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Abstract: Facial emotion recognition (FER) has a huge importance in the field of human–machine
interface. Given the intricacies of human facial expressions and the inherent variations in images,
which are characterized by diverse facial poses and lighting conditions, the task of FER remains a chal-
lenging endeavour for computer-based models. Recent advancements have seen vision transformer
(ViT) models attain state-of-the-art results across various computer vision tasks, encompassing image
classification, object detection, and segmentation. Moreover, one of the most important aspects of
creating strong machine learning models is correcting data imbalances. To avoid biased predictions
and guarantee reliable findings, it is essential to maintain the distribution equilibrium of the training
dataset. In this work, we have chosen two widely used open-source datasets, RAF-DB and FER2013.
As well as resolving the imbalance problem, we present a new, balanced dataset, applying data
augmentation techniques and cleaning poor-quality images from the FER2013 dataset. We then
conduct a comprehensive evaluation of thirteen different ViT models with these three datasets. Our
investigation concludes that ViT models present a promising approach for FER tasks. Among these
ViT models, Mobile ViT and Tokens-to-Token ViT models appear to be the most effective, followed by
PiT and Cross Former models.

Keywords: facial emotion recognition; vision transformer; data augmentation; balanced data;
FER2013; RAF-DB

1. Introduction

Facial expression recognition is a key subfield of human–computer interaction, im-
pacting fields such as sentiment analysis, affective computing, and virtual reality. Interest
in cutting-edge techniques that improve accuracy and resilience is growing as there is a
greater requirement for robots to recognize and respond to human emotions appropriately.
Transformer-based models, which were initially developed for language problems, bring
in a new era of performance for various image classification tasks in computer vision.
This work launches an investigation, examining various vision transformer models in the
context of recognizing emotions, and supported by facial datasets.

At the core of our study lies a close look at a range of vision transformer architectures.
Our main goal is to comprehend how accurately these structures represent the subtleties of
facial expressions. We also investigate how data augmentation techniques enhance model
performance, particularly in datasets with balanced classes, to further the depth of our
analysis. The FER2013 dataset, known as a benchmark repository containing the complete
range of human emotional expressions, serves as the foundation for our empirical inquiry.
This dataset has several limitations, such as an imbalance between classes and low-quality
images. These shortcomings can negatively affect the performance of models trained using
this dataset. Therefore, we developed a new, balanced dataset based on FER2013 that will
address these deficiencies.
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An overview is given in Section 2, which also explores the field of facial expression
recognition, the idea of transformer architecture, and the importance of contemporary
data-augmentation approaches. The description of our methodology in Section 3 includes
information regarding the vision transformer models. We present the findings of our
studies in Section 4, analysing the subtleties of each model’s performance.

2. Related Works
2.1. Facial Emotion Recognition

The recognition of facial emotions has captured substantial attention due to its pivotal
role in applications like human–computer interaction and affective computing. In this field,
various techniques have been investigated. Early approaches frequently used manually
created features and ML techniques such as support vector machines and random forests.
Convolutional neural networks have shown their strength in capturing detailed spatial
patterns within facial emotions as deep learning approaches have grown in popularity [1].

2.2. Transformer Models in Computer Vision

A paradigm change has occurred as a result of the introduction of transformer models—
originally developed for natural language processing—to the field of computer vision. The
principles of attention and multi-head attention described in the original transformer
paper (presented in Figure 1) must be understood before delving deeply into how vision
transformers function. In [2], the transformer model is put forth. Three variables are used
in the transformer’s attention mechanism: K (Key), Q (Query), and V (Value). As inputs,
the sets of key-value pairs with query vectors are used. The softmax operator is used to
calculate the output vector after a weighted sum of the values is determined; the weights
are determined using a scoring function (Equation (1)).

Attention(Q, K, V) = softmax

(
Q·KT
√

dk

)
·V (1)

where V, Q, and KT are value, query, and transposed key matrix, respectively. The scaling
factor is 1/

√
dk, and dk represents the key matrix’s dimensions.
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Figure 1. The attention layer’s structure. Scaled dot-product attention is on the left, multi-head
attention mechanism on the right.

The multi-head attention mechanism is defined using the Q, K, and V calculation as a
single head. Q and K are used by the (single head) attention mechanism in the preceding
diagram.
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However, in the multi-head attention mechanism, each head has its own projection
matrix, and they use the feature values projected using these matrices to determine the
attention weights.

Multihead
(
Q′, K′, V′

)
= Concat (head1, ..., headh)WO

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

) (2)

where, Q′, K′, V′ are the projection matrix; WQ
1...h ∈ RD×dk , WK

1...h ∈ RD×dk , WV
1...h ∈ RD×dv

and WO ∈ Rh·dv×dout are trainable weight matrices; D is the size of the embedding vector
of each input element from our sequence; dk and dv are the inner dimensions of each
self-attention layer, and h is the number of heads.

Multi-head attention is theoretically based on the ability to consistently pay attention to
different sequence pieces in diverse ways. The model can better collect location information
as a result because, in practice, each head will focus on a separate input segment. We
will have a stronger representation as a result of their combination. Each head will also
uniquely correlate words to gather various pieces of contextual information.

A turning point was reached with the development of the vision transformer (ViT) [3],
which highlighted the potential of transformer designs in image categorization. With
this method, each patch of an image is processed by a layer of a transformer. This novel
viewpoint cleared the way for the successful representation of global contextual information
in images.

The following are some significant application areas for vision transformers, which are
widely used in common computer vision tasks: image classification, segmentation, object
detection, and cluster analysis.

CrossViT was suggested by the authors in [4] for image classification. Excellent
teacher-guiding small networks (ES-GSNet) were suggested by the authors in [5] for the
classification of remote sensing image scenes. The authors of [6] provided additional details
on the application of ViT for the multilabel classification of satellite imagery and suggested
ForestViT. ViT was used by Tanzi et al. in [7] to classify femur fractures.

With regard to detection, Beal et al. [8] were the first to use a supervised pretrained
ViT in conjunction with a faster region-based convolutional neural network detector for
object detection. The authors of [9] suggested an unsupervised learning-based method for
identifying manipulation in satellite photos by the use of ViT. A bridged transformer (BrT)
was suggested by the authors in [10] for 3D object detection. The model was used for 3D
object detection in point clouds and vision.

Transformers can also be used to segment images. Medical image segmentation was
accomplished in [11] using a combination of ViT and U-Net. The transformer was used by
the authors in place of the encoder in the traditional U-Net. The authors of [12] presented a
brand-new image segmentation technique called “language-aware ViT” (LAVT). In a similar
vein, high-resolution ViT for semantic segmentation was proposed in another work [13].
MaskFormer was proposed by Cheng et al. in [14] for image segmentation.

As to image super-resolