uses Exif
metadata, specifically Exif.Photo.ImageUniqueID of type Ascii. According to the tag
description, it indicates an identifier assigned uniquely to each image. It is presented as a
hexadecimal string of 128-bit length.

Before embedding, this tag looked as shown below.

Exif.Photo.ImageUniqueID Ascii 33 090caaf2c085f3e102513b24750041aa

As a proof of concept, a memorable value deadbeef1337c0defeedf00d2137face has
been hidden with the following command.

exiv2 -M’set Exif.Photo.ImageUniqueID
deadbeef1337c0defeedf00d2137face’ img.webp

After embedding, the listed metadata contain the modified unique ID of the image.

Exif.Photo.ImageUniqueID Ascii 33 deadbeef1337c0defeedf00d2137face

They are also visible in other applications. Figure 4 shows how we can read our
hexstring in a different way. To do this, we should choose Image→ Metadata→ Show
metadata in GIMP.

Figure 4. Embedded metadata visible im GIMP.

Both the file size and the image contents remained unchanged. In normal applications,
this method may be used to embed a small encrypted file with a fixed size of 128 bytes.
Bigger files may be divided between a few images, but the receiver must know the order of
files to properly recover the secret.

To conceal a secret in XMP metadata, we used the LocationCreated property from the
IPTC Extension schema, designed for the location in which the photo was taken. The secret
message has been hidden in newly created TextBag with selected cities. First, provided
places have been encoded in the following manner.

exiv2 -M’set Xmp.iptc.LocationCreated XmpText type=Bag’ img.webp
exiv2 -M’set Xmp.iptc.LocationCreated[1]/iptcExt:City Helsinki’ img.webp
exiv2 -M’set Xmp.iptc.LocationCreated[2]/iptcExt:City Edinburgh’ img.webp
exiv2 -M’set Xmp.iptc.LocationCreated[3]/iptcExt:City Larissa’ img.webp
exiv2 -M’set Xmp.iptc.LocationCreated[4]/iptcExt:City Las Vegas’ img.webp
exiv2 -M’set Xmp.iptc.LocationCreated[5]/iptcExt:City Oslo’ img.webp

Appl. Sci. 2023, 13, 12404 11 of 21

After executing these commands, let us present the resulting XMP metadata.

<?xml version="1.0"?>
<?xpacket begin="" id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description
xmlns:Iptc4xmpCore="http://iptc.org/std/Iptc4xmpCore/1.0/xmlns/"
xmlns:iptcExt="http://iptc.org/std/Iptc4xmpExt/2008-02-29/"
rdf:about="">
<Iptc4xmpCore:LocationCreated>
<rdf:Bag>
<rdf:li iptcExt:City="Helsinki"/>
<rdf:li iptcExt:City="Edinburgh"/>
<rdf:li iptcExt:City="Larissa"/>
<rdf:li iptcExt:City="Las Vegas"/>
<rdf:li iptcExt:City="Oslo"/>
</rdf:Bag>
</Iptc4xmpCore:LocationCreated>
</rdf:Description>
</rdf:RDF>
</x:xmpmeta>
<?xpacket end="w"?>

As can be seen, the embedded cities are visible in the listed metadata (they are format-
ted for clarity; normally, there are no indentations or white spaces). The secret message
may be recovered by reading the first letters: HELLO.

3.1.4. Chunk Injection

The purpose of this experiment was to test the chunk injection method. These tests
included the generation of a chunk with the selected name containing secret data, embed-
ding it into a carrier, checking the file in applications, and extracting the message out of the
stego medium. During this experiment, two approaches were tested: with updating the
carrier main chunk size and without it. Chunk injection tests started by choosing a secret
message and a chunk identifier. We have decided to embed 38-byte shellcode into a chunk
named XYZW. Such a name is not part of the standard and the probability of using it in the
future is low because of its meaninglessness. The final shape of the chunk is presented as
follows; as can be seen, the four bytes after the identifier denote the chunk size.

58 59 5a 57 26 00 00 00 48 c7 c0 3b 00 00 00 48 |XYZW&...H..;...H|
8d 3d 10 00 00 00 48 c7 c6 00 00 00 00 48 c7 c2 |.=....H......H..|
00 00 00 00 0f 05 2f 62 69 6e 2f 73 68 00 |....../bin/sh.|

Later, we attached it to a pure container as a last chunk. As expected, the file size in-
creased by 46 bytes (header + payload). We also updated the RIFF chunk size to correspond
to the current file length. After these operations, exiv2 correctly detects the embedded
chunk.

STRUCTURE OF WEBP FILE: stego-file1.webp
Chunk | Length | Offset | Payload
RIFF | 4642280 | 0 | WEBP
VP8X | 10 | 12 |o....
VP8 | 4624168 | 30 |*p...>)..B..!$(.Jx...gk.qd.
EXIF | 15264 | 4624206 | II*............................
XMP | 2755 | 4639478 | <?xpacket begin="..." id="W5M0Mp
XYZW | 38 | 4642242 | H..;...H.=....H......H......../b

Appl. Sci. 2023, 13, 12404 12 of 21

Also, the file has been tested in Firefox, GIMP, and ImageMagick. All these programs
displayed the image without problems.

The alternative approach is to inject the chunk without changing the RIFF chunk size.
Then it is not detected with exif2 software.

