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Abstract: The rapid development of the Internet of Things (IoT) has resulted in vast amounts of
widely distributed data. Sharing these data can spur innovative advancements and enhance service
quality. However, conventional data-sharing methods often involve third-party intermediaries,
posing risks of single-point failures and privacy leaks. Moreover, these traditional sharing methods
lack a secure transaction model to compensate for data sharing, which makes ensuring fair payment
between data consumers and providers challenging. Blockchain, as a decentralized, secure, and
trustworthy distributed ledger, offers a novel solution for data sharing. Nevertheless, since all
nodes on the blockchain can access on-chain data, data privacy is inadequately protected, and
traditional privacy-preserving methods like anonymization and generalization are ineffective against
attackers with background knowledge. To address these issues, this paper proposes a decentralized,
privacy-preserving, and fair data transaction model based on blockchain technology. We designed
an adaptive local differential privacy algorithm, MDLDP, to protect the privacy of transaction data.
Concurrently, verifiable encrypted signatures are employed to address the issue of fair payment
during the data transaction process. This model proposes a committee structure to replace the
individual arbitrator commonly seen in traditional verifiable encrypted signatures, thereby reducing
potential collusion between dishonest traders and the arbitrator. The arbitration committee leverages
threshold signature techniques to manage arbitration private keys. A full arbitration private key
can only be collaboratively constructed by any arbitrary t members, ensuring the key’s security.
Theoretical analyses and experimental results reveal that, in comparison to existing approaches,
our model delivers enhanced transactional security. Moreover, while guaranteeing data availability,
MDLDP affords elevated privacy protection.

Keywords: blockchain; Internet of Things; data transaction; local differential privacy; verifiable
encrypted signature

1. Introduction

With the widespread development and application of Internet of Things (IoT) tech-
nology, vast amounts of data from IoT sensors are collected, stored, and utilized [1]. Data
from a single sensor often fails to meet the requirements of users. The true value of IoT
lies in the sharing and comprehensive use of diverse sensing data. Data sharing promotes
the distribution of data resources, elevating work efficiency and quality, while spurring
innovative applications. For instance, in healthcare, data sharing can provide valuable
records of patient treatments and physical examinations, assisting medical professionals
in providing more targeted treatment plans [2]. In data markets, novel data transaction
models have emerged that allow data owners to sell their information to consumers. Big
data has evolved into a valuable asset [3].
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However, the current IoT system architecture is based on client–server communication.
IoT devices are connected to a central cloud server which is used to ensure the communica-
tion between devices and handle and store data. This centralized architecture may create a
single point of failure. This may increase security and privacy risks. Therefore, it is neces-
sary to adopt a new solution based on decentralized architecture [4]. Additionally, during
data transactions, due to the inherent mistrust between data providers and consumers, the
latter might delay or refuse payments after obtaining the data. Similarly, providers could
withhold datasets after receiving compensation, making fair payments between parties
hard to ensure. Given the aforementioned challenges in security, privacy preservation, and
fair payment, many data owners are reluctant to provide their data to third-party trading
platforms. The big data industry grapples with the challenge of “data islands". Hence,
there is an imperative need to adopt a decentralized data-sharing framework and establish
a secure, efficient data transaction model that ensures fair payment and safeguards data
providers’ privacy during transactions.

Blockchain, as a distributed ledger, embodies characteristics of decentralization, im-
mutability, and auditability and is frequently employed to address security issues tied to
traditional IoT systems [5]. Compared to conventional centralized IoT systems, a decentral-
ized IoT system based on blockchain has several advantages: firstly, it achieves end-to-end
communication without involving centralized servers, reducing single-point failure risks
and bolstering fault tolerance; secondly, nodes on the blockchain can verify the integrity
and identity information of data uploaded by other nodes, which can prevent malicious
data tampering and ensure the security and consistency of the blockchain network; finally,
blockchains store data and event logs in an immutable manner, giving blockchain-based
IoT systems traceability and accountability.

Nevertheless, each node in the blockchain maintains a local backup of the entire
blockchain to uphold the network’s integrity. Given that all nodes have access to blockchain
data, this backup mechanism has raised growing concerns about privacy. There’s a poten-
tial risk of sensitive information being exposed. Traditional privacy-preserving techniques,
such as anonymization and generalization, have proven inadequate when faced with at-
tackers possessing background knowledge [6]. This inadequacy is evident from significant
privacy leaks in datasets like AOL [7] and Netflix [8], leading to questions about the effec-
tiveness of these methods in protecting user privacy. Differential privacy, which is a notable
method to counter attackers with background knowledge, operates by adding random
“noise” to datasets to ensure data privacy [9,10]. However, while differential privacy intro-
duces “noise” to maintain privacy, it compromises data availability. Determining the right
amount of “noise” to strike a balance between dataset availability and privacy remains a
research challenge.

In the context of ensuring fair payment, verifiable encrypted signatures are commonly
used to guarantee transaction fairness online. The concept of verifiable encrypted signatures
was first introduced by ASOKAN [11] and involves three parties: the signer, the verifier,
and a trusted third party (i.e., an arbitrator). The fundamental principle behind verifiable
encrypted signatures is that the signer encrypts a conventional digital signature using
the arbitrator’s public key, thereby confirming that the ciphertext genuinely contains a
standard signature. Any verifier can use the arbitrator’s public key to verify its validity.
Nevertheless, without the help of the signer or the arbitrator, it is impossible to extract
a valid signature. The ordinary signature can only be recovered by the adjudicator from
this encrypted signature. However, in such a situation, the impartiality and security of
a single arbitrator cannot always be guaranteed. Dishonest traders might collude with
the arbitrator to the detriment of the other party. Furthermore, if the arbitration node
experiences a single-point failure, the potential loss of the arbitration private key could
render the arbitration process unfeasible.

