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Abstract: In today’s industrial environment, effectively monitoring assets throughout their entire
lifetime is essential. Prognostic and Health Management (PHM) is a powerful tool that enables users
to achieve this goal. Recently, sensor-equipped actuator electrification has been introduced to capture
intrinsic key system variables as time series. This data flow has opened up new possibilities for
extracting essential maintenance information. To leverage the full potential of these data, we have
developed a novel algorithm for time series registration, which serves as the core of a new similarity-
based prognostic method in a PHM context: Partial Time Scaling Invariant Temporal Alignment
for Remaining Useful Life Estimation (PARTITA-RULE). Our algorithm transforms acceleration
signals into a subset of descriptors for a new actuator, creating a time series. We can extract valuable
maintenance information by aligning this time series with the one already labeled from past behaviors
of the same actuator’s family of heterogeneous sizes and robust scaling factors. The unique aspect of
our method is that we do not need to inject prior knowledge for registration intervals at this stage.
Once the unknown series is aligned with all possible candidates, we create a weighting scheme
to assign a relevance score with an uncertainty measurement for each aligned pair. Finally, we
compute interpolants on the Wasserstein space to obtain the asset’s Remaining Useful Life (RUL). It
is important to note that a relevant result in a PHM context requires a database filled with different
labeled system behaviors. To test the effectiveness of our method, we use an industrial data set
of vibration signals captured on an aeronautical electric actuator. Our method shows promising
Remaining Useful Life (RUL) estimation results even with incomplete time segments.

Keywords: Prognostic and Health Management (PHM); electrical actuator; time series registration;
similarity measurement; Remaining Useful Life (RUL); prognostic

1. Introduction
1.1. Context

Electric actuation is one of the preferred research areas in the industrial sector to
create more environmentally friendly aviation. As an integral part of the more electric
aircraft, electromechanical actuators have several advantages compared to their pneumatic
or hydraulic counterparts. First and foremost, they are lighter than conventional systems,
which reduces the overall weight of the aircraft and, consequently, results in fuel savings.
In addition to weight savings, these systems have a more compact design, allowing for
greater power density within the same volume. Furthermore, unlike hydraulic systems,
electromechanical systems do not require compression fluids by nature. These fluids
must maintain their properties over wide temperature ranges and have a high ignition
temperature, as in the case of Skydrol. These properties are difficult to find in nature, and the
synthetic compounds used in hydraulic systems can be corrosive and hazardous to humans
and the environment. By eliminating the need for these fluids, electric actuators contribute
to the creation of more environmentally friendly systems and simplified maintenance
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procedures for airlines. Moreover, when integrated into the aircraft’s electrical harness,
this actuation is conducive to implementing sensors and monitoring circuits. However,
electromechanical systems are susceptible to potential issues not encountered in current
pneumatic or hydraulic systems, particularly issues related to jamming. For a primary (or
secondary) flight control actuator, this dreaded event must be avoided at all costs. Therefore,
it is necessary to establish monitoring strategies to address the potential occurrence of
these defects. These monitoring strategies are part of the overall Prognostics and Health
Management (PHM) context; see Figure 1. Our work is part of the prognosis approach.

Figure 1. PHM process, as defined in [1], Figure 1.

1.2. General Framework

To successfully diagnose and forecast the health of an actuator with a small amount
of data, we have developed a method based on time series alignment. Let us sketch the
contours of this type of method to explain how it can perform both the diagnosis and the
prognosis step in this set of methods of PHM; see Figure 1.

In the workflow presented in Figure 2, firstly, the pattern vector is computed along
time to build the time series of a learning database (known states). The second step
uses the same pattern vector to monitor unknown states. The time alignment allows for
comparing the time series corresponding to the actual operation with the time series stored
in the learning database and with different time scales. This comparison allows for the
computation of the Remaining Useful Life (RUL), its uncertainty, and an estimation of the
current state of health.

Figure 2. Schematic diagram for all Trajectory Similarity-Based Prediction (TBSP) methods.

This work will be applied to compute the RUL of a ball screw actuator used for flight
control, as shown in Figure 3, from vibration signals taken during its use.
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Figure 3. Ball screw actuator instrumented on test bench, from [2]. Reprinted/adapted with permis-
sion from [2]. 2021, Eid

1.3. Structure of the Paper

In our paper, we provide an overview of the temporal alignment methods used in
the state-of-the-art in Section 2, which forms the basis of our approach. We then delve
into the concept of time series alignment in Section 3, followed by a description of the
necessary data pre-processing to create time series in Section 4. We explain the theoretical
basis of alignment and improvements over the existing algorithm in Section 5. To evaluate
the time series classification, we introduce a cost function in Section 6. By assessing the
alignment of several time series, we can select a set of best candidates from the database
in Section 7. Finally, we present a method to evaluate the uncertainty related to these
alignments in Section 8.

2. State-Of-The-Art of the Prognostic Methods with Time Series Alignment

Aligning time series data involves putting in relation each component of the pattern
vector, i.e., each relevant sensitive parameter, between source data (unknown ones) and
those recorded in a learning database (structured set of available data). This alignment is
based on minimizing a criterion measuring the distance between these series. Extrapolating
data based on time series alignment requires the alignment of source data and a database
of past recorded behaviors. This type of method is known as TBSP in the literature.
Considering a database with the expected behaviors of the data that we wish to extrapolate,
such as run-to-failure time series, this procedure needs less information than the deep
neural network counterparts to obtain a relevant result. The idea is to compare test time
series with the data in the learning database with a similarity measure. The most used
similarity criterion in the state-of-the-art is the Euclidean distance and its variants. Then,
the most similar candidates to the test data are fused. The latter model is chosen depending
on the nature of the wanted output, an actual time instant, or the extrapolation of test data.

Dynamic Time Warping (DTW) was introduced by [3] as an algorithm to realize time
series alignment, with many variants being realized afterwards. Other methods are also
used for curve registration, such as the warplet approach of [4]. The first mention of a
similarity-based method for RUL prediction was made by [5] to adapt it to the Commercial
Modular Aero-Propulsion System Simulation (CMAPSS) [6] data set.

Later, [7] described a detailed framework applied to weld joint monitoring, namely
the Ball Grid Array (BGA), in vibrating environments, or on a stochastic model of simulated
data [8] as Similarity-Based Residual Life Prediction (SBRLP). The advantages of such
an approach are numerous. It allows the realization of a prognosis with little available
data, which is often the case in an industrial environment. Moreover, we can enrich the
comparison database as the product’s life cycle progresses. Thus, without changing the
method, the determination of the RUL will be all the more precise. However, if the database
is not rich enough, the predictions will be subject to high uncertainty; this is the major
drawback of the method.

The literature on predicting RUL from similarity measures or time series alignment
uses data processing only or hybrid methods. The most widely used data set in the literature
is the data set CMAPSS created by [6], composed of multivariate signals representing the
degradation of a simulated jet engine.
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For our part, we have chosen to validate our approach on data closer to an in-
dustrial application, from an aging bench of roller screw actuators, in the context of an
aeronautical application.

The advantage of a standard data set is that it can provide comparable results
between the work of different research teams. However, the massive use of CMAPSS [6]
testifies to the recurrent problem of the lack of usable industrial data in PHM. Indeed,
the few industrial data sets used are confidential, so the reproducibility of results between
studies is not guaranteed. However, despite its demonstrated quality, the CMAPSS [6]
academic data set only covers the analysis of several realizations of a single system in
aeronautics. To overcome this, Refs. [8–10] use simulated stochastic models representing
the degradation trend—anonymized vibration signals from an industrial data set.

3. General Description of Time Series Alignment

In the previous steps, we have created a database D f ∈ Fn,p,q filled with time series.
These data originated from accelerating aging scenarios where the monitored system
cycled in a harsh environment. Thus, we can hypothesize that this database is filled with
probable behaviors for the monitored system. A prognostic method consists of extrapolating
the behavior of a system (we consider that the system behavior is characterized by its
measurements) and diagnosing these extrapolations to estimate the monitored system’s
future State of Health (SOH). In other words, two steps are realized: performing a regression
and classifying the new measurement. To do this, because we consider the database D f
filled with behaviors until the asset’s end of life, the extrapolation can be estimated by
aligning the new time series (i.e., the new measurement, measurement on a new asset of the
same family, the new features) to every one of their counterparts in D f . The extrapolated
behavior will be the behavior of the best candidate for the alignment method. Furthermore,
because the feature database SOH is known for every point, the new measurements can
inherit the diagnostic labels of the best-aligned candidate of D f .