STRUCTURE OF WEBP FILE: stego-file2.webp
Chunk | Length | Offset | Payload
RIFF | 4642234 | 0 | WEBP
VP8X | 10 | 12 |o....
VP8 | 4624168 | 30 |*p...>)..B..!$(.Jx...gk.qd.
EXIF | 15264 | 4624206 | II*............................
XMP | 2755 | 4639478 | <?xpacket begin="..." id="W5M0Mp

At first glance, it seems to be a good idea, as hidden data are more difficult to spot.
However, in such a case, some applications have problems with opening the file. Even
though it is displayed in the browser (Firefox) and by ImageMagick, GIMP refuses to open
the image, as the WebP plugin returns an error.

To make this experiment more complete, we also recovered hidden shellcode from the
container. It was realized with dd software, which is useful for copying parts of the file.

dd if=stego-file1.webp count=$((38)) bs=1 skip=$((4642242+8)) > recovered

Retrieving was possible as we knew payload length (38) and offset (4,642,242 + 8 bytes of
header). We compared the recovered shellcode with the original and the files were identical.
This means that the presented method is suitable for carrying even binary data which cannot
be corrupted.

3.2. Data-Based Methods
3.2.1. Transparency

The purpose of this experiment was to test the transparency method. Tests included
the embedding of two secrets; the first one was in the form of bytes, while the second
one was an image. In the subsequent part, the secrets were extracted. Additional testing
served for comparing the results of WebP and PNG embedding in transparent pixels. To
test this method, we used a WebP image of size 588× 97 with 18,622 transparent and
38,414 non-transparent pixels. This gives about 32.64% of the container available for data
hiding. We conducted two experiments. In the first one, red, green, and blue components
of each transparent pixel were replaced with secret data. In the second experiment, we
concealed a secret image in one of the transparent regions.

The resulting images were of a lossless type of WebP, so their header was marked with
’VP8L’ chunk. In the first experiment, we used all possible capacity, which means that we
were able to embed 55,866 bytes of data. As a result of this, the image size increased from
1.8 kB to 61.3 kB. For comparison, we also conducted the same test for the PNG image. The
sizes before and after embedding were the same, namely 67.7 kB.

In the second experiment, we prepared a secret image containing text in the transparent
region of the container. In this case, only part of the available capacity was used, so the
size of the stego file increased only to 2.2 kB. The stego image and recovered secret are
presented in Figure 5.

Figure 5. Secret image hidden in transparent region. (Left): the carrier, (right): recovered secret.

3.2.2. Prediction Modes

The purpose of this experiment was to test the prediction mode method. The tests in-
cluded embedding a secret into a carrier, checking parity of selected modes, and comparing

Appl. Sci. 2023, 13, 12404 13 of 21

the stego file with the pure container. In this experiment, we modified the original imple-
mentation of the library to choose only modes not divisible by two. It may be perceived
as hiding a message of maximum possible length consisting of 1 s. The regular encoder
produced the image of size 1.9 MB, while a steganographically enhanced version created
a WebP image of size 2.1 MB. This difference is tiny considering the amount of hidden
data and the carrier size (6000× 4000 px). We were also checking selected modes during
embedding. The following dump fragment proves that all modes were from the odd group:

Selected mode is 1.
Selected mode is 9.
Selected mode is 5.
Selected mode is 7.
Selected mode is 5.
Selected mode is 3.
Selected mode is 1.
Selected mode is 5.
Selected mode is 5.
Selected mode is 1.
Selected mode is 3.

Finally, we compared our laden carrier with the pure carrier produced with the
unmodified library. The differences were marked with the violet color, as visible in Figure 6.
All these changes are very slight and not visible with the naked eye. On the close-up, we
may observe characteristic shapes of modified fragments, which are bigger in plain areas
and smaller in complex regions. Additionally, the alterations are focused near lines and
noisy parts that require various optimal modes. With this method, we were able to conceal
1,157,252 bits, which is almost 145 kB in total.

Figure 6. (Left): differences between pure and laden carrier; (right): close-up details.

3.2.3. Color Indexing Transform

The purpose of this experiment was to test the color indexing transform method. Tests
included concealing a secret message in a container and checking the properties of the
created file and pure container. It included comparing their sizes and color palettes. In this
experiment, we used an image with a reduced number of colors—24 and size 64× 64 px.
We hid a message consisting of alternating zeros and ones. During secret embedding, new
colors were created by changing the blue component by 1. The difference between the
original and resulting images is presented in Figure 7. With the naked eye it is impossible
to spot the color changes. In the stego image, there are 48 colors in total. Its size increased
from 6.7 kB to 6.8 kB.

Appl. Sci. 2023, 13, 12404 14 of 21

Figure 7. (Left): pure image with its colors; (right): cover image with extended colors.

4. Discussion

The methods presented in this paper are divided into two categories: the manipulation
of file structure or the data. The main difference between these two approaches is that
format-based algorithms do not change image contents, only the file structure. It may be
seen during pixel-by-pixel comparison of images that data-based algorithms introduce some
discrepancies, whereas format-based methods not. On the other hand, data manipulation
does not significantly increase the file size. From all described techniques, all except one are
focused on container modification, whereas the remaining one uses container selection.

The original image is modified in all techniques except container selection (in which
different compression levels indicate secret messages). In format-based techniques, modifi-
cations affect the file, but not the image content itself. This means that some data may be
added to the container or replaced, but pixels remains identical. The second category of
methods, data-based methods, introduces alterations to pixels. In color indexing, one of the
components may be modified by 1. In prediction modes, alterations concern blocks. The
size of the block may vary, but usually it is a square group of pixels, the values of which
are changed during the embedding process. These modifications are very slight.