To address these challenges, this paper proposes a decentralized, privacy-preserving,
and fair IoT data transaction model based on blockchain. We have developed an adaptive
localized differential privacy algorithm, termed MDLDP (Multiple Disturbance of Local
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Differential Privacy), which perturbs data prior to its integration into the blockchain, ensur-
ing the protection of local data privacy. We also leverage verifiable encrypted signatures
to ensure fairness during transactions. This model replaces the traditional single arbitra-
tor, commonly found in conventional verifiable encrypted signatures, with an arbitration
committee. The arbitration committee employs threshold signature techniques to manage
arbitration private keys. Only by collaborating among any arbitrary set of t members can
the reconstruction of the complete arbitration private key be achieved. Assuming that
any t members act securely and honestly, the impartiality and security of the arbitration
committee can be guaranteed. This setup precludes both the loss of arbitration private keys
and the potential collusion between dishonest traders and arbitrators. Theoretical analysis
and experimental results indicate that our model offers heightened transaction security
compared to existing approaches. Additionally, the MDLDP algorithm not only ensures
data availability but also provides augmented privacy protection.

2. Related Works
2.1. Blockchain and Differential Privacy

With the widespread adoption of blockchain technology, a secure and distributed
ecosystem has been established for the Internet of Things (IoT). This technology is increas-
ingly being utilized across diverse IoT sectors to build robust data-sharing solutions [12].
In the domain of Industrial IoT, the complexity of manufacturing processes increases due
to the varied nature of the industries involved. As the final products frequently origi-
nate from multiple departments that span various sectors, concerns about privacy and
security arise during cross-domain interactions. Singh et al. [13] presented a centralized
cloud cross-domain data-sharing platform employing multiple security gateways. These
gateways employ blockchain technology to upload information to a centralized cloud.
When applications report malicious activities, the centralized cloud employs blockchain
verification to validate the reports and subsequently impose penalties on the responsible
parties. However, this approach cannot guarantee the impartiality and security of the
centralized cloud. Lu et al. [14] designed a blockchain-empowered secure data-sharing
architecture for distributed multiple parties. They formulate the data-sharing problem
into a machine learning problem by incorporating privacy-preserved federated learning.
The privacy of data is well maintained by sharing the data model instead of revealing the
actual data. In the field of Medical IoT, Sabu et al. [15] proposed a model that combines
blockchain with the Interplanetary File System (IPFS) to address privacy and security
concerns associated with data sharing. This model provides restrictions and protective
measures for users’ personal data. The data in the IPFS is distributed among nodes, and
using IPFS to store health records has the feature of tamper resistance. Nevertheless, this
mechanism lacks effective protection for the raw data. Thantharate et al. [16] presented
ZeroTrustBlock—a comprehensive blockchain-based framework for secure and private
health data management that addresses limitations in mainstream health IT systems. The
proposed architecture provides a decentralized medical record repository using a permis-
sioned blockchain. Smart contracts enact fine-grained access policies tailored to patient
consent. A hybrid on-chain and off-chain storage model balances transparency with confi-
dentiality. Integration gateways enable interoperability with existing systems like EHRs
and insurance platforms. In the field of smart transportation, Cui et al. [17] propose a secure
and efficient data-sharing scheme among vehicles without the assistance of an RSU in IoV.
They exploit consortium blockchain technology to achieve traceability and immutability of
data-sharing records. The scheme prevents unauthorized data sharing and improves the
security and privacy of the data-sharing process. To meet the requirements of vehicle speed,
latency, and communication overhead in the actual environment of vehicle networking,
Du et al. [18] modified the original PBFT consensus structure and designed an extensible
double-layer PBFT consensus algorithm. In addition, a multi-weight subjective logic model
CRMWSL for calculating reputation values was proposed to achieve accurate calculation
of RSU node reputation values. Meanwhile, suitable nodes are elected into the committee



Appl. Sci. 2023, 13, 12389 4 of 19

to participate in consensus according to their reputation values, which further reduces
communication overhead and improves blockchain scalability. Miao et al. [2] advocated for
data sharing through model sharing and introduced a secure mechanism called BP2P-FL,
which utilizes peer-to-peer federated learning. By introducing blockchain into data sharing
and recording every training process, data providers are able to provide high-quality data.
To protect privacy, BP2P-FL uses differential privacy techniques to disturb the global data-
sharing model, but this mechanism cannot guarantee privacy safety during the federated
learning process. Fotiou et al. [10] proposed a data transaction model employing Local
Differential Privacy (LDP) to safeguard data provider privacy and devised a blockchain-
based solution to ensure fair exchange and immutable data logs. However, traditional LDP
mechanisms cannot fit well with blockchain since the requirements of a fixed input range,
large data volume, and using the same privacy budget, which are practically difficult in
a decentralized environment. To address this, Zhang et al. [19] presented a novel local
differential privacy mechanism to partition and perturb data, which does not mandate vast
data volumes or fixed input ranges. By using an iteration approach to adaptively allocate
the privacy budget for different perturbation procedures that minimize the total deviation
of perturbed data and increase the data availability.