Thus, we develop a prognostic method based on time series alignment, i.e., finding a
function τ that associates one point from one series with the other. The studied data are
then divided into two ensembles:

• Points of the series to align from, called source points;
• Points of the series to align to, called target points.

In practice, let X = (xi)1≤i≤n be a time series of length n ∈ N called the source and
Y = (yj)1≤j≤m a time series of length m ∈ N called the target. In the latter section, we
consider that n ≤ m and note I (resp. J ) the ensemble of indices of X (resp. Y).

The alignment can be framed as an optimization problem in which T is found by
minimizing an objective function L. This injective function T : I ↪→ J associates with
every index of each point of X its associated index in Y. Hence, the association represented
by T can be incomplete because every point in Y is not necessarily associated with every
point of X. In this PHM framework, we consider the source to have fewer points than
the target. Even if this hypothesis is mandatory in our prognostic framework, the time
series alignment method is independent of the length of each series. If this hypothesis is
unverified, we can increase the sampling of either the source or the target.

More precisely, for our study, the vibratory signals captured on q = 4 actuators,
which are supposed to be independent, are extracted p = 28 statistical descriptors of
m points. These signals form a database noted as Mm,p,q(R). The subscripts 1 ≤ i ≤ n
(or m), 1 ≤ j ≤ p, 1 ≤ l ≤ q and 1 ≤ h ≤ q − 1 are introduced to realize a consistent
notation scheme in the following sections. For this work, an actuator will be selected to
simulate a set of data that would have been captured in operational use. Thus, these data
will be contained in a matrix Xl ∈ Mn,p(R) that will have to be compared to the data
contained in a tensor Y ∈ Mm,p,(q−1)(R). It is possible to determine the State of Health
of the actuator from which the unknown signals come by comparing them to those in
a database. This database can come from accelerated tests in a given environment or real
operating profiles recorded in flight. The source series X previously defined will then be a
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column indexed by j, and thus a descriptor of the matrix Xl. Hence, Xl
j = Xl [:, j] ∈ Mn,1(R).

The target will be noted as Yh
j = Y[:, j, h] ∈ Mm,1(R). This work aims to align the tested

unknown series Xl
j on the set of series Yh

j , ∀h ∈ J1; q− 1K. In other words, a descriptor will
be aligned to the same descriptor of each actuator. The idea is then to arrange the candidates
Yh

j by order of similarity to Xl
j . To do so, a cost function L is defined to associate with each

assignment function T a real value. An information fusion step for each classified parameter is
then performed to estimate the consumed lifetime and give a distribution representative of
its quality.

4. Data Framework Surrounding the Prognostic Method

One monitored industrial asset’s RUL is estimated by comparing its operational
behavior to a knowledge database. In general, this knowledge database contains a variety of
realizations of similar assets in an industrial context. It could be either normal or degraded
behaviors. It can also be filled with specific aging scenarios where the asset is accelerated
to the limits. For the latter, in practice, the asset is placed inside an abusive environment,
and we enable it to fulfill its function in a looping manner to simulate an accelerated aging
pattern. We focus our work on the latter database content. Such a database is filled with
time series representing physical measurements taken during the aging process of the same
family of assets. We can model this database as a four-dimensional tensor Da ∈ An,p,q,r
with (n, p, q, r) ∈ N4, where n is the number of acquisitions made per monitored system, p
is the number of different types of measurements (current, voltage, etc.), q is the number
of assets monitored (always of the same family), and r represents the number of points of
acquisition. Note that the hypothesis is made that the data along all the assets share the
same number of points r. Hence, they are only one shared acquisition profile repeated for
every measure.

Instead of working directly with raw data measured from the monitored system,
we provide several aggregation functions for each signal. One such function will compute
a feature (or a descriptor). Let X ∈ M(n,1)(R) be a raw time series extracted from D; one
function f can be defined as f : M(n,1)(R) → R, and f can be seen as an aggregation
function transforming an input vector to a unique value. Transporting a whole group of
raw data into another set is called feature extraction. In this study, we concentrate only on
univariate time series; hence, the data processed can be extracted from D1

a ∈ A1
n,1,q,r. We

then apply feature extraction to a specific signal of size r taken from A1′
1,1,1,r. If we calculate

only one descriptor for every acquisition for a particular asset, we can reduce the size of
the database to A2

n,1,q,1. Our study calculates p different descriptors for every time series.
Thus, by collapsing the unitary dimension of the tensor and adding a new p dimension for
each feature, we produce the database D f ∈ Fn,p,q. n represents the number of points for
each time series (now a feature), p is the number of different descriptors calculated, and q
remains the number of assets studied. Note that, in our study, with our subsystem expert
knowledge, we select statistical features taken from an acceleration signal in m s−2. They
are presented in Figure 4.

These descriptors are completed by percentiles of the actuator in deployment mode
in Figure 5.

Finally, we obtain p = 28 features for each actuator.
In our application, we aged four identical actuators {Lower Right Actuator (LRA), Lower

Left Actuator (LLA), Upper Right Actuator (URA), Upper Left Actuator (ULA)} by cycling
them acceleratedly in harsh conditions, consisting of using the actuator at high frequencies
through high and below-zero temperatures during an extended period of time. Three of them
will be the reference actuators, and the fourth will be the actuator with an unknown state.

Let us note F(1≤j≤p,1≤k≤q) with (i, k) ∈ N2 a feature. To avoid notation overloading, let
us define Ft, which represents the same preceding feature whose values are indexed by the
natural number t ∈ N in ascending order. This indexation could be superseded later by a series
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of timestamps, creating a new time series. At this stage, we have created an entire database of
descriptors. We can use this information as input to our following prognostic model.

Figure 4. Smoothed statistical descriptors for the used actuators.

Figure 5. Smoothed percentile descriptors for the used actuators.

5. Alignment by Successive Displacements

After creating the database filled with reference curves, we need to define a simi-
larity measure to allow the comparison with new data. We need to synchronize all the
candidate time series to a reference and compute the distance between them. Hence, we
use time series alignment (a principle also named time series registration). Let X = (xj) with
j ∈ J1; mK = J and m ∈ N an unknown time series called the source and Y = (yi) ∈ Fn,p,q
with i ∈ J1; nK = I a time series called the target. In our framework, we hypothesize that
m ≤ n, and, if not, one can use interpolation methods to supersample Y. The goal of the
time series alignment method is to find an injective function T : I ∈ N ↪→ J ∈ N that as-
sociates with each index of points of X its corresponding neighbor in Y, thus characterizing
the alignment. Note that all points of Y do not need to be associated with all points of X.
All of this provides a natural time for rescaling.

In state-of-the-art methods, the partial assignation of one time series to another
can be considered as assigning the values of a 2-dimensional point cloud between one
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another. In this framework, time series values taken from D f can be considered a matrix
Xj,k ∈ Mn,2(R) with the time vector explicitly created. Thus, Xj,k is the concatenation
of Xj,k = (xi)1≤i≤n,j,k and Tj,k = (ti)1≤i≤n,j,k ∈ N representing the time. For simplicity,
timestamps can be replaced by integer indexes in ascending order. By doing so, we
only keep the precedence relationship between each point. The time series alignment
problem can then be reframed as an association problem between two point clouds with
a heterogeneous number of points. This problem was studied by [11] with point clouds
of several dimensions. The method called Sliced Partial Optimal Transport (SPOT) [11]
was originally applied to histograms to transfer the color space of one image to another.
The algorithm principle is illustrated in Figure 6.

Figure 6. Illustration of the principle of SPOT—initial method.

The first step of Figure 6 represents all the point clouds (i.e., times series). Note that,
in our framework, we wish to align the data coming from the same descriptor between each
other. Hence, we wish to align Xj,k ∈ Mn,2(R) (in red in Figure 6) with Yj,l ∈ Mn,2(R)
(in blue in Figure 6) with (j, k, l) ∈ N3. In other words, we wish to align the same features
between different actuators.

In the second step of the method, the two point clouds are projected along one
direction chosen randomly. We can note them, respectively, as X⊥j,k, Y⊥j,l ∈Mn,1(R). In the

third step, an injective association between the points of X⊥j,k and Y⊥j,l is computed: the
assignation function T .