As the WebP format is not widely discussed in the literature, we may show similarities
and differences to methods working on other file types. Format-based techniques are
dependent both on the standard and the software. It is best visible in simple injection. A
similar technique may be applied to BMP images. Then, depending on the software used,
another image may be displayed [72]. In WebP files, such behavior has not been observed.
Thumbnail and metadata methods are based on the same structures (Exif and XMP) that
are found in other file types. The difference is that in the thumbnail, we may choose from
available algorithms of JPEG steganography, whereas in metadata, participants should
invent more creative strategies. Chunk injection exploits the extendability of the standard,
so other RIFF-based files may potentially use this method. Embedding data in transparent
pixels is also possible in PNG images, as confirmed by the conducted tests. On the other
hand, indexed images such as GIF have a limited color palette and may benefit from the
color indexing method. Information hiding in prediction modes works on formats that use
a specialized encoder which predicts unknown pixel values. From popular image types,
only WebP implements such an algorithm. The container selection technique may be used
in almost any type of file. However, WebP images are a good choice, as a single image may
be compressed with various parameters, creating multiple similar versions of the same file.
In this way, the container database grows significantly and users are able to transmit longer
messages with fewer data sent.

There are some similarities and differences between WebP and JPEG steganography.
Format-based methods may be applicable for both image formats, because JPEG and WebP
files allow for metadata and thumbnails. The details may vary, for example, the encoding

Appl. Sci. 2023, 13, 12404 15 of 21

method or embedding algorithm for the thumbnail image. On the other hand, data-based
techniques are different for WebP and JPEG. While JPEG steganography usually focuses
on discrete cosine transform to conceal secret information, the WebP format has more
possibilities because of its frame prediction. This mechanism, derived from VP8, gives the
possibility to hide a message during predictive coding. Color indexing is not available
for JPEG images because this format is lossy; however, WebP supports lossless pictures as
well. The same is true for transparency. The container selection approach is not necessarily
connected to file format, but WebP images have more parameters that users may adjust,
so their potential in steganography is greater. In this way, a single image may contain
more than one value, which gives more effective transfer than in JPEG images. Therefore,
we may conclude that the WebP format offers more potential techniques of data hiding
than JPEG.

Considering the amount of data possible to conceal, some methods offer fixed capacity,
while others depend on some parameters or traits of the carrier. With simple injection, we
are able to append data of any size to the cover image in exchange for increasing file size.
This is because the data are added at the end of the file where they are not constrained by
any marker or rules imposed by standard. Metadata and chunk injection techniques are
limited by RIFF format specification, as chunk size is stored on four bytes. The maximum
possible chunk size is then 4,294,967,295 bits, which is about 536.87 MB. However, the real
capacity is a bit less, as image data and headers also take up space. For high-resolution
images, a few megabytes may be used and the available space should be reduced by this
amount. The capacity of thumbnail information hiding depends on the selected embedding
algorithm. For F5, it is about 13% of the image size [6]. For other methods, the capacity may
be equal to a number of non-zero coefficients, so it may vary for plain and detailed images.
Data-based techniques are normally very sensitive to carrier contents. For example, the
maximum possible length of a message hidden behind transparent pixels depends on their
number. Similarly, in the prediction mode algorithm, the more blocks, the more bits we are
able to embed. Luma blocks are 16× 16 px and chroma blocks 8× 8 px, which are later
divided into subblocks of size 4× 4. Therefore, the number of blocks is connected to image
size, which has its own restriction of 16,383 pixels per side. In color indexing transform,
each pixel may encode a single bit; therefore, the maximum capacity is equal to the number
of pixels. The last approach uses a database of potential carriers that are stored in multiple
variants (or recomputed every time). Because each container may encode one character, in
a single conversation, we are able to transmit the number of characters equal to the image
set size at maximum. With different encoding, this value may vary. For example, the parties
may decide to diminish the amount of transferred data to one bit per image in order to
arouse less suspicion. The summary is presented in Table 1.

Table 1. Comparison of capacities of presented methods.

Category Method Capacity

Format-based

Simple injection unlimited
Thumbnail algorithm-dependent
Metadata up to a few hundred MB

Chunk injection up to a few hundred MB

Data-based

Transparency 3× transparent pixel number bytes
Prediction modes number of block bits

Color indexing transform number of pixel bits
Container selection image set size characters

For format-based methods, execution times are almost invulnerable to image contents.
This is because messages are hidden in specific fields or after the image data. In simple
injection, embedding time results simply from disc operations; on an SSD drive, such
times are counted in microseconds. Recovering is about two times larger, as it needs to
read the stego file, finding the end of the original WebP image and storing the remaining

Appl. Sci. 2023, 13, 12404 16 of 21

part on the disc. Thumbnail and metadata hiding are similar in terms of time after the
thumbnail is ready. Then, both methods place the secret in a specific chunk and add it to
the carrier. Both embedding and extracting are counted in microseconds. In the thumbnail
technique, additional time is needed for thumbnail creation, which is dependent on the
steganographic algorithm. For data-based methods, times depend strongly on the carrier.
When hiding secret data in transparent pixels, times grow about 30% compared to image
conversion to WebP. Extraction times are comparable. In the prediction mode algorithm, it
turned out that focusing only on modes with appropriate identifiers shortened execution
times by about 24%. This is because, in this step, the reconstruction of the image part and its
score are computed. Avoiding this time-consuming code allowed for shorter compression.
Recovering the message does not increase the time considerably. The container selection
approach is characterized by the largest times of database generation. The reason for this is
that every image needs to be prepared in multiple versions. After that, secret extraction is
very fast. It only requires finding the corresponding file in its own group, which may be
accomplished by comparing precomputed hashes.