2.2. Fair Payment

In recent years, the big data transaction market has garnered significant attention
from researchers. In data transactions, fair payment refers to the timely receipt of the
agreed-upon dataset or compensation when both parties of the transaction comply with
the transaction agreement in good faith [20]. Zhou et al. [21] proposed a distributed data
vending framework based on blockchain by combining data embedding and similarity
learning. They obtained the trade-off between data retrieval and leakage risk by indexing
the data. Niu et al. [22] proposed TPDM, which integrates trust and privacy preserv-
ing in data markets by using homomorphic encryption and identity-based signatures.
However, these mechanisms do not adequately address the fair payment issue between
trading parties. Djuric et al. [23] propose the Fair Exchange Internet Payment Protocol
(FEIPS) for the payment of physical goods. Although FEIPS has a strong emphasis on
fair exchange, it still guarantees strong security properties, including confidentiality, data
integrity, authentication, and non-repudiation. Goldfeder et al. [24] contemplated the fair
payment problem when purchasing physical goods with cryptocurrencies and proposed
a series of protocols. These protocols offer security and privacy and are compatible with
blockchain-based cryptocurrencies like Bitcoin. Chen et al. [25] propose a fair exchange
protocol for autonomous data sharing and describe a concrete implementation framework
based on BTC. The concrete framework is designed based on BVM smart contract scripts.
Nevertheless, these protocols all rely on trusted third parties. Kurtulmus et al. [26] estab-
lished a protocol using blockchain technology, wherein participants do not need mutual
trust. Users can employ their datasets to train machine learning models and obtain rewards.
However, this protocol lacks effective protection for local data. Wang et al. [27] propose an
auditable fair payment and physical asset delivery protocol based on smart contracts. In
view of the phenomenon of goods being switched, the way of “pre-verification” is added.
In addition, this plan designs a complete return process for the first time, providing a better
service experience and higher efficiency for consumers. Zhao et al. [28] propose a new
blockchain-based fair data trading protocol in the big data market, to enhance the privacy,
availability, and fairness of data trading. The advantage of blockchain infrastructures is
removing the single-point failure of the big data market. They enhance the anonymity of
data providers and extend DAPS to data trading for fairness. At the same time, they use
similarity learning to enhance the availability of trading data.
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3. Background Knowledge
3.1. Blockchain

Blockchain is a peer-to-peer network comprised of multiple participating nodes. It can
be regarded as a distributed ledger characterized by decentralization, tamper-resistance,
non-forgery, and traceability. Transaction information is recorded in block structures that
include timestamps, and each block contains a pointer to its predecessor. The blockchain
is maintained collaboratively by all participating nodes, with its consistency ensured via
consensus algorithms. Depending on the access rules, blockchains can be categorized
into public blockchains and consortium blockchains. In public blockchains, the number
of participating nodes is not fixed, and they have the freedom to join or exit at will. For
consortium blockchains, only users who have undergone identity verification and received
authorization are permitted to join.

3.2. Local Differential Privacy

Traditional data privacy protection techniques, such as k-anonymity [29] and gener-
alization [30], lack universal applicability due to their absence of a strong mathematical
foundation to define data privacy and data loss. Moreover, they are ineffective against at-
tackers armed with background knowledge. The emergence of differential privacy [31–33]
has effectively addressed this issue. This model is a robust privacy protection technique
based on mathematical theory. Differential privacy is unconcerned with an attacker’s
background knowledge, even if the attacker possesses information on all records except
one, that single record’s privacy remains uncompromised. Local differential privacy is a
distributed variant of differential privacy that allows each user to locally perturb the raw
data to protect privacy before uploading it. It is defined as follows [34]:

Definition 1 (ε-Local Differential Privacy): If there exists a randomized algorithm M, for any
two distinct tuples vi and v′i in dataset D and any potential output y ∈ Y (Y being the output
domain of M), that satisfies

Pr[M(vi)Y] ≤ eε × Pr
[
M
(
v′i
)
Y
]
, (1)

then the randomized algorithm M is said to satisfy ε-local differential privacy. Here, Pr[•] indicates
the probability of the output result. ε is referred to as the privacy budget, which represents the level
of data privacy protection. The smaller its value, the closer the probabilities over adjacent datasets,
and the higher the level of data privacy protection.

A commonly employed technique to realize local differential privacy is the randomized
response mechanism [35]. The principle behind this mechanism is that when users respond
to sensitive Boolean questions, they answer truthfully with probability P and oppositely
with a probability of 1-P. Local differential privacy is built on a rigorous mathematical
foundation that ensures data privacy protection even when the attacker has maximum
background knowledge.

3.3. Verifiable Encrypted Signature

The basic principle of verifiable encrypted signatures is as follows [36]: Data con-
sumers encrypt the arbitrator’s digital signature using their public key and verify if the
signature truly exists in the ciphertext. Anyone can validate the validity of the signature
via the arbitrator’s provided public key. In the case of disputes, arbitrators can use their
private keys to decrypt encrypted signatures and prevent traders from maliciously with-
holding digital signatures. Verifiable encrypted signatures effectively ensure fairness in
online transactions and protect both parties from potential losses. The verifiable encrypted
signature protocol comprises the following eight algorithms:

(1) Setup(1λ)→ pp : Generates the open parameter pp by giving the parameter λ.
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(2) AdjKeyGen(pp) → (APK, ASK): By disclosing the parameters pp, generate the ar-
biter’s key pair (APK, ASK).

(3) KeyGen(pp, APK) → (pki, ski): Generating signer i by disclosing the parameters pp
and the arbiter’s public key APK of the key pair (pki, ski).

(4) Sign(pp, ski, m)→ σi : By disclosing the parameters pp, private key ski and message
m, generating signer i of the digital signature σi.