Finally, at the last step, [11] solves an optimal transport equation to determine a
uniform amount of movement to apply to every point of Xj,k. Note that this movement is
done in the 2−dimensional space, along the projection direction chosen at step 1 of Figure 6
(represented by the green vectors in Figure 6).

Tested with the data at hand, our implementation of the method of [11] did not
have relevant registration results. For example, the temporal ordering of each point was
modified during the advection of the source Xj,k to the target Yj,l , which is problematic
when trying to estimate a RUL with the time series processed. This is why we modified the
SPOT [11] behavior to adapt this method to time series.

In Figure 7, the second and fourth steps of the original method are modified. Instead
of choosing a random direction to project each cloud point onto, every point is projected
onto an “optimal” direction in the sense that it minimizes a specific cost function L in
step 1. Moreover, contrary to moving in the same direction, source points now move
directly towards each of their neighbors in the target cloud point. During this last step,
the displacement quantity is not computed in the one-dimensional projection space but
directly in the final two-dimensional space. In doing so, calculating discrete movement
amounts in Euclidean space has replaced optimal transport equation solving. Note that, for
step 2, we still use the original nearest neighbor algorithm search developed by [11].

Let us look at the detailed method.

Step 1—Research for optimal projection space

This step consists of choosing the projection directions to solve the problem of
nearest neighbor assignment in a 1-dimensional space. Let Θ be the set of projection
directions. This set is a sampling of the unit sphere of directions Sd−1, with d being the
number of dimensions of the problem. For any dimension considered, particularly for our
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2-dimensional space of interest for time series alignment, Θ comprises lines. In the work
of [11], Θ was a random sampling of Sd−1. This randomness did not suit our needs. Indeed,
the signals studied have specific dynamics that the projection step sometimes causes to
disappear when projecting in a specific direction.

Figure 7. Illustration of the modified time series alignment method.

The assignment of the nearest neighbors in step 2 was carried out with signals with
behaviors too far from the original signals before projection. As a result, the final alignment
was not relevant. Therefore, it is necessary to find a set Θ∗ ⊂ Θ containing a set of lines
providing a good final alignment result. The alignment method being iterative, a direction
θk is assigned for each iteration. This is why the set Θ∗ consisting of several directions(
θ∗0 , θ∗1 , . . . , θ∗K

)
must be the solution minimizing a quality criterion.

This quality criterion will be the cost function L, a variant of the cost function L
constructed further in Section 6. This optimization problem is formalized in Equation (1).

Θh,∗
j = min

(θ1,θ2,...θK)
l
j

K

∑
k=0

L
(
{XT |k}l

j

)
with XT |k ∈ Mn,k(R) such as: XT |k =

[
XT |k=0 XT |k=1 . . . XT |k=k

]>
with XT |k ∈ Mn,1(R) such as: XT |k = T

(
X̃l

jθ
h
k,j, Ỹh

j θh
k,j

) (1)

In Equation (1), Θh
j represents the optimal set of directions determined for de-

scriptor j and actuator h. The set is obtained by minimizing the sum of the movement
costs, in one dimension, of the different states of the source cloud at each iteration.
{XT |k}h

j gathers these movement costs. For the first iteration, k = 0, XT |0 = XT |k=0;

for the second iteration, k = 1, XT |1 =
[
XT |k=0 XT |k=1

]>; and for the last iteration, K

XT |K =
[
XT |k=0 XT |k=1 . . . XT |k=K

]>. The set {XT |k}l
j on which the cost function

L is calculated is therefore of size K. Since no simple theoretical solution can be found
for Equation (1), the set Θh

j will be determined by an iterative optimization procedure.
The principle is to sample the domain of definition of the set Θ to find the optimal can-
didate about Equation (1). Note that the optimization result is not a single direction
but rather a set of directions associated with each iteration of the alignment method; hence,
Θh

j = (θ1, θ2, . . . θK)
h
j . In total, there are p× (q− 1)× K directions to be found to perform

the alignment on the database. The underlying idea is that the movement of the source
cloud modifies its shape, and the previously chosen projection direction may no longer be
optimal. The same cost function is used for each iteration. To enhance the computational
efficiency, the calculation of projection directions (θ0, θ1)

h
j is limited to two directions, where

1 ≤ j ≤ p and 1 ≤ h ≤ (q− 1). Importantly, these projection directions remain constant
throughout the iterations of the method, and any changes in direction are contingent upon
a condition evaluation based on the current alignment status. Specifically, the direction θ0
is employed while the source experiences significant movement. As soon as this movement
subsides, the direction θ1 is selected to prevent the source from converging prematurely to
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a local minimum. This strategic decision significantly reduces the number of projection
directions required.

Consequently, the source series is aligned with the target series using these projection
directions. Upon achieving a specified cost threshold, the projection direction is transitioned
from θ1 to θ2, and the alignment procedure proceeds.

Step 2—The assignation function source–target

This step involves finding the assignment function Tk, recalculated at each iteration
k, from the assignment of the nearest neighbors in the projected space between the points of
the source cloud X̃l

j and the points of the target cloud Ỹh
j . To do this, [11] developed an algo-

rithm to solve the complete alignment problem in quadratic time, i.e., O(n2). Algorithm A1
(all the algorithms developed in this article are present in Appendix A section) allows for
this quadratic assignment and represents step 2 of Figure 7. It can be divided into three
main parts, with the first part, lines 2 to 15, allowing for constructing the first version of
the assignment function Tk. The second part, lines 17 to 20, decomposes the initial interval
into linear sub-intervals, and the third part solves the assignment problem on the previous
sub-intervals. Figure 8 represents the table nnAssignArray in Algorithm A1, which is
associated with the assignment function Tk.

Figure 8. Principle schematics of assignation function Tk : I ↪→ J .

The assignment function Tk is obtained by the Quadratic Assignment method of
Algorithm A1 from [11]. The method then produces an assignment from the two clouds
projected in a direction θd, jh ∈ Θh

j , the number n of points to align in the source, and the
number m of points to align in the target. The sizes of the segments to be aligned are
then stored in a structure param. Note that, in its current state, the segments to be aligned
necessarily have n and m points, as the starting point index is automatically set to 1. How-
ever, extending the method to segments that do not start with the first point in the series is
possible. For example, to align a 900-point segment with a 1130-point segment, the structure
will be initialized as follows: param = {start0 = 0, end0 = 900, start1 = 0, end1 = 1130}
in Algorithm A1. After this initialization, the first nearest neighbor assignment is made
by the NEAREST NEIGHBOR MATCH function defined by Algorithm A2. During this first
procedure, different points in the source can be assigned to the same point in the target.
These repetitions are then counted and stored in the nonInjMatch variable declared on line
5 and updated on line 9 of Algorithm A1. This information allows for the series to be de-
composed into intervals and thus reduces the size of the interval considered for alignment.
To this effect, the REDUCE RANGE function described by Figure 2 of [11] is used. These new
intervals created and representing a bijective assignment function must then go through
the application of the NEAREST NEIGHBOR MATCH function in Algorithm A2, at line 17.
After this second assignment, the intervals are decomposed into a set of sub-intervals by the
LINEAR TIME DECOMPOSITION function described by [11], Algorithm 2 . This operation
represents the third decomposition of a series into distinct intervals. A list of structures
containing the start and end of each interval is then stored in the paramListArray variable.
On each of these intervals, the nearest neighbor assignment is calculated at line 23, and then
the HANDLE SIMPLE CASE function, which replicates the behavior described in Section 3.2
of [11], allows for certain configurations to be solved in linear time. Finally, after one final
sequence of procedures, the SIMPLE SOLVE function described by [11], Algorithm 1 , allows
for the final assignment to be obtained. Therefore, the function Tk has been generated.

Algorithms A1 and A2 allow us to obtain, for an iteration, the assignment function
Tk. Step 2 of Figure 6 is then completed. This function will then be used in the advection
model of the final step, step 3.
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Step 3—Advection model

As schematized in Figure 7, the advection model developed differs from the SPOT
method in [11], where the source points move towards their neighbors in the target by an
amount calculated by solving a one-dimensional transportation problem. Here, a displacement
amount is also calculated for each source point, but the points will then move by a given
amount in the direction created between them and their respective closest neighbors in the
target. Figure 9 illustrates this principle for a source point moving towards two different target
points defined as its nth closest neighbor for each iteration. In Figure 9, the dotted red circles
represent the positions of the source point before the current iteration.

Figure 9. Displacement example of the nth source point towards its affected neighbor (the third point)
located in the target point cloud for 4 iterations.