Considering steganalysis, an adversary may apply a few approaches. To detect format-
based techniques, the adversary should analyze the carrier in search of anomalies. In our
opinion, the easiest to detect is simple injection, because image size is stored in the RIFF
container as a segment size. Then we may compare this value to the real image size and
find discrepancies. The most difficult to detect is hiding a message in a photo’s unique ID,
as this field contains a random hexadecimal value which is impossible to distinguish from
encrypted data. Other metadata and chunks are visible in plain text, so the adversary may
read them; message security may vary depending on the selected embedding algorithm,
applied encryption, resemblance of metadata to other common images etc. Similarly,
thumbnail steganography detection depends purely on the algorithm used. The specific
JPEG steganalysis method should be applied to check whether a thumbnail contains a
secret message or not. In the container selection approach, the adversary needs to intercept
a longer conversation between parties, as a single image contains no data inside. Only the
analysis of multiple messages may lead to the discovery of a hidden channel based on a
collection of pictures. Considering data-based methods, the adversary may try to modify
the carrier or to analyze its contents. To reveal data hidden under transparent pixels, he
may remove the alpha channel. The detection of messages hidden via color indexing is
harder, because some images contain similar colors, and the adversary needs to decide
whether such similarities are artificial or are natural phenomena present in a specific image.
The interesting problem is also the detection of prediction mode steganography. It requires
decoding all used modes and deciding if they contain any secret information.

Format-based methods are robust to webp compression, as they are independent
of pixels of the image. The one exception is simple injection, in which hidden data are
ignored during re-compression and the new image does not contain a secret message. In
other techniques, secret data are copied into a newly compressed image to retain metadata
and all chunks. Considering data-based methods, some of them may be affected by
compression. In the prediction mode technique, applying compression changes final
pixel values, therefore leading to destruction of hidden data. Color indexing is only used
on images with lossless compression, which means that these pictures are robust. The
transparency method described in this paper was also used on lossless images. Finally,
the container selection approach is based on the compression, which means that when the
adversary applies compression to images in the transmission, he would be able to modify
the transmitted message.

When we compare the results of the study in the context of the used software, we
may draw some conclusions about the utility of the presented methods. Firefox and
ImageMagick were able to open all generated files and display them as expected. However,
GIMP sometimes had problems with images that deviated from the standard. Of course,
WebP support is implemented in GIMP even if these pictures are rarely used outside the
web, but the program sticks most closely to the format. On the other hand, web browsers

Appl. Sci. 2023, 13, 12404 17 of 21

have to be more flexible considering pictures, because files on the web are of various
versions and may be generated in a number of ways. Competition between browsers
is fierce and lack of support or problems with displaying images may incline users to
switch to another application. The ImageMagick software suite is designed especially for
editing and manipulating digital images. It supports a wide variety of formats and did
not have problems even with slightly malformed files. Also, it turned out to be useful in
conducting experiments.

Deep learning techniques may be useful in data-based methods. They operate on
pixels and may be helpful in both better concealment and detection strategies. In this
matter, the WebP format is no different that other image formats, except for the fact that
it supports both lossy and lossless compression. On the other hand, it does not concern
format-based approaches.

The presented methods are adequate for use on the web. This is because the WebP
format is almost exclusively used on the Internet. However, this limitation still gives
a lot of possible applications. WebP images with hidden data may be sent by email,
uploaded on a server, pasted in a web chat, placed on a website, or shared on social media.
The specific embedding and extracting algorithms may vary depending on the medium.
The main purpose of using the presented techniques is secret communication, but other
personal or business applications are also possible. The fact that the WebP format became
widespread in recent years is an advantage from steganographic points of view. This is
because uncommon files or any deviations from normal activity may arouse suspicions. On
the other hand, popular formats are considered as typical and expected, so their presence
is not questionable.

5. Conclusions

Undoubtedly, WebP is a modern format with a lot of features, like transparency,
metadata, or animations. It is also versatile, as the user may choose the compression
level to find a compromise between file size and image quality, and decide whether to
use lossy or lossless mode. The conducted experiments showed that the WebP format is
suitable for steganographic purposes and offers numerous embedding areas. Data may be
placed in specific fields defined in standard, outside the file data, in user-defined chunks,
or in data directly. Concealing secrets in data gives a few possibilities as well. In lossless
pictures with an alpha channel, secret information may be hidden in transparent pixels, in
indexed images, and neighboring colors may store a payload. The general technique of
data hiding during the selection of prediction modes produces images not very different
from pure carriers. Moreover, WebP may also be used for container selection, because a lot
of possible parameters available for encoding allow for the creation of big image databases.
The obtained results prove the potential of the WebP format for steganography, indicating
especially high capacity of the described methods. Further studies may explore more
features of the WebP format, for example, using animations and special types of frames.
Additionally, there is a potential to combine WebP steganography with machine learning
techniques. Time will tell the future of the WebP format, but its increasing presence on the
web is noteworthy and its possible applications in steganography should definitely have
their place among other methods.