(5) Verify(pp, pki, m)→ 0/1 : Verify the validity of the digital signature σi by disclosing
the parameters pp, public key pki and message m. If the algorithm outputs 1 it means
that the signature is valid and outputs 0 it means that the signature is invalid.

(6) VESSign(ski, m, APK)→ σVES
i : Generate a verifiable encrypted signature σVES

i by
utilizing the private key ski, message m, and the arbiter’s public key APK.

(7) VESVerify
(

pki, m, APK,σVES
i

)
→ 0/1 : By public key pki, message m, arbiter public

key APK as well as the verifiable encrypted signature σVES
i , verifying the validity of

the verifiable encrypted signature σVES
i . If the algorithm outputs 1, the cryptographic

signature can be verified as valid, while an output of 0 indicates that it is invalid.
(8) Adj

(
pki, APK, ASK, m,σVES

i
)
σi: By public key pki, APK, the private key of the arbiter

ASK, message m and a verifiable encrypted signature σVES
i to obtain the digital

signature σi.

3.4. Threshold Signature

In 1987, Yvo Desmedt first introduced the concept of threshold signatures [37]. The
threshold signature mechanism allows any t signatories out of r to sign a message. However,
if the number of signatories is less than t, a valid signature cannot be generated. The scheme
is described as follows [38]:

Let Z be a finite field, and q be a large prime number in that field. ci (where i = 1, 2, . . .,
r) represent the r participants. A t − 1 degree polynomial is randomly selected as:

f (x) = a0 + a1x + a2x2 + · · ·+ at−1xt−1 mod q, (2)

where ai ∈ Z(q) (for i = 1, 2, . . ., t − 1). Compute si = f (xi) for i = 1, 2, . . ., r, and send si as a
secret share to participant ci. Using any t sub-keys, the secret can be reconstructed such
that:

s = f (0) =
t

∑
i=1

si

t

∏
l=1,l 6=i

−xi
xi − xl

mod q, (3)

4. System Model

This section introduces our proposed blockchain-based security, privacy-preserving,
and fair data transaction model.

4.1. System Overview

In the model, data is perturbed using local differential privacy before the transaction
to protect data privacy, and verifiable encrypted signatures are used to ensure the fairness
of the transaction. An arbitration committee is established to replace the traditional single
arbitrator, with the intention of preventing potential collusion between dishonest parties
and the arbitrator during the transaction. The system assumes that IoT devices are pro-
grammable and can implement local differential privacy. The model views IoT devices as
nodes in the blockchain, which can effectively prevent single-point failures. It also securely
records information about data disturbances and transactions in an immutable manner to
ensure the traceability of transactions.

The system overview is illustrated in Figure 1. As depicted in Figure 1, the system
primarily consists of four components: data consumers, data providers, the arbitration
committee, and the blockchain. Specifically, data consumers issue data transaction requests.
Data nodes that meet the requirements and are interested can apply to become data
providers for a given transaction. After the application is approved, the data provider will
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consider their privacy and reward needs to determine their privacy budget and perturb
their local data preparation for transactions. The transaction employs verifiable encrypted
signatures to sign the transaction agreement, with the arbitration public key synthesized by
a random subset of t members from the arbitration committee. Ultimately, the blockchain
records transactional information, including data perturbations, to facilitate traceability.
Further details on each component of the model will be explained below.
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(1) Data Consumers: Based on their specific needs, they issue a data trading request.
Data consumers may need to ensure the size of transaction data due to statistical
and other business needs. Meanwhile, the smaller the privacy budget of differential
privacy, the lower the availability of transaction data. Therefore, the minimum data
volume and minimum privacy budget are specified in the data transaction request.
Subsequently, they make a payment that serves as a deposit to prevent any malicious
behavior on their part. Data nodes that meet the criteria of the consumer’s request
and are interested in it can apply to participate in this data transaction. Ultimately, a
transaction agreement is signed using a verifiable encrypted signature, after which
they obtain the dataset, now distorted with noise, and paid compensation.

(2) Data Providers: Refers to nodes that meet the demands of the data consumers and suc-
cessfully partake in the data transaction. These providers aspire to earn compensation
from the current data transaction. However, they might be unable to meet the data
volume requirements of the data consumer individually due to limitations in their
storage or limited data resources. When data providers apply to join a transaction,
they must declare their own data size. If the cumulative data size of all the providers
does not meet the consumer’s needs, the transaction is then canceled. Similarly, to
prevent malicious behavior, data providers must also pay a deposit when applying to
participate in the transaction.

(3) Arbitration Committee: This committee is selected through mutual consultation
between both trading parties and is exclusively valid for the current transaction.
Committee members are also required to pay a deposit to prevent malicious behavior,
such as delaying or refusing arbitration. At the same time, in order to motivate
committee members, they will receive rewards after completing the arbitration on
time, which come from both parties involved in the transaction that require arbitration.
The number of members, r, in the committee adheres to the rule t < r ≤ 2t − 1. After
the committee’s formation, each member receives a secret share si of the arbitration
private key, distributed by the key management entity. If any abnormality occurs
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during the transaction process, such as one party exhibiting dishonest behavior and
refusing to use its private key to decrypt a verifiable encrypted signature, any member
of the committee can jointly rebuild the arbitration private key, decrypt it, and extract
the digital signature. As long as any t members within the committee are honest and
secure, it ensures the fairness of the arbitration committee and the security of the
private key.