The function T l
j (n)|k = 0 in Figure 9 is the assignment function evaluated at the nth

source point for the first iteration of the alignment of the jth descriptor of actuator l. At each
new iteration of the transportation algorithm, the source cloud will move closer to the target
cloud until it ultimately reaches it. In Figure 9, the displacement vectors of the source points
are represented by a green arrow. Let n(k) be the source point considered at iteration k and
m(k) be the target point corresponding to its closest neighbor at iteration k. Then, for each
point, n and m, the displacement vector has a direction along the line passing through n(k)
and m(k) is directed towards m(k) and has a norm, or movement quantity, equal to half of
the Euclidean distance between n(k) and m(k). Thus, the movement quantity (represented
by the norm of the green arrow) is calculated using the dichotomy in Figure 9 to simplify
the illustration of the concept. The movement quantity of the ith source point at iteration k
with Euclidean distance dE is given by Equation (2).

ζi(k) =
dE(n(k), m(k))

2
(2)

In the case of the method developed in Algorithm A3, the movement quantity is
calculated by dividing the remaining distance between n(k) and m(k) by a factor α ∈]1; ∞).
Let d be the distance traveled by a source point. At each iteration, k, a distance dk can be
associated with a point. The sequence of distances (dk)0 ≤ k ≤ K is then created. As a
result, it is a geometric sequence with a ratio 1

α . Its partial sum thus has a simple expression,

K

∑
k=0

d0

αk
(3)

which converges, for an infinite number of iterations, K → ∞, to the magnitude αd0
α−1 .

The advection model, therefore, reaches a stability point. By extension, the alignment
algorithm necessarily converges towards the target, but, as it stands, it is not yet possible to
evaluate the quality of such convergence. A cost function L will be developed in Section 6.

In more detail, the ADVECTION function of Algorithm A3 produces a source cloud
X̃T from the two clouds to align X̃l

j and Ỹh
j . The assignment table nnAssignmentArray

represents the function Tk and sigmoid, an array containing the previous variable α for
each direction. Lines 2 to 4 initialize the structures to calculate the total distance traveled by
the source cloud. Lines 6 to 9 define xtarget and ytarget, which represent the coordinates of
the points to be reached in the target Ỹh

j , while xsrc and ysrc represent the coordinates of the
starting points in the source. The distance between these two points is then calculated on
line 12. The displacement amounts xdisplacement and ydisplacement are calculated on lines 15
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and 16 as a proportion of the distance between the source and the target. The coordinates
of the source point cloud X̃l

j are then updated on lines 18 and 19. Finally, an advection cost
is calculated as being the normalized sum of the distances traveled by each source point
and the moved source cloud X̃T . Note here that the advection cost differs from the cost
function L developed in the following Section 6.

Now that all the steps of Figure 7 have been detailed, the global Algorithm A4 is
developed to bring together all these functions and obtain the final alignment of a time
series X with a series Y.

The TIME SERIES ALIGNMENT function produces the shifted source point cloud X̃T
using two point clouds X̃l

j and Ỹh
j , the set of optimal directions found in Equation (1) θh,∗

j ,
and an array of hyperparameters weightArray. The TIME SERIES ALIGNMENT function
then performs K iterations of steps 1, 2, and 3 in Figure 7 as long as the cumulative
displacement of points from the source to the target is not zero. The variable cost is
declared in line 7 with a non-zero value and updated in line 56 with the absolute value
of a cost calculated by the L function. The cost will be zero below a 10−16 limit. This
avoids the algorithm continuing to iterate when the displacement cost is of the order of
machine precision and potentially a numerical error. Now that the automatic stopping
criterion has been presented, let us discuss the operation of Algorithm A4. The first lines of
Algorithm A4 initialize the variables, and line 6 preserves the initial values of the source
point cloud X̃l

j . For reference, the latter is defined as X̃l
j = (ti, xi)

l
1≤i≤n,j, where the notation

X̃l
j [., :] keeps only the (xi)1≤i≤n, i.e., the initial time series Xl

j , which is X̃l
j [., :] = (xi)1≤i≤n.

The iterative loop then begins by testing, at line 8, if the calculated cost, which is different
from the displacement cost of the cloud, is not negative. This is when the source cloud
points converge very slowly to the target. Therefore, the projection direction index is
modified to maintain an optimal convergence rate. Consequently, the points of the shifted
source cloud will be projected onto the second and last direction of the set Θh,

j . As in
Algorithm A1, a matrix projection onto a line is translated by matrix multiplication. Indeed,
with X̃l

j ∈ Mn,2(R) and Θh,
j [i] ∈ M2,1(R), the operation at line 22 creates a column

vector X̃l
jΘ

h,∗
j [i] ∈ Mn,1(R) stored in projSrcWIndex with its respective index vector.

The same operation is performed in Algorithm A4 at line 26 for the target cloud. The arrays
projSrcWIndex and projTargetWIndex are then sorted in ascending order of their values
in the first column of these two structures. This step allows the projected points to be sorted
while retaining their respective indices and, thus, their positions in the initial cloud. Two
new column vectors projSrc and projTarget are created at lines 35 to 38 with the ordered
points. The QUADRATIC ASSIGNMENT function described in Algorithm A1 is then applied
to these vectors to obtain the value of the assignment function Tk via the nnAssignArray
array. Afterward, manually determined hyperparameters are chosen to create two values of
a sigmoid function. These two values will weigh the displacement on the two dimensions
of the source cloud towards the target cloud. Ranging between 0 and 1, they allow the
displacement of the source to be moderated to avoid excessively rapid convergence towards
a suboptimal alignment. The ADVECTION function of Algorithm A3 then produces the
displaced cloud X̃T at line 49. The latter is added to the states of the source Xl

j, and the local
cost is updated. Repeating these steps until the null displacement of the source towards
the target is achieved allows the time series X and Y of any size to be aligned.

Now that the global time series alignment algorithm has been detailed, it is tested
on experimental data. To do so, the source is represented by the Root Mean Square (RMS)
descriptor of the LLA actuator, and the same RMS descriptor of the LRA actuator represents
the target. The point clouds associated with each of them are denoted, respectively, as X̃LLA

RMS
and X̃LRA

RMS. To demonstrate that the method works with series of all sizes, the source will be
truncated to 900 cycles, and, from the resulting segment, 10% of the points will be randomly
selected to form X̃LLA

RMS[0:900:0.10]. In contrast, the target of 1130 points will remain unchanged
as ỸLRA

RMS [0:1130:1]. The alignment results are shown in Figure 10.
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Figure 10. Random alignment of 10 % of selected points of the descriptor RMS of LLA towards the
descriptor RMS of LRA.

Figure 10 represents 4 different states of the source point cloud during the alignment
procedure: X̃T |k=0, X̃T |k=1, X̃T |k=2, and X̃T |k=47. The spacing of the iterations k is not
constant, to better visualize the displacement of the source towards the target. Indeed,
the displacement is more significant during the early iterations of the alignment algorithm.
This result demonstrates that the method works even for incomplete series, as long as the
number of points in the unknown source series is less than that of the known target series that
constitute the database. However, at this stage, it is impossible to quantify the quality of such
an alignment. This is why Section 6 details the development of a new cost function L.

6. Quantification of Time Series Alignment

Each alignment procedure assigns a similarity metric to discern the most appropriate
candidates within the database, as expounded upon in Section 3. The establishment of pre-
cise criteria to define a meaningful series alignment is paramount in this context. However,
the complexity of our particular scenario is compounded by the inherent ambiguity of the
data composing the operational series, denoted as Xl

j . Consequently, when the alignment

of Xl
j with Yh

j is successfully achieved, no baseline exists to compute the deviation from a
known ground truth.

In response to this challenge, it becomes imperative to introduce an intrinsic quality
metric represented by L. This metric serves as a quantification that operates independently
of prior knowledge concerning the data’s inherent characteristics. The incorporation of this
methodological approach represents a crucial step in addressing a fundamental challenge
inherent in our research endeavors.