Author Contributions: Conceptualization, K.K.; methodology, K.K. and M.R.O.; software, K.K.;
validation, K.K. and M.R.O.; investigation, K.K.; resources, K.K.; data curation, K.K.; writing—
original draft preparation, K.K.; writing—review and editing, K.K.; visualization, K.K.; supervision,
M.R.O.; project administration, K.K. and M.R.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2023, 13, 12404 18 of 21

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ARGB alpha, red, green, blue
ASCII American Standard Code for Information Interchange
BMP bitmap
CVE Common Vulnerabilities and Exposures
DCT Discrete cosine transform
DFT Discrete Fourier transform
WFT Discrete wavelet transform
EXIF EXchangeable Image Format
FFT Fast Fourier transform
GIF Graphics Interchange Format
ICC International Color Consortium
IPTC International Press Telecommunications Council
JPEG Joint Photographic Experts Group
LSB Least significant bit
PNG Portable Network Graphics
PVD Pixel value differentiation
RGB red, green, blue
RIFF Resource Interchange File Format
XML Extensible Markup Language
XMP Extensible Metadata Platform

References
1. Passeri, P. Q1 2023 Cyber Attacks Statistics. 2023. Available online: https://www.hackmageddon.com/2023/04/21/q1-2023-

cyber-attacks-statistics/ (accessed on 1 August 2023).
2. Yadnya, M.S.; Kanata, B.; Anwar, M.K. Using Phase Coding Method for Audio Steganography with the Stream Cipher Encrypt

Technique. In Informatics and Computer Science, Proceedings of the First Mandalika International Multi-Conference on Science and
Engineering 2022, MIMSE 2022, Mataram, Indonesia, 14–15 September 2022 ; Wijaya, I.G.P.S., Hwang, J., Widodo, A.M., Irawan, B.,
Eds.; Springer: Dordrecht, The Netherlands, 2022; pp. 66–75. [CrossRef]

3. Liu, M.; Guo, Y.; Zhou, L. Text steganography based on online chat. In Proceedings of the Fifth International Conference on
Intelligent Information Hiding and Multimedia Signal Processing, Kyoto, Japan, 12–14 September 2009; pp. 807–810.

4. Wang, Z.H.; Chang, C.C.; Kieu, T.D.; Li, M.C. Emoticon-based text steganography in chat. In Proceedings of the Asia-Pacific
Conference on Computational Intelligence and Industrial Applications, Wuhan, China, 28–29 November 2009; Volume 2,
pp. 457–460.

5. Qazanfari, K.; Safabakhsh, R. A new steganography method which preserves histogram: Generalization of LSB++. Inf. Sci. 2014,
277, 90–101. [CrossRef]

6. Westfeld, A. F5—A steganographic algorithm: High capacity despite better steganalysis. In Proceedings of the 4th International
Workshop on Information Hiding, Pittsburgh, PA, USA, 25–27 April 2001; pp. 289–302.

7. Provos, N. Defending against statistical steganalysis. In Proceedings of the 10th Conference on USENIX Security Symposium,
Berkeley, CA, USA, 13–17 August 2001; Volume 10, p. 24.

8. Saha, A.; Halder, S.; Kollya, S. Image steganography using 24-bit bitmap images. In Proceedings of the 14th International
Conference on Computer and Information Technology, Dhaka, Bangladesh, 22–24 December 2011; pp. 56–60.

9. Furuta, T.; Noda, H.; Niimi, M.; Kawaguchi, E. Bit-plane decomposition steganography using wavelet compressed video. In
Proceedings of the Fourth International Conference on Information, Communications and Signal Processing and the Fourth
Pacific Rim Conference on Multimedia, Singapore, 15–18 December 2003; Volume 2, pp. 970–974.

10. Bin, H.; Li-Yi, Z.; Wei-Dong, Z. A novel steganography algorithm based on motion vector and matrix encoding. In Proceedings
of the IEEE 3rd International Conference on Communication Software and Networks, Xi’an, China, 27–29 May 2011; pp. 406–409.

11. Kipper, G. Investigator’s Guide to Steganography; CRC Press LLC: Boca Raton, FL, USA, 2004.
12. Nair, A.; Kumar, A.; Sur, A.; Nandi, S. Length based network steganography using UDP protocol. In Proceedings of the IEEE 3rd

International Conference on Communication Software and Networks, Xi’an, China, 27–29 May 2011; pp. 726–730.
13. Savateev, E. Design of the steganography system based on the version 4 Internet protocol. In Proceedings of the Siberian

Conference on Control and Communications, Tomsk, Russia, 21–22 October 2005; pp. 38–51.

https://www.hackmageddon.com/2023/04/21/q1-2023-cyber-attacks-statistics/
https://www.hackmageddon.com/2023/04/21/q1-2023-cyber-attacks-statistics/
http://doi.org/10.2991/978-94-6463-084-8_8
http://dx.doi.org/10.1016/j.ins.2014.02.007

Appl. Sci. 2023, 13, 12404 19 of 21

14. Murdoch, S.; Lewis, S. Embedding Covert Channels into TCP/IP. In Proceedings of the IH’05: Proceedings of the 7th international
conference on Information Hiding, Barcelona, Spain, 6–8 June 2005; pp. 247–261. [CrossRef]

15. Li, Z.; Sun, X.; Wang, B.; Wang, X. A steganography scheme in P2P network. In Proceedings of the International Conference on
Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China, 15–17 August 2008; pp. 20–24.

16. Castiglione, A.; De Santis, A.; Soriente, C. Taking advantages of a disadvantage: Digital forensics and steganography using
document metadata. J. Syst. Softw. 2007, 80, 750–764. [CrossRef]

17. Castiglione, A.; D’Alessio, B.; De Santis, A.; Palmieri, F. New steganographic techniques for the OOXML file format. In
Proceedings of the IFIP WG 8.4/8.9 International Cross Domain Conference on Availability, Reliability and Security for Business,
Enterprise and Health Information Systems, Vienna, Austria, 22–26 August 2011; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 344–358.

18. Shirali-Shahreza, M.; Shirali-Shahreza, S. Steganography in TEXdocuments. In Proceedings of the 3rd International Conference
on Intelligent System and Knowledge Engineering, Xiamen, China, 17–19 November 2008; Volume 1, pp. 1363–1366.