(4) Blockchain: Consortium blockchains, as a specific type of blockchain, possess ac-
cess controls, comply with the requirement of reviewing user settings, and maintain
a relatively stable set of participating nodes. The system employs the consortium
blockchain as a distributed environment required for data trading between data con-
sumers and providers. Throughout the data trading process, all participating entities
collaboratively maintain the blockchain ledger. Failures or departures of individual
nodes will not disrupt the entire data transaction process, thereby enhancing the
robustness of the data trading market. Furthermore, due to the blockchain’s inherent
attributes of transparency, immutability, and traceability, transaction details and the
reputation evaluations of participants are logged onto the blockchain. Nodes with
malicious behaviors are penalized, enhancing the model’s security and fairness.

4.2. Threats and Security Goals

The system assumes the data provided by the data providers is genuine. These nodes
have undergone rigorous review before joining and aim to achieve a successful transaction
with a high-quality noisy dataset. However, they could potentially face challenges related
to privacy, security, or fair reward. The following discusses the threats faced by the system
and the security goals achieved in responding to these threats.

Threat 1: Privacy leakage of data providers. The information offered by data providers
could pose severe adverse consequences, such as the exposure of sensitive details (names,
addresses, phone numbers, social accounts, etc.). Malicious entities may use this informa-
tion to pose threats to users’ personal safety and assets. In addition to personal information,
other data provided can also be used for data analysis to reveal preferences, interests,
behaviors, etc. This may have adverse effects, such as dynamic pricing based on big data.

Security Goal 1: Privacy protection of local data. Throughout the data transaction
process, without voluntarily disclosing their local data, data providers will not compromise
the privacy of sensitive data. No data provider can directly or indirectly access the real
data information of other data providers during the cooperative transaction process. Data
providers use local differential privacy to perturb sensitive data before uploading it, rather
than sending plaintext, which ensures that no one can infer the provider’s local data
information from the perturbed dataset.

Threat 2: The erroneous behavior of participants. Mainly including three types of
incorrect behavior: (1) data providers deceitfully report a larger data size to garner more
compensation while providing a smaller actual size; (2) after receiving payment, the
data provider intentionally fails to send the perturbed dataset, which will result in direct
losses for the data consumer; (3) after obtaining the perturbed dataset, data consumers
intentionally withhold payments, which will result in direct losses for the data provider.

Security Goal 2: Fair protection of reward for data providers. The system weighs a
data provider’s reward based on three key aspects: (1) size of the local data size, which
remains unchanged after perturbation. (2) Privacy budget: a smaller privacy budget
means higher privacy protection and lower data availability, which means less reward,
and vice versa. (3) Credibility value: only by diligently participating in data perturbation
and trading more data size can providers elevate their credibility score, with those erring
seeing a reduction. High credibility ensures more rewards. Additionally, the system
also implements punitive measures. Providers who misbehave will be fined and honest
providers will be compensated.

Security Goal 3: Secure transactions. The transaction process utilizes the verifiable
encrypted signature technology. Both parties first agree on the transaction terms. Following



Appl. Sci. 2023, 13, 12389 9 of 19

this, the data consumer signs the agreement using a verifiable encrypted signature, which
anyone can verify for validity. Once the signature’s validity is confirmed, the data provider
furnishes the perturbed dataset. After receiving this dataset, the data consumer uses their
private key to extract their signature, completing the transaction. If the data consumer
cheats and refuses to use their key, the data provider can appeal to the arbitration committee
for decryption and penalize the deceitful party.

4.3. Workflow

Table 1 enumerates and explains the relevant symbols:

Table 1. Description of symbols.

Symbol Description

Ps, Pc
data providers and data consumers engaged in

transactions

N minimum data volume required by Pc

ε minimum privacy budget required by Pc

Pi the i-th data provider

Di, di The local raw dataset of Pi,the size of the datasetDi

εi The privacy budget of Pi

Li, li The private dataset of Pi , the size of the dataset of Li

Gi The perturbed dataset of Pi

αi The privacy protection level of Li

n the number of data providers

APK arbitration public key for verifiable encrypted signatures

(pkc, skc)
The public key and private key for encrypting and

decrypting signatures by Pc

intersect(X, Y) function to determine the number of common elements
between sets X and Y

Based on processes 1© to 7© in Figure 1, the workflow of the system mainly includes
four stages: initialization, local data perturbation, data transaction, and arbitration.

Initialization stage: Data consumers issue a data transaction request T (N, ε) to the
blockchain and deposit a fee as collateral (as in Process 1©). Data nodes can apply based on
their computational capacity and data resource conditions. Nodes approved for the task
become data providers for this transaction and also contribute a fee as a deposit. During
the application process, data node i states its local data size di. If the final total data size
∑n

i=1 di is less than N, the task is aborted. The specific approval method can be through
offline negotiations, which is beyond the paper’s primary focus. Nodes not involved in
the transaction can propose to form an arbitration committee with data consumers and
providers. Members of the arbitration committee must gain mutual consent from both
transaction parties.