Let us provide an overview of the method developed in Section 5. The objective
is to align a time series, denoted as Xl

j ∈ Mn,1(R), with another time series, referred to

as Yh
j ∈ Mm,1(R). The alignment process commences by transforming both time series

into point clouds, resulting in X̃jl ∈ Mn,2(R) and Ỹjh ∈ Mm,2(R). These point clouds are
subsequently projected onto a common set of directions, represented by Θh,∗

j ∈ M2,1(R).
For a given direction, two new series, X⊥, jl and Y⊥, jh, are derived, from which an injective
assignment function T : I ↪→ J is constructed. The values of this assignment function play
a pivotal role in the advection model, generating point displacements from X̃l

j to Ỹh
j . Since

this displacement transpires within the confines of a two-dimensional space, the advection
model calculates a displacement vector for each point within the source cloud, utilizing
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the canonical basis of R2. Let us denote this orthonormal basis as B2 =
(
ex, ey

)
, with its

constituent vectors represented as ex = (0, 1) and ey = (1, 0).
The entire process, which includes the projection of the source cloud, construction of

the assignment function, and subsequent point movement, is iteratively repeated a total of
K times to achieve convergence between the source and target points. This comprehensive
methodology represents a critical step in our research and contributes significantly to the
academic discourse in this domain.

Within the framework of this method, a crucial step involves extracting pertinent
information to assess the quality of an alignment. To shed light on this aspect, we examine
the behavior of the assignment function denoted as T , and its characteristics are visually
represented in Figure 8. This function establishes associations between each element in
the source and its corresponding counterpart in the target. In the context of an alignment
procedure spanning over K iterations, we introduce the matrix T ∈ Mn,K(N), which
aggregates the values of the function T |k computed at each iteration. Mathematically,
this matrix is expressed as T =

[
T |0 T |1 . . . T |K

]>. This analytical approach is
pivotal in our methodology, as it facilitates a deeper understanding of the alignment
quality assessment process. Let us further characterize such a function. T |k is defined in
Ik = {1, 2, . . . , n}with values in Jk = {1, 2, . . . , m}. Let T[:, k] be the column k representing
the set of values taken by Tk(J1; nK) at a given iteration. If the source shares similarities
with the target series, after detailing the alignment method in Section 5, it is reasonable
to suppose that the images of the function T should be almost identical between each
iteration. On the other hand, a completely random alignment could result in wide variety
among the image sets of each function Tk. The image set of an assignment function Tk
is a repetition arrangement of n elements (the indices of the source points) in a set of m
elements (the indices of the target points). There are then a total of An

m = mn possible
image sets. In the matrix T with K columns, there would still be (mn

K ) different column
combinations. Thus, if convergence from the source to the target does not occur for a
completely random alignment, the columns of T would all be different. In other words,
for all (i, j) ∈ J1; KK2, i 6= j ⇒ T[:, i] 6= T[:, j]. Conversely, in the limiting case where the
alignment is perfectly consistent, all columns of T would be identical. In other words,
for (i, j) ∈ J1; KK2,T[:, i] = T[:, j].

According to the definition of the function T , this would mean that the points of
the source X̃l

j would all move, as the alignment progresses, towards the same points of the

target Ỹh
j . Thus, in the advection model, the direction of the displacement vector of each

point (ti, xi)
l
j in the source would remain constant as the iterations progress. This leads to

the creation of Hypothesis 1.

Hypothesis 1. In the case of a perfectly consistent alignment, a unique direction of movement is
associated with each source point during the convergence process.

Hypothesis 1 alone is insufficient to establish a function L capable of quantifying
the quality of an alignment. This hypothesis, on its own, permits pathological alignment
scenarios, such as the complete inversion of all points in Xl

j when aligning it with Yh
j . In this

scenario, the first point Xl
j [1] would align with the last point Yh

j [m], while the last point Xl
j [n]

would align with the first point of Yh
j [1]. Such an alignment would inherently be considered

suboptimal. Given the behavior of the advection model described in Algorithm A3 and the
characteristic monotonicity of our descriptors in the ideal case, this particular alignment
example would result in the substantial alteration of the initial value of the source cloud
point. In other words, for a given point with an index i, during K iterations of the algorithm,
Xl

j [i]|k=0 6= Xl
j [i]|k=K.

Preventing such configurations necessitates constraining the angular variation in
point directions within X̃l

j within the advection model. The limiting scenario, in this regard,
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implies exclusively horizontal movements. To formalize this, let Vk =
[
v1 v2 . . . vn

]>|k
represent the set of displacement vectors generated by the advection model at a specific
iteration. For each point, an ideal displacement vector for the alignment, denoted as v∗i ,
can be derived as follows:

∀i ∈ J1; nK, ∃v∗i such as < v∗i , ex >≥< vi, ex > (4)

with < ., . > being the usual scalar product defined on R2 taking values in R. This
translates to the collinearity of the ideal vector v∗i with the base vector ex. Therefore, for the
construction of L, Hypothesis 2 must be added.

Hypothesis 2. In the case of a good alignment, any motion vector vi with i ∈ J1; nK must be
collinear with the first vector ex of the canonical basis B, where < ., . > denotes the usual scalar
product defined on R2 with values in R.

Let us summarize the two previous objectives.

• Hypothesis 1 would force the function Tk to converge towards a unique value.
• Hypothesis 2 would require the alignment to have little effect on the elements of the

source Xl
j . It would become the target to be reached during the alignment.

Lastly, given the iterative nature of the alignment method, constructing a cost func-
tion solely based on Hypotheses 1 and 2 would introduce bias linked to the number of
iterations required for convergence. To elaborate, as the method’s stopping criterion is not
contingent on the number of iterations, distinct alignments could be unfairly penalized
based on their convergence speed. Notably, this criterion, centered on the convergence
speed, falls outside the scope of this study, which emphasizes the estimated accuracy of the
result rather than the method’s computational performance.

Consequently, this scenario paves the way for introducing a third and final hypoth-
esis to shape L. A large number of iterations would correspond to an extended path
traversed by the source’s points. This scenario suggests that the source signal Xl

j represents

the non-uniform compression of the target signal Yh
j . In accordance with Hypothesis 3, it

has been determined that these dynamics should not factor into the penalty selection. This
nuanced perspective ensures that the focus remains on the alignment’s outcome and associ-
ated accuracy while disregarding the intricacies of the method’s convergence dynamics.

Hypothesis 3. The temporal dilations of signals are not penalized in the alignment method.

Now that the three fundamental Hypotheses, 1, 2, and 3, have been stated to deter-
mine the criteria to be taken into account in the cost function L, let us focus on constructing
the object on which it can be applied.

To do this, let us define Sjl ∈ Mn,K(R), a matrix containing all the intermediate
states of the second dimension of the source cloud X̃jl [, :]T during the alignment phase.
Only the column of the source cloud containing the values (xi)1≤i≤n is considered, given
our desire not to penalize temporal dilations (see Hypothesis 3). In more detail, the source
state matrix will be defined as in Equation (5).

Sl
j =


X̃l

j [, :]T |k=1 X̃l
j [, :]T |k=2 . . . X̃l

j [, :]T |k=K

x11 x12 . . . x1K
x21 x22 . . . x2K

...
...

. . .
...

xn1 xn2 . . . xnK

 (5)
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The developed cost function will then be applied to the matrix Sl
j and produce a

positive real number. It is defined in Equation (6).

L : Mn,K(R)→ R+

Sl
j 7→

1
nK

n

∑
i=1

K

∑
k=1

(xi1 − xik)
2 (6)

Hypotheses 1 and 2 are modeled by the term ∑n
i=1(xi1 − xik)

2, which represents the
sum of squared differences between the intermediate states of the series and its initial state.
Hypothesis 3, on the other hand, is modeled by the normalization factor K, representing the
number of iterations of the alignment algorithm present in the denominator of expression 6.
Indeed, the more iterations that it takes to align the source to the target, the more the source
series is dilated. By normalizing the expression in this way, this effect no longer impacts the
value of the cost function. Finally, the sum over the iterations of the alignment algorithm
∑K

k=1 aggregates all differences over the total number of iterations. As a reminder, for each
iteration k, a function Tk is calculated that assigns each source point to its neighbor in the
target. The value of the function Lwill likely change at each iteration. With the expression of
L given, evaluating it allows us to answer the different hypotheses made to quantify the value
of an alignment. In the case where Hypotheses 1, 2, and 3 are met, the cost function L defined
in Equation (6) is zero. Indeed, ∀(i, k) ∈ J1; nK× J1; KK, xi1 = xiK, so (xi1 − xik)

2 = 0. In the
case where one of the hypotheses is not met, since L is a double sum of squares, we have

∀X,L(X) ≥ 0

A cost function L is theoretically defined in Equation (6). Let us now test its relevance
with experimental data. To do so, the source to be aligned XLLA

RMS will be the RMS descriptor
of the LLA actuator and the target will be the same descriptor chosen from the set of
actuators {LRA, URA, ULA}.