19. Shiu, H.; Ng, K.L.; Fang, J.F.; Lee, R.; Huang, C.H. Data hiding methods based upon DNA sequences. Inf. Sci. 2010, 180, 2196–2208.
[CrossRef]

20. Cheddad, A.; Condell, J.; Curran, K.; Mc Kevitt, P. Digital image steganography: Survey and analysis of current methods. Signal
Process. 2010, 90, 727–752. [CrossRef]

21. Singh, A.; Singh, H. An improved LSB based image steganography technique for RGB images. In Proceedings of the 2015 IEEE
International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 5–7 March
2015; pp. 1–4. [CrossRef]

22. Elharrouss, O.; Almaadeed, N.; Al-ma’adeed, S. An image steganography approach based on k-least significant bits (k-LSB). In
Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5
February 2020; pp. 131–135. [CrossRef]

23. Zakaria, A.; Hussain, M.; Wahab, A.; Idris, M.; Abdullah, N.; Jung, K.H. High-Capacity Image Steganography with Minimum
Modified Bits Based on Data Mapping and LSB Substitution. Appl. Sci. 2018, 8, 2199. [CrossRef]

24. Mohamed, M.; Mohamed, L. High Capacity Image Steganography Technique based on LSB Substitution Method. Appl. Math. Inf.
Sci 2016, 10, 259–266. [CrossRef]

25. Patel, N.; Meena, S. LSB based image steganography using dynamic key cryptography. In Proceedings of the International
Conference on Emerging Trends in Communication Technologies (ETCT), Dehradun, India, 18–19 November 2016; pp. 1–5.

26. Koptyra, K.; Ogiela, M.R. Key Generation for Multi-Secret Steganography. In Proceedings of the 2015 2nd International
Conference on Information Science and Security (ICISS), Seoul, Republic of Korea, 14–16 December 2015; pp. 1–4. [CrossRef]

27. Cox, I.; Miller, M.; Bloom, J.; Fridrich, J.; Kalker, T. Digital Watermarking and Steganography; Morgan Kaufmann Publishers:
Burlington, MA, USA, 2008.

28. Johnson, N.F.; Jajodia, S. Exploring Steganography: Seeing the Unseen. Computer 1998, 31, 26–34. [CrossRef]
29. Gupta, S.; Gujral, G.; Aggarwa, N. Enhanced Least Significant Bit algorithm for Image Steganography. IJCEM Int. J. Comput. Eng.

Manag. 2012, 15, 40–42.
30. Zhang, T.; Li, W.; Zhang, Y.; Ping, X. Detection of LSB matching steganography based on distribution of pixel differences in

natural images. In Proceedings of the 2010 International Conference on Image Analysis and Signal Processing (IASP), Zhejiang,
China, 9–11 April 2010; pp. 548–552. [CrossRef]

31. A steganographic method for images by pixel-value differencing. Pattern Recognit. Lett. 2003, 24, 1613–1626. [CrossRef]
32. Swain, G. Very High Capacity Image Steganography Technique Using Quotient Value Differencing and LSB Substitution. Arab. J.

Sci. Eng. 2019, 44, 2995–3004. [CrossRef]
33. Gulve, A.; Joshi, M. A High Capacity Secured Image Steganography Method with Five Pixel Pair Differencing and LSB

Substitution. Int. J. Image, Graph. Signal Process 2015, 7, 66–74. [CrossRef]
34. Mansor, N.K.; Asraf, S.M.H.; Idrus, S.Z.S. Steganographic on Pixel Value Differencing in Iris Biometric. J. Phys. Conf. Ser. 2020,

1529, 032078. [CrossRef]
35. Rahman, S.A.E. A comparative analysis of image steganography based on DCT algorithm and steganography tool to hide nuclear

reactors confidential information. Comput. Electr. Eng. 2018, 70, 380–399. [CrossRef]
36. Provos, N.; Honeyman, P. Hide and Seek: An Introduction to Steganography. IEEE Secur. Priv. 2003, 11, 32–44. [CrossRef]
37. Li, X.; Wang, J. A steganographic method based upon JPEG and particle swarm optimization algorithm. Inf. Sci. 2007,

177, 3099–3109. [CrossRef]
38. Banoci, V.; Bugar, G.; Levicky, D. A novel method of image steganography in DWT domain. In Proceedings of the 21st

International Conference Radioelektronika 2011, Brno, Czech Republic, 19–20 April 2011; pp. 1–4. [CrossRef]
39. Chen, W.Y. Color image steganography scheme using set partitioning in hierarchical trees coding, digital Fourier transform and

adaptive phase modulation. Appl. Math. Comput. 2007, 185, 432–448. [CrossRef]
40. Baby, D.; Thomas, J.; Augustine, G.; George, E.; Michael, N.R. A Novel DWT Based Image Securing Method Using Steganography.

Procedia Comput. Sci. 2015, 46, 612–618. [CrossRef]
41. Hachaj, T.; Koptyra, K.; Ogiela, M.R. Eigenfaces-Based Steganography. Entropy 2021, 23, 273. [CrossRef]

http://dx.doi.org/10.1007/11558859_19
http://dx.doi.org/10.1016/j.jss.2006.07.006
http://dx.doi.org/10.1016/j.ins.2010.01.030
http://dx.doi.org/10.1016/j.sigpro.2009.08.010
http://dx.doi.org/10.1109/ICECCT.2015.7226122
http://dx.doi.org/10.1109/ICIoT48696.2020.9089566
http://dx.doi.org/10.3390/app8112199
http://dx.doi.org/10.18576/amis/100126
http://dx.doi.org/10.1109/ICISSEC.2015.7371013
http://dx.doi.org/10.1109/MC.1998.4655281
http://dx.doi.org/10.1109/IASP.2010.5476056
http://dx.doi.org/10.1016/S0167-8655(02)00402-6
http://dx.doi.org/10.1007/s13369-018-3372-2
http://dx.doi.org/10.5815/ijigsp.2015.05.08
http://dx.doi.org/10.1088/1742-6596/1529/3/032078
http://dx.doi.org/10.1016/j.compeleceng.2016.09.001
http://dx.doi.org/10.1109/MSECP.2003.1203220
http://dx.doi.org/10.1016/j.ins.2007.02.008
http://dx.doi.org/10.1109/radioelek.2011.5936455
http://dx.doi.org/10.1016/j.amc.2006.07.041
http://dx.doi.org/10.1016/j.procs.2015.02.105
http://dx.doi.org/10.3390/e23030273