Local data perturbation stage: Firstly, the data provider Pi clarifies that the dataset
Di they are about to use for transactions and the privacy dataset Li they want to focus
on protecting belong to Di. Then, based on their own situation, they balance the privacy
protection of data and the transaction rewards they want to obtain to determine their
respective privacy budget εi. The privacy budget εi cannot be less than the minimum
privacy budget ε required by data consumers Pc. Due to the characteristics of differential
privacy technology, the larger the privacy budget, the higher the data availability, and
the greater the rewards obtained, but the weaker the privacy protection. Conversely,
the smaller the privacy budget, the better the privacy protection, but the lower the data
availability, and the fewer transaction rewards obtained. Next, the data provider Pi utilizes
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the algorithm MDLDP to locally perturb dataset Di to obtain perturbed dataset Gi for
transaction (as shown in process 2©). In order to achieve better privacy protection for Li, i.e.,
a greater degree of privacy protection αi, the algorithm MDLDP requires multiple random
perturbations to select one of the best results. Due to the unchanged privacy budget εi, the
overall availability of dataset Gi has not decreased. Finally, the data provider Pi uploads
the perturbed dataset Gi and privacy budget εi and other information to the blockchain
for transaction (as in process 3©). The MDLDP algorithm is as follows (Algorithm 1):

Algorithm 1. The MDLDP Algorithm

Input: Di, εi, Li
Output: Gi, αi
1: Create array indice [Li] for storing the index of dataset Li;
2: Create array indice [Gij] storing the index of the perturbed data in dataset Gij;
3: pi = exp{εi}/(exp{εi} + di − 1);
4: for j 1 to h by 1 // independent perturbations of the original dataset Di h times
5: for z 1 to di by 1 // Randomly perturb each element in dataset Di with probability 1− pi
6: if rand() < pi
7: gijz = valueijz; // valueijz refers to the true value in Di, gijz is an element in Gij
8: else
9: gijz = rand(Di)/valueijz;
10: end
11: Obtaining perturbed dataset Gij;

12: αij = intersect
(

indice
[

Gij

]
, indice[Li]

)
/li; // Calculate degree of privacy protection αij to

evaluate the effectiveness of this perturbation
13: end
14: Take αij the result of the largest perturbation as Gi and αi;
15: return Gi, αi.

Data transaction stage: Initially, the data provider Ps aggregates all data from providers
(as in Process 4©) and negotiates with data consumer Pc regarding fees and data sharing,
primarily encompassing reward details. Following this, Pc and Ps generate their respective
key pairs (pkc, skc) and (pks, sks) using the public key APK. Pc generates his true signature
σi based on Sign(pp, skc, m). Pc then produces a verifiable encrypted signature σVES

c using
VESSign(skc, m, APK) to sign the transaction agreement. Anyone can validate the validity
of the signature via the arbitrator’s provided public key APK. But without the help of
the Pc or the arbitration committee, it is impossible to extract the true signature σi. Once
the agreement is signed and validated, Ps delivers the perturbed data set G = ∑n

i=1 Gi
to Pc. After confirming the G dataset, Ps decrypts the encrypted signature σVES

c using its
private key skc and extracts the true signature σi to validate the agreement and complete
the transaction (as in Process 5©).

Arbitration stage: If Pc acts deceitfully during the transaction, refusing to decrypt the
encrypted signature σVES

c to extract the true signature σi to complete the agreement, i.e.,
paying compensation. Data providers Ps can seek assistance from arbitration committees.
any t members within the arbitration committee can utilize Equation (3) to reconstruct the
arbitration private key ASK (as in Process 6©). Based on the characteristics of verifiable
encrypted signature technology, the private key ASK can directly extract the true signature
σi of data consumer Pc from the encrypted signature σVES

c (as in Process 7©). Forcing data
consumer Pc to execute agreements to pay compensation. Dishonest trading behavior will
result in the confiscation of margin as compensation for honest traders and arbitrators.

5. Verifiable Encrypted Signature

To facilitate fair transactions and safeguard both transaction parties’ legitimate rights,
this paper introduces a verifiable encrypted signature protocol. Traditional verifiable
encrypted signature protocols assume a single and neutral arbitrator [39], but such an
arbitrator may experience a single point of failure or cheating behavior. To address this
issue, we merge the verifiable encrypted signature with the threshold signature, replacing
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the traditional arbitrator with a committee. Every committee member holds a secret share
si, and any t members can reconstruct the arbitration private key. The verifiable encrypted
signature protocol is detailed below:

Setup: enter the security parameter λ, choose two large primes of length λ/2, and
compute the product of these two large primes N. Choose a random element in the group
Z∗Φ(N), and compute the element s such that se = 1 mod Φ(N). The system public key is (N,
e). The corresponding private key is (N, s), according to Equation (2), s is divided into r
parts, held by r members of the arbitration committee. When arbitration is needed, any t
members can use Equation (3) to reconstruct s and decrypt the corresponding verifiable
encrypted signature.

KeyGen: The data provider Ps randomly selects g1Z∗Φ(N), and selects xs{0, 1}λ, calcu-

lates g = g1
2 mod N, ys = gxs mod N. The data consumer Pc selects the element xc ∈ {0, 1}λ

and computes yc = gxc mod N. The public key for Ps is ys, with a private key sks = xs. The
public key for Pc is yc, with a private key skc = xc.

Sign: outputs the transaction protocol Tx, Pc computes a signature

σc = H(Tx)s mod N.

Verify: taking as input the transaction agreement Tx, signature σc and the system
public key (N, e). Verify whether the

σc
e = H(Tx)s mod N.

If the equation holds, output 1, indicating that the signature σc is valid, otherwise
output 0, indicating that the signature is invalid.