Our validations will always follow the same approach. The LLA descriptors will
be taken as the source, and the corresponding descriptors of the other actuators will be
taken as potential targets. Indeed, we assume a similar behavior exists in the database
without being completely identical.

The data used in this work come from accelerated aging tests of various electrome-
chanical actuators. The calculated descriptors share the same number of samples and
sampling frequency. Let us simulate a source with a uniform compression factor rela-
tive to the targets to demonstrate the general nature of the cost function L. Every other
point is then selected in the source XLLA

RMS. Additionally, this same source is truncated to
900 points. A point cloud is then created using the method described in Section 5 to obtain
X̃LLA

RMS[0 : 900 : 2]. The resulting point cloud has 450 samples. This two-dimensional data
series represents the behavior of an actuator descriptor evolving from 0 to 900 cycles. Thus,
the goal of the alignment method is to align the last point of the source X̃LLA

RMS[0 : 900 : 2]
with, at a minimum, the 900th point of the uncompressed target ỸLLA

RMS . Figure 11 shows the
trajectories of the source points as the alignment algorithm converges in two different con-
figurations: an alignment of the compressed source on itself, uncompressed in Figure 11a,
and an alignment of the compressed source on the descriptor of another actuator, uncom-
pressed in Figure 11b.

The two parts of Figure 11 illustrate very different behaviors. Indeed, Figure 11a rep-
resents the trajectories of source points that are all parallel. The last point of the compressed
source reaches the 898th cycle during its alignment in the target, which differs by only two
cycles from reality. On the other hand, Figure 11b represents more disparate trajectories of
source points. In addition, the 448th point—in other words, the ante-penultimate aligned
point—reaches the 1016th point in the target. This difference is explained by the fact that
the target data differ from the source data, while the source is aligned with its homologous
descriptor in the URA actuator. However, this information confirms the idea that, with this
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method, the quality of a series alignment can be quantified by the behavior of the movement
directions of each point. Thus, the behavior of each point could be quantified by the function
L constructed in Equation (6). The cost values obtained from the two alignments then make it
possible to verify the wanted behavior of L. Thus, in Figure 11a, the function does not penalize
the dilation of a series during alignment, and Hypothesis 1 is verified. Hypothesis 2 is also
confirmed because the directions of each point are horizontal and therefore collinear with the
first base vector B, ex. Finally, Hypothesis 3 is validated because the value of the cost function
is zero. For Figure 11b, since the three fundamental hypotheses of L are not verified, the value
of the cost function is a positive non-zero value: L = 0.54.

(a) (b)

Figure 11. Point trajectories for descriptor compressed by a factor 2 RMS of LLA on different target
time series and associated cost function values. (a) Alignment X̃LLA

RMS[0 : 900 : 2]→ ỸLLA
RMS Cost function

value: L(SLLA
RMS) = 0; (b) Alignment X̃LLA

RMS[0 : 900 : 2]→ ỸURA
RMS Cost function value: L(SLLA

RMS) = 0.54.

Previously tested with a constant compression factor, the time series alignment
method developed here shows relevant results for non-uniform compression factors; the
cost function allows us to quantify them. However, why focus on a non-uniform compres-
sion factor? This configuration could model a variation in the environmental conditions of
using an actuator. In this case, the actuator would not age regularly, as represented by the
data used here, namely with pseudo-exponential dynamics during 1130 cycles of constant
use under invariant conditions. This is why a non-uniform compression factor remains an
interesting study point. For this modeling, a point on n, with n ∈ N randomly drawn at
each new selection step of the previous source XLLA

RMS, will be selected. By selecting only 10%
of the points from the source, the cloud XLLA

RMS[0 : 900 : 0.1] is obtained. The experimental
protocol is identical to the one used to obtain Figure 11. Figure 12 is then produced.

Figures 11 and 12 show that when a compressed or pruned descriptor of a given
actuator is aligned with the original one, the cost function is null, whereas when it is aligned
with the same descriptor of a different actuator, the cost function is non-null.

(a) (b)

Figure 12. Point trajectories for the alignment of the descriptor RMS of LLA with 10 % of randomly
selected points and the associated cost function values. (a) Alignment X̃LLA

RMS[0 : 900 : 0 : 1] → ỸLLA
RMS

Cost function value: L(SLLA
RMS) = 0; (b) Alignment X̃LLA

RMS[0 : 900 : 0.1] → ỸURA
RMS Cost function value:

L(SLLA
RMS) = 0.66.
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We construct a cost matrix Lj for each descriptor. Then, we construct the sum of
these matrices, LΣ = ∑

p
j=1 Lj, and obtain a cost matrix, shown in Figure 13.

Figure 13. LΣ sum of the cost matrices Li for the database Mn,p,q(R). A divergent color scale is used
with deep blue representing the lowest values and intense red representing the highest ones.

The L function then allows us to attribute to a given alignment an actual value
representative of its quality—in other words, representative of the similarity of a source
time series to its target. It is then possible to change the scale to consider not the global
quality of an alignment but the variation of each point of the source series from its initial
state. This represents the penalty associated with each point in the alignment, which was
aggregated by the L function. This new term can be formalized by

L1≤i≤n =
1
K

K

∑
j=1

[xi(0)− xi(j)]2. (7)

Adapted to the alignment of the source X̃LLA
RMS[0 : 900 : 2] on the target ỸLLA

RMS of Fig-
ures 11 and 14 is realized.

In Figure 14, the green curve represents the variation of Li for the alignment
X̃RMSLLA[0 : 900 : 2] → ỸRMSLLA, and the red curve represents the variation of Li for the
alignment X̃RMSLLA[0 : 900 : 2]→ ỸRMSURA. This figure helps to identify regions of low point
movement—in other words, segments of the source curve that closely resemble the target
curve, namely an initial region within [0; 100] points, a second one within ]100; 200], a third
one within ]200; 376] points, and the last one from the 376th point onwards. The second and
last regions, with low values, coincide with the areas of low point movement in Figure 14.
This information could then be integrated into the subsequent steps of the algorithm to
enhance the quantification of uncertainty in the alignment method.

Figure 14. Visualization of the variability of the trajectories according to the points for the alignment
X̃LLA

RMS[0 : 900 : 2]→ ỸURA
RMS .
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7. Selection of the Best Candidates in the Database

Each descriptor is aligned with the corresponding descriptors of each of the three
actuators in the database. The alignment cost matrix in Figure 15 is then constructed, from
which we extract the minima.

Figure 15. Alignment cost matrix LLLA
[0:900:1].

This allows us to determine the most representative actuator of the base. Each
descriptor of the unknown actuator is associated with the most representative actuator in
the database. It is then necessary to aggregate this information.

Thus, let us introduce the minimum cost vector L∗:

L∗ = [ L(T(XLLA
1 →YLRA

1 )) L(T(XLLA
2 →YURA

2 )) L(T(XLLA
3 →YULA

3 ))

... L(T(XLLA
3 →YULA

3 )) ]> ∈ Mp,1(R) (8)

L∗ contains all minimal evaluations of the cost function per descriptor alignment.
In the case studied, the matrix has p = 28 lines. L∗ becomes the basis from which the
weights will be computed. In the first step, L∗ is normalized using the function

L∗N =
L∗ −median(L∗)

Q3 −Q1
(9)

In expression (9), the function median used corresponds to the value of L∗, which
separates the matrix into two sets of equal cardinality. The interquartile range is defined
between the first and third quartile Q. Therefore, ordering L∗ represents the deviation
after eliminating the 25 % lowest value elements and the 25 % higher ones. Since Figure 15
highlights highly dispersed alignment costs, this normalization method is chosen to mini-
mize the impact of outliers. Once this robust scaling is applied, the normalized exponential
function is applied to the vector of weights calculated with Equation (9). This results in a
vector whose sum of elements will be unitary. Thus, the vector of weightsW is obtained at
Equation (10) from the vector L∗N .

W = (wj)1≤j≤p such as wj =
expLN

j
p
∑

i=1
expLN

i

(10)

Figure 16 gives the normalized values of weights for all selected descriptors.
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Figure 16. VectorW , normalized values of weights for all selected descriptors.