Appl. Sci. 2023, 13, 12404 20 of 21

42. Li, X.; Zhang, T.; Li, K.; Ping, X. A Blind Detection Method for Additive Noise Steganography in JPEG Decompressed Images. In
Proceedings of the 2011 Third International Conference on Multimedia Information Networking and Security, Shanghai, China,
4–6 November 2011; pp. 489–493. [CrossRef]

43. Manikopoulos, C.; Shi, Y.Q.; Song, S.; Zhang, Z.; Ni, Z.; Zou, D. Detection of block DCT-based steganography in gray-scale
images. In Proceedings of the 2002 IEEE Workshop on Multimedia Signal Processing, St. Thomas, VI, USA, 9–11 December 2002;
pp. 355–358. [CrossRef]

44. Baluja, S. Hiding images in plain sight: Deep steganography. In Proceedings of the NIPS’17: Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 2066–2076.

45. Xintao, D.; Jia, K.; Li, B.; Guo, D.; Zhang, E.; Qin, C. Reversible Image Steganography Scheme Based on a U-Net Structure. IEEE
Access 2019, 7, 9314–9323. [CrossRef]

46. Bi, X.; Yang, X.; Wang, C.; Liu, J. High-Capacity Image Steganography Algorithm Based on Image Style Transfer. Secur. Commun.
Netw. 2021, 2021, 1–14. [CrossRef]

47. Mare, S.; Vladutiu, M.; Prodan, L. Secret data communication system using steganography, AES and RSA. In Proceedings of the
2011 IEEE 17th International Symposium for Design and Technology in Electronic Packaging (SIITME), Timisoara, Romania,
20–23 October 2011; pp. 339–344. [CrossRef]

48. Saini, J.K.; Verma, H.K. A hybrid approach for image security by combining encryption and steganography. In Proceedings of
the 2013 IEEE Second International Conference on Image Information Processing (ICIIP-2013), Shimla, India, 9–11 December
2013; pp. 607–611.

49. Katzenbeisser, S.; Petitcolas, F. Information Hiding Techniques for Steganography and Digital Watermarking, 1st ed.; Artech House
Computer Security Series; Artech House: Norwood, MA, USA, 2000.

50. Abboud, G.; Marean, J.; Yampolskiy, R. Steganography and Visual Cryptography in Computer Forensics. In Proceedings of the
2010 Fifth IEEE International Workshop on Systematic Approaches to Digital Forensic Engineering (SADFE), Oakland, CA, USA,
20 May 2010; pp. 25–32. [CrossRef]

51. Yuan, H.D. Secret sharing with multi-cover adaptive steganography. Inf. Sci. 2014, 254, 197–212. [CrossRef]
52. Zhang, X.; Wang, S.; Zhang, W. Efficient steganography based on a data decomposition mechanism. In Proceedings of the Third

International Conference on Communications and Networking in China (ChinaCom 2008), Hangzhou, China, 25–27 August 2008;
pp. 1248–1252. [CrossRef]

53. Koptyra, K.; Ogiela, M.R. Multiply information coding and hiding using fuzzy vault. Soft Comput. 2019, 23, 4357–4366. [CrossRef]
54. Zhang, H.; Hu, J.; Wang, G.; Zhang, Y. A Steganography Scheme Based on Fractal Images. In Proceedings of the 2011 Second

International Conference on Networking and Distributed Computing (ICNDC), Beijing, China, 21–24 September 2011; pp. 28–31.
[CrossRef]

55. Zhang, Z.; Fu, G.; Liu, J.; Fu, W. Generative Information Hiding Method Based on Adversarial Networks; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 261–270. [CrossRef]

56. Bailey, K.; Curran, K. An evaluation of image based steganography methods. Multimed. Tools Appl. 2006, 30, 55–88. [CrossRef]
57. Kim, C.; Yang, C.N.; Baek, J.; Leng, L. Survey on Data Hiding Based on Block Truncation Coding. Appl. Sci. 2021, 11, 9209.

[CrossRef]
58. Simmons, G. The subliminal channel and digital signature. In Theory and Application of Cryptographic Techniques, Lecture Notes

in Computer Science, Proceedings of the Eurocrypt 84 Workshop on Advances in Cryptology, Paris, France, 9–11 April 1984; Springer:
Berlin/Heidelberg, Germany, Volume 209, pp. 364–378.

59. Koptyra, K.; Ogiela, M.R. Subliminal Channels in Visual Cryptography. Cryptography 2022, 6, 46. [CrossRef]
60. Koptyra, K.; Ogiela, M.R. Fuzzy Vault Schemes in Multi-secret Digital Steganography. In Proceedings of the 10th International

Conference on Broadband and Wireless Computing, Communication and Applications, BWCCA 2015, Krakow, Poland, 4–6
November 2015; pp. 183–186. [CrossRef]

61. Koptyra, K.; Ogiela, M.R. Biometric Traits in Multi-secret Digital Steganography. In Proceedings of the Conference on New
Trends in Image Analysis and Processing—ICIAP 2017, Catania, Italy, 11–15 September 2017; Battiato, S., Farinella, G.M., Leo, M.,
Gallo, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 313–319.