PreSign: Pc select the element r ∈ {0, 1}λ, and calculate yr = grmod N and also
calculate the secret factor u = yxc

s mod N and m′ = ueH(Tx)mod N. Ps Calculate the secret
factor u′ = yxs

v mod N, and verify whether m′ = u′eH(Tx)mod N.
VESSign: Pc selects an element t from the set t ∈ {0, 1}λ, and calculates σ′ =

m′2syr
cmod N, ye = ye

smod N, yer = yr
smod N, yt = gtmod N, yet = yt

emod N, c =
H(m′, yer, yr, ye, g, yet, yt). Pc then computes z = t− rc, and outputs the verifiable encrypted
signature σVES

c = (σ′, c, z).
VESVer: Given the system’s public key (N, e), Pc’s public key pkc, Ps’s public key pks,

and the parameters g, m′, yr, as well as the verifiable encrypted signature σVES
c , computes

wer = σ′em′−2 mod N, y′e = ye
smod N,wer = y′ze wc

er mod N, wt = gzyc
r and

c′ = H
(
m′, wer, yr, y′e, g, wet, wt

)
If c = c′, then output 1, indicating that the verifiable encrypted signature σVES

c valid.
Otherwise, output 0, indicating that the signature is invalid.

VESExt: given the output σ′, yr, u′, Ps compute σs = σ′
(
yxc

r
)−1u′−2modN.

Assume that 2α+ eβ = 1, then H(Tx)d = σα
s H(Tx)βmod N, Ps extracts σc from σs.

6. Security Analysis
6.1. Privacy Protection

We use a lemma to prove that the model can protect the privacy of data providers Pi.

Lemma 1: If the data provider Pi does not leak data locally, the proposed model ensures the privacy
and security of the data provider.

Proof. The data provider Pi determines the dataset Di used for the transaction before
the transaction and determines the privacy budget εi based on privacy protection and
compensation needs. Then, the algorithm MDLDP is used to perturb dataset Di to obtain
Gi. Finally, upload the privacy budget εi and perturbed dataset Gi to the blockchain for
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transaction. The entire process is conducted locally, so this model can ensure the privacy
and security of the data provider Pi. �

6.2. Fairness Assurance

The system’s transaction mechanism and financial incentive structure guarantee fair-
ness for data providers. This mechanism will prevent malicious behavior by data providers
and encourage them to actively provide perturbed datasets. Data providers must pay a
fee as a deposit when registering for a transaction. The size of the provided data and the
privacy budget serve as bases for reward, both correlating positively with the reward. In
addition to transaction rewards, data providers can earn bonuses tied to their reputation
score. Only by actively and honestly providing data can they enhance their credibility.
High-credibility data providers will receive more rewards. The system enforces penalties:
dishonest data providers will be fined, with deductions made from their initial deposit,
compensating honest data providers in the process.

6.3. Transactional Security

Lemma 2: If any t members of the arbitration committee are honest, then the verifiable encrypted
signature protocol proposed in this paper achieves fair payment.

Proof. There are only four situations in the transaction process: (1) both parties are honest;
(2) The data provider Ps is honest, while the data consumer Pc is dishonest; (3) Data
consumers Pc are honest, while data providers Ps are dishonest; (4) Both parties in the
transaction are dishonest. �

Situation (1). The data provider Ps will provide the data G =
n
∑

i=1
Gi honestly, and the

data consumer Pc will also pay the compensation honestly, which is fair to both parties.
Situation (2). The data provider Ps and the data consumer Pc have negotiated an

agreement regarding payment of compensation. The data provider Ps provides the data
G after verifying the verifiable encrypted signature σVES

c of the data consumer Pc, and
the data consumer Pc refuses to decrypt the encrypted signature σVES

c after obtaining the
dataset G. Any t members of the arbitration committee will collaborate to generate the
arbitration private key ASK, which can directly decrypt the encrypted signature σVES

c to
make the payment agreement effective. The implementation of the agreement will be
resolved by law. Ensuring fairness.

Situation (3). The data provider Ps and data consumer Pc negotiate a payment agree-
ment, and the data consumer Pc performs a verifiable encrypted signature σVES

c on the
payment agreement, but the data provider Ps refuses to provide the dataset G. The probabil-
ity of a data provider Ps successfully cracking an encrypted signature without a private key
to defraud a reward is negligible. Meanwhile, due to the number of committee members
t < r ≤ 2t − 1, and t members being honest, it is impossible for t dishonest members to
collude with data providers Ps, and dishonest data providers Ps cannot receive any rewards.
Ensuring fairness.

Situation (4). The data provider Ps will not provide the data honestly, and the data
consumer Pc will not make the payment honestly. Both parties have no losses, but both
parties will be deducted the deposit due to malicious behavior, which is fair to both parties.

7. Experiments

This section describes the experimental environment for the algorithm MDLDP and
evaluates it from the perspectives of privacy protection, data availability, and time cost.

7.1. Experimental Setup

To assess the MDLDP algorithm, experiments were conducted on the real-world
dataset “Air Quality” [40]. The dataset consists of 9358 instances recorded by five metal
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oxide chemical sensor arrays embedded in air quality chemical multisensory devices. These
devices are located on the ground in a heavily polluted area of Italy, with a recorded du-
ration from March 2004 to February 2005. These data, provided by certified reference
analyzers from the same region, represent hourly average concentrations of ground-level
pollutants such as carbon monoxide, non-methane hydrocarbons, benzene, total nitrogen
oxides, and nitrogen dioxide. For comparison, this article randomly selected 500 data
from non-methane hydrocarbons, except for missing values. This article uses the MAT-
LAB platform for simulation experiments. All experimental programs are written in the
MATLAB R2018b platform using the MATLAB language, and the experimental hardware
environment is Intel (R) Core (TM)i3-7100U, equipped with a CPU @ 2.40 GHz and 8 GB
RAM, running on the Windows 10 operating system. The equipment comes from Qingdao,
China, and the manufacturer is Lenovo Company.