By crossing the information in Figure 15, it is possible to match their respective
costs by the function L, represented in Figure 16. Thus, they have an individual cost
of 464.31, 566.61, and 376.74. Since the median of L∗ is 22.29, the values taken by the
alignment quantization of these descriptors are 20, 25, and 16 times more significant than
their neighbors in the optimal cost vector L∗. Therefore, the weight determination scheme
is consistent and represents the dispersion of the L∗ values well.

8. Uncertainty Measurement

The preceding sections have expounded upon the alignment procedure, which
enables the identification of the most similar actuator within the database (with vibration
signals here). For each time series associated with this actuator, we can determine the
time index of the point aligned with the current point in the corresponding time series of
the actuator under investigation. Consequently, for each parameter, the aforementioned
index represents the consumed lifetime as a percentage. The subsequent phase entails
amalgamating these distinct values and introducing a measure of uncertainty into the
resulting composite. In the ensuing discussion, we will delve into the intricacies of these
phases, with a focus on the LLA actuator, serving as an illustrative example.

In the case of the LLA, the alignment results yield a vector denoted as
CLLA =

[
tn,1 tn,2 . . . tn,p

]> ∈ Mp,1(N), containing the indices of the last points of the
source cloud (tn, xn)

l
j, aligned for each of the descriptors j. It is important to emphasize that

the time indices for both the target and source clouds adhere to the same temporal scale.
Consequently, we construct a matrix by concatenating p Dirac delta functions centered at tn,j.

Il =
(
ιi,j
)l such as Il =

{
ιtn,j ,j = 1 si tn,j = j

0, if not
(11)

We deduce a square matrix from Il and the weighting vectorW ∈Mp,1(R):

Jl = Il

(
p

∑
j=1

e>j Weje>j

)
∈ Mn,p(R)
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Jl =



δLLA
1 δLLA

2 . . . δLLA
p

0 0 . . . 0
...

...
...

...
ith→ w1 0 . . . 0

...
...

...
...

jth→ 0 w2 . . . 0
...

...
...

...
0 0 . . . 0


(12)

The matrix Jl ∈ Mn,p(R) is thus created at Equation (12) with as many rows as
points in the target series. Here, the set of target series {YLRA, YURA, YULA} have the same
number of samples. In addition, the matrix Jl has as many columns as descriptors. Con-
cretely, Jl is a matrix containing the concatenation of weighted Diracs, each representing the
index of the last aligned point of a source descriptor. We have to merge all the information
of the columns of Jl and give an evaluation of the uncertainty.

Let Zh
j be the random variable representing the cycle index of the last aligned point

at each iteration k. The descriptor of a given actuator, e.g., X̃l
j , is aligned to the descriptor

of a given target, Ỹh
j . The alignment algorithm defined in Section 5 is iterative. Thus,

as detailed in Algorithm A4, at each iteration, k is computed for the source cloud with
a new assignment of source points to target points by the method A1. An assignment
function Tk being computed at each iteration, during the alignment, is then built with the
sequence

(
T l

j |k
)

1≤k≤K
. The assignment represented by this function is independent of the

distance from the points of the source cloud to the points of the target cloud in R2 because it
is computed in the projected space, in R. The value of interest for the uncertainty measure
is, therefore, T l

j (n)|k, which represents the nearest neighbor of the last point of the source

cloud X̃l
j ∈ Mn,2(R) in the target cloud Ỹh

j ∈ Mm,2(R). At the end of the iterative process is

then created a vector Th
j =

[
T l

j (n)|k=0 T l
j (n)|k=1 . . . T l

j (n)|k=K

]>
∈ MK,1(R), with n

as the last index of the target cloud. The measured uncertainty is thus an image of the
number of different values in the vector Th

j . This histogram allows us, in a way, to estimate
the confidence that we can have in the obtained result and its stability.

We assume the following.

Hypothesis 4. The random variable Zh
j follows a normal distribution parameterized by the mean

and standard deviation of the sample Th
j .

Thus, Zh
j ∼ N

(
µ
(
Th

j

)
, σ
(
Th

j

))
.

Its probability density will be

f h
j (z) =

1
σ(Th

j )
√

2π
e
− 1

2

(
z−µ(Th

j )

σ(Th
j )

)2

(13)

It is now possible to create a matrix F =
[

f l
0 f l

1 . . . f l
p

]>
∈ Mn,p(R), which

would be the concatenation over the columns of distribution of the variable Zh
j for each

descriptor, unlike Jl
j, which contains weighted Diracs. This is illustrated in Figure 17.
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Figure 17. Illustration of the uncertainty calculation method for K = 4 iterations on the assignment
of the nearest neighbor of the last point of X̃l

j on Ỹh
j (restriction to 4 points).

Thus, a matrix representing the uncertainty by a probability density of the time
index of the last aligned point for each descriptor has been obtained. It remains to weigh
each of its columns by the elements of the vectorW . From the vectorW , it is possible to
construct a matrix W ∈ Mn,p(R) created by n concatenations of vectorsW> on the lines.
The matrix is then defined as W = ∑n

i=1 eiW>. By defining the Hadamard product for two
matrices, which allows the multiplication of the elements of two matrices term by term,
by the symbol�, the matrix Fl is modified to create the matrix Dl . The latter is thus defined
by Equation (14).

Dl = Fl �Wl

= Fl �
(

n

∑
i=1

eiW>
)

(14)

This last step is illustrated by the schematic diagram in Figure 18 and the results for
all the descriptors in Figure 19.

The last step is to merge all these distributions to obtain the RUL and the final
distribution. We use the barycenter in the Wasserstein space [12,13] to obtain the RUL
in Figure 20.
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Figure 18. Schematic diagram for the determination of intermediate probability densities before merging.

Figure 19. Probability densities obtained for each descriptor during the alignment XLLA
[0:900:1] →

{YLRA, YURA, YULA}.

Figure 20. Barycenter in Wasserstein space from the matrix Dl for the alignment of the matrix
XLLA[0 : 900 : 1] on the tensor Y ∈Mm,p,(q−1)(R).
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9. Conclusions

In conclusion, our research presents a novel and robust method for time series alignment-
based prognostics, which is applicable to compressed or dilated time series, incomplete time
series, or even series-independent segments, making it well suited for industrial applications.
We have proposed a two-part method called Partial Time Scaling Invariant Temporal Alignment
(PARTITA) that can align new data to the ones in our training data set without requiring the
selection of a sliding window or any hyperparameters in advance.

The first part of our method involves an alignment algorithm that differs from the
state-of-the-art methods in that it does not require the selection of an interval on which to align
the time series and can align time series with different sampling frequencies. The second part
involves the selection of the time index of every last point of each feature and assigning a
density estimation for every one of them. Fusing every density by solving an optimal transport
problem gives us the RUL of the studied system with an uncertainty measurement.

Our proposed method can potentially be applied to the diagnosis and prognosis of
electromechanical actuators and any system’s behavior characterized by univariate time
series in an industrial context. We believe that our approach offers a significant contribution
to the field of prognostics and can be further extended to other applications as well.
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Appendix A. Detailed Algorithms

Appendix A.1. Quadratic Assignment for Two Time Series

Algorithm A1 Quadratic assignment, from [11], Section 5
Input:

X̃l
j θ

h
d,j, Ỹh

j θh
d,j cloud points projected on direction θh

d,j
n and m are source and target interval sizes

Output:
Assignment table representing the function Tk

1: function QUADRATIC ASSIGNMENT(X̃l
j θ

h
d,j, Ỹθh

d,j, n0, m0)

2: declare globalAssignArray of length(X̃l
j θ

h
d,j) integers

3: declare param = {start0 = 0, end0 = n0, start1 = 0, end1 = m0} of 4 integers
4: nnAssignArray = NEAREST NEIGHBOR MATCH(X̃l

j θ
h
d,j, Ỹh

j θh
d,j, param)

5: declare nonInjMatch = 0
6: for i← param.start0 + 1 to param.end0 do
7: if nnAssignArray[i] = nnAssignArray[i− 1] then
8: /* Count repetitions ie. non injective assignations */
9: nonInjMatch + = 1

10: end if
11: end for
12: subpbSolvedFlag, newParam = REDUCE RANGE(X̃l

j θ
h
d,j, Ỹh

j θh
d,j, param, nonInjMatch)

13: if subpbSolvedFlag then
14: return nnAssignArray
15: end if
16: /* Since searching intervals have been updated, nearest neighbor assignation must also be updated */
17: nnAssignArray← NEAREST NEIGHBOR MATCH(X̃l

j θ
h
d,j, Ỹh

j θh
d,j, newParam)