62. Mansour, R.F.; Girgis, M.R. Steganography-based transmission of medical images over unsecure network for telemedicine
applications. Comput. Mater. Contin. 2021, 68, 4069–4085. [CrossRef]

63. Mansour, R.F.; Parah, S.A. Reversible Data Hiding for Electronic Patient Information Security for Telemedicine Applications.
Arab. J. Sci. Eng. 2021, 46, 9129–9144. [CrossRef]

64. Bankoski, J.; Koleszar, J.; Quillio, L.; Salonen, J.; Wilkins, P.; Xu, Y. V8 Data Format and Decoding Guide. 2011. Available online:
https://datatracker.ietf.org/doc/html/rfc6386 (accessed on 2 August 2023).

65. Alakuijala, J. Specification for WebP Lossless Bitstream. 2023. Available online: https://developers.google.com/speed/webp/
docs/webp_lossless_bitstream_specification (accessed on 3 August 2023).

66. Aas, J. Studying Lossy Image Compression Efficiency. 2013. Available online: https://blog.mozilla.org/research/2013/10/17
/studying-lossy-image-compression-efficiency/ (accessed on 10 August 2023).

67. Goodin, D. Incomplete Disclosures by Apple and Google Create “Huge Blindspot” for 0-Day Hunters. 2023. Available
online: https://arstechnica.com/security/2023/09/incomplete-disclosures-by-apple-and-google-create-huge-blindspot-for-
0-day-hunters/ (accessed on 10 August 2023).

http://dx.doi.org/10.1109/MINES.2011.68
http://dx.doi.org/10.1109/MMSP.2002.1203319
http://dx.doi.org/10.1109/ACCESS.2019.2891247
http://dx.doi.org/10.1155/2021/4179340
http://dx.doi.org/10.1109/SIITME.2011.6102748
http://dx.doi.org/10.1109/SADFE.2010.14
http://dx.doi.org/10.1016/j.ins.2013.08.012
http://dx.doi.org/10.1109/CHINACOM.2008.4685253
http://dx.doi.org/10.1007/s00500-018-3089-x
http://dx.doi.org/10.1109/ICNDC.2011.13
http://dx.doi.org/10.1007/978-3-030-14680-1_29
http://dx.doi.org/10.1007/s11042-006-0008-4
http://dx.doi.org/10.3390/app11199209
http://dx.doi.org/10.3390/cryptography6030046
http://dx.doi.org/10.1109/BWCCA.2015.87
http://dx.doi.org/10.32604/cmc.2021.017064
http://dx.doi.org/10.1007/s13369-021-05716-2
https://datatracker.ietf.org/doc/html/rfc6386
https://developers.google.com/speed/webp/docs/webp_lossless_bitstream_specification
https://developers.google.com/speed/webp/docs/webp_lossless_bitstream_specification
https://blog.mozilla.org/research/2013/10/17/studying-lossy-image-compression-efficiency/
https://blog.mozilla.org/research/2013/10/17/studying-lossy-image-compression-efficiency/
https://arstechnica.com/security/2023/09/incomplete-disclosures-by-apple-and-google-create-huge-blindspot-for-0-day-hunters/
https://arstechnica.com/security/2023/09/incomplete-disclosures-by-apple-and-google-create-huge-blindspot-for-0-day-hunters/

Appl. Sci. 2023, 13, 12404 21 of 21

68. Mills, R. Image Metadata and Exiv2 Architecture. Available online: https://exiv2.org/book/index.html (accessed on 10 August 2023).
69. Camera & Imaging Products Association. Exchangeable Image File Format for Digital Still Cameras: Exif Version 2.32.

2019. Available online: https://fotomagazin.hu/wp-content/uploads/2020/05/CIPA_DC_008_EXIF_2019.pdf (accessed on
2 August 2023).

70. Adobe Developers Association. TIFF 6.0 Specification. 1992. Available online: https://developer.adobe.com/content/dam/
udp/en/open/standards/tiff/TIFF6.pdf (accessed on 2 August 2023).

71. Kim, S.M.; Cheng, Z.; Yoo, K.Y. A New Steganography Scheme Based on an Index-Color Image. In Proceedings of the Sixth
International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 27–29 April 2009; pp. 376–381.
[CrossRef]

72. Coldwind, G. Steganografia w BMP. 2023. Available online: https://www.youtube.com/watch?v=60D-_xH63fg (accessed on
3 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://exiv2.org/book/index.html
https://fotomagazin.hu/wp-content/uploads/2020/05/CIPA_DC_008_EXIF_2019.pdf
https://developer.adobe.com/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
https://developer.adobe.com/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
http://dx.doi.org/10.1109/ITNG.2009.119
https://www.youtube.com/watch?v=60D-_xH63fg

	Introduction
	Materials and Methods
	Background Information about WebP Format
	Framework
	Format-Based Methods
	Simple Injection
	Thumbnail
	Metadata
	Chunk Injection

	Data-Based Methods
	Transparency
	Prediction Modes
	Color Indexing Transform
	Container Selection

	Results
	Format-Based Methods
	Simple Injection
	Thumbnail
	Metadata
	Chunk Injection

	Data-Based Methods
	Transparency
	Prediction Modes
	Color Indexing Transform

	Discussion
	Conclusions
	References