This article uses privacy protection degree α to evaluate the privacy protection effect
of algorithm MDLDP. Gj represents the perturbed dataset obtained by the data provider
after the j-th perturbed of the original dataset D. L represents the privacy dataset of the
data provider, which is a part of the original dataset D. ∆

(
L, Gj

)
represents the number of

perturbed data in the privacy dataset L after the j-th perturbed, l represents the amount

of data in dataset L.
∆(L,Gj)

l represents the proportion of perturbed data in the privacy
dataset L, which is the degree of protection for the privacy dataset. According to the
MDLDP algorithm, the data provider needs to perform h random perturbations on the
dataset and select the result with the maximum degree of protection. In addition, due to
the randomness of differential privacy, w privacy protection degrees will be generated in
the experiment, and their average value will be taken as the final result.

αk = max
j=1,2,...,h

∆
(

L, Gj
)

l
, (4)

α =
1
w

w

∑
k=1

αk. (5)

In this paper, we use the commonly used method of mean square error (MSE) to
evaluate the data availability of the algorithm, such as [41]. Among them, (a1, a2, · · · , an)
denotes the real data in the Original dataset D,

(
a′1, a′2, · · · , a′n

)
represents the data in the

perturbed dataset G.

MSE =
1
n

n

∑
i=1

(
a′i − ai

)2. (6)

7.2. Experimental Analysis

In the work of using local differential privacy technology to protect user privacy, most
of them use other implementation mechanisms such as Laplace, while the use of random
perturbation mechanisms is relatively rare. Therefore, this article chose the traditional LDP
algorithm [42] and DDLDP [43] as a comparison, both of which use random perturbation
mechanisms. To ensure a fair comparison, five data groups identical in size to [43] were
chosen, with sizes of 100, 200, 300, 400, and 500, respectively. Three different privacy
budgets were selected: ε = 0.5, ε = 1.0, and ε = 2.0. Figure 2 shows the privacy protection
degree under different data sizes for the three algorithms. To prevent randomly inconsis-
tent results, we chose w = 10 and calculated the average of 10 instances. Moreover, the
experiment randomly selected 10% of the data size from the original set D as private data L.
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According to Equations (4) and (5), we obtained the privacy protection degrees of three
algorithms under different privacy budgets and data sizes. As shown in Figure 2, under
three different privacy budgets, the privacy protection of the MDLDP method is generally
higher than that of the other two comparison methods. This indicates that the MDLDP
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method can better and more accurately protect the privacy dataset L. As the amount of data
increases, the degree of privacy protection α slightly decreases and eventually stabilizes.

According to Equation (6), we obtained the mean square error (MSE) of three algo-
rithms under different privacy budgets and data sizes. From Figure 3, it can be observed
that under varying privacy budgets and data sizes, the traditional LDP method exhibits
a slightly larger mean squared error, indicating its relatively lower data availability. The
mean squared error of the MDLDP method is close to that of the DDLDP method, sug-
gesting that both methods offer better data availability. In conjunction with Figure 2, it
can be concluded that the MDLDP method not only offers superior privacy protection but
also ensures great data availability. This is because under the same privacy budget, the
MDLDP method tends to protect private datasets and relatively reduces the protection of
non-private data.

Figure 4 depicts the perturbation time of the three algorithms at different data sizes.
As the data size increases, the fluctuation in perturbation time for all three algorithms
remains within a certain range, with these fluctuations being related to the randomness
of differential privacy. When the data size is constant, the perturbation time for each
algorithm under different privacy budgets is roughly equivalent, which aligns with the
characteristics of differential privacy. As can be observed from Figure 4, the time consumed
by the MDLDP algorithm is approximately on par with the DDLDP algorithm, both of
which are slightly longer than that of the LDP algorithm. But compared to better privacy
protection, these limited excess time consumption are acceptable. Due to the fact that time
consumption does not significantly change with changes in privacy budget or data volume,
the MDLDP method has good practicality.
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8. Conclusions and Future Works

This paper introduces a decentralized, privacy-preserving, and fair data transaction
model based on blockchain technology. The model safeguards the privacy of local data
by designing an adaptive local differential privacy algorithm, MDLDP, and ensures fair
data transactions using verifiable encrypted signatures. Instead of the traditional single
arbitrator found in conventional verifiable encrypted signatures, the proposed model
introduces a committee. Through threshold signature technology, the arbitration private
key is divided and managed by the committee members. In the event of transaction
disputes, any t members of the committee can collaborate to reconstruct the arbitration
private key for arbitration. Theoretical analysis shows that our method can effectively
protect the privacy of data providers, ensure fair transaction markets, and safeguard the
security of arbitration private keys, preventing the theft or loss of arbitration private keys
due to single-point failures. In addition, this method also prevents collusion between
dishonest traders and arbitrators and achieves fair payment in transactions. We evaluated
the MDLDP algorithm on a real-world dataset. Compared with existing methods, although
the MDLDP algorithm has slightly more time consumption than the method with the
lowest time consumption, it has better privacy protection and can more accurately protect
users’ privacy datasets. Meanwhile, this method will not reduce data availability. Due
to the fact that time consumption does not significantly change with changes in privacy
budget or data volume, the limited excess time consumption of the MDLDP method is
acceptable and has good practicality.

However, although we conducted simulation experiments using MATLAB, there
is a lack of specific implementation details on real blockchain platforms, such as node
registration and approval, consensus algorithms, transactions, and data storage. We plan
to further validate the model on specific blockchain platforms such as Hyperledger in the
future. The model proposed in this article assumes that honest data providers provide
effective and high-quality data. How to verify data quality and ensure data validity is a
problem that needs to be solved in the future. In addition, it is also a valuable study that
high availability and low latency access may be required for IoT systems.
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