18: declare paramListArray as a list of a parameter structure
19: /* Divide intervals into sub-intervals */
20: paramListArray← LINEAR TIME DECOMPOSITION(X̃l

j θ
h
d,j, Ỹh

j θh
d,j, newParam)

21: /* Compute alignment for every sub-interval found */
22: for i← 0 to length(paramListArray) do
23: nnAssignArray← NEAREST NEIGHBOR MATCH(X̃l

j θ
h
d,j, Ỹh

j θh
d,j, paramListArray[i])

24: subpbSolvedFlag← HANDLE SIMPLE CASE(X̃l
j θ

h
d,j, Ỹh

j θh
d,j, paramListArray[i])

25: if subpbSolvedFlag then
26: return nnAssignArray
27: end if
28: for i← param.start0 + 1 to paramListArray[i].end0 do
29: if nnAssignArray[i]← nnAssignArray[i− 1] then nonInjMatch← nonInjMatch +1
30: end if
31: end for
32: subpbSolvedFlag, newParam← REDUCE RANGE(X̃l

j θ
h
d,j, Ỹh

j θh
d,j, paramListArray[i], nonInjMatch)

33: end for
34: if subpbSolvedFlag then
35: return nnAssignArray
36: end if
37: subpbSolvedFlag← HANDLE SIMPLE CASE(X̃l

j θ
h
d,j, Ỹh

j θh
d,j, paramListArray[i])

38: if subpbSolvedFlag then
39: return nnAssignArray
40: end if
41: nnAssignArray← NEAREST NEIGHBOR MATCH(X̃l

j θ
h
d,j, Ỹh

j θh
d,j, paramListArray[i])

42: nnAssignArray← SIMPLE SOLVE(X̃l
j θ

h
d,j, Ỹh

j θh
d,j, paramListArray[i])

43: return nnAssignArray
44: end function
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Appendix A.2. Nearest Neighbor Assignation for Two Time Series, Section 5

Algorithm A2 Nearest neighbor assignation, from [11]
Input:

Xl
j , Yh

j two time series
param structure containing parameters of source and target segments to align
param = {start0, end0, start1, end1}

Output:
nnAssignArray is an assignment array of nearest neighbors of Xl

j to Yh
j

1: function NEAREST NEIGHBOR MATCH(Xl
j , Yh

j , param)

2: declare nnAssignArray integer array of length(Xl
j)

3: /* Initialize cursor to target’s first element */
4: cursor← param.start1
5: /* Source search */
6: for i← param.start0 to param.end0 do
7: /* Initialize variable to FLOAT_MAX_VALUE */
8: minDist← 3.40× 1038

9: minTargetIndex← −1
10: lockIndex←max(param.start1, cursor)
11: /* Browse target from current source point */
12: for k← lockIndex to param.end1 do

13: dist←
(

Xl
j [i]−Yh

j [k]
)2

14: /*Store index of the last neighboring point*/
15: cursor← k− 1
16: if dist ≤minDist then
17: minDist← dist
18: minTargetIndex← k
19: else
20: if dist > minDist then break
21: end if
22: end if
23: end for
24: nnAssignArray[i]←minTargetIndex
25: end for
26: return nnAssignArray
27: end function
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Appendix A.3. Advection from Source to Target Time Series, Section 5

Algorithm A3 Advection from the source to the target
Input:

X̃l
j et Ỹh

j are the source and target points
nnAssignmentArray is the array of the closest neighbors from X to Y
projSrcWIndex is the array of the projected source with the associated indices
projTargetWIndex is the array of the projected target with the associated indices
sigmoid contains two hyperparameters for the displacement, one for each

dimension
Output:

X̃T is the cloud of source points transported on the target
advectCost represents the movement cost, i.e., movement from source to target

1: function ADVECTION(X̃l
j , Ỹh

j , nnAssignmentArray, projSrcWIndex, projTargetWIndex,
sigmoid)

2: advectCost← 0
3: cumXDisplacement← 0
4: distArray integer array of length(X̃l

j)

5: for i← 0 to length(projSrcWIndex) do
6: xtarget ← Ỹh

j [projTargetWIndex[nnAssignmentArray[i]]]x
7: ytarget ← Ỹh

j [projTargetWIndex[nnAssignmentArray[i]]]y
8: xsrc ← X̃l

j [projSrcWIndex[i]]x
9: ysrc ← X̃l

j [projSrcWIndex[i]]y
10:
11: /* Compute Euclidean distance between source and target points */

12: distArray[i]←
√(

ytarget − ysrc

)2
+
(
xtarget − xsrc

)2

13:
14: /* NB: Sigmoïd function defines the distance ratio to keep */
15: xdisplacement ← sigmoid[0]× (xtarget − xsrc)
16: ydisplacement ← sigmoid[1]× (ytarget − ysrc)

17: cumXDisplacement← cumXDisplacement + xdisplacement

18: X̃l
j [projSrcWIndex[i]]x ← X̃l

j [projSrcWIndex[i]]x + xdisplacement

19: X̃l
j [projSrcWIndex[i]]y ← X̃l

j [projSrcWIndex[i]]y + ydisplacement
20: end for

21: advectCost← advectCost +
(

∑
i

distArray[i]
)

/length(X̃l
j)

22: X̃T ← X̃l
j

23: return advectCost, X̃T
24: end function
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Appendix A.4. Global Algorithm: Time Series Alignment, Section 5

Algorithm A4 Time series alignment (first part)
Input:

X̃l
j and Ỹh

j are source and target cloud points

Θh,∗
j a list containing the two optimal projection directions (hyperparameters)

weightArray an array containing weights (hyperparameters)
Output:

X̃T source cloud point moved towards the target cloud point

1: function TIME SERIES ALIGNMENT(X̃l
j , Ỹh

j , Θh,∗
j , weightArray)

2: /* Initialization */
3: dirIndex← 0
4: (flag, noIter, countIter)← (1, 1, 1)
5: Xl

j ← X̃l
j [, :]

6: cost← 42
7: while cost > 0 do
8: if localCost < 0 then
9: if flag then

10: dirIndex← dirIndex +1
11: flag← 0
12: else
13: break
14: end if
15: end if
16: /* Cloud point projection and indexation */
17: dirPoint← Θh,∗

j [dirIndex]

18: projSrcWIndex← integer array of (length(X̃l
j), 2)

19: projTargetWIndex← integer array of (length(Ỹh
j ), 2)

20: for i← 0 to length(X̃l
j) do

21: projSrcWIndex←
(

X̃l
j Θ

h,∗
j [i], i

)
22: end for
23:
24: for j← 0 to length(Ỹh

j ) do

25: projTargetWIndex←
(

Ỹh
j Θh,∗

j [i], i
)

26: end for
27: projSrc← integer array of length(X̃l

j)

28: projTarget← integer array of length(Ỹh
j )

29: /* Sort projected points by values */
30: projSrcWIndex← projSrcWIndex.sort(by= value)
31: projTargetWIndex← projTargetWIndex.sort(by= value)
32: /* Create an array with only projected values */
33: for i← 0 to length(X̃l

j) do
34: projSrc← projSrcWIndex[i, 0]
35: end for
36: for j← 0 to length(Ỹh

j ) do
37: projTarget← projTargetWIndex[j, 0]
38: end for
39:
40: /* Nearest neighbor quadratic assignment */
41: nnAssignArray← QUADRATIC ASSIGNMENT( projSrc, projTarget, length(X̃l

j), length(Ỹh
j ))

42:
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Algorithm A5 Time series alignment (second part)

43: /* Hyperparameters choice for advection model */
44: α← 0.1
45: (weight0, weight1)← (weightArray[0], weightArray[1])× α
46: sigmoid← 1/(1 + exp(−α× weightArray ))
47: X̃T , alignCost← ADVECTION(projSrc, projTarget, nnAssignmentArray, projSr-

cWIndex, projTargetWIndex, sigmoid)
48:
49: // Structure with intermediate values for one dimension of the source cloud point
50: Xl

j ← Xl
j.append(X̃T )

51:
52: /* Compute an intermediary alignment cost */
53: localCost← L(Xl

j)

54: cost← |localCost|
55: if |localcost| < 1× 10−16 then
56: cost← 0
57: countIter← countIter + 1
58: end if
59: noIter← noIter + 1
60: end while
61: return X̃T
62: end function
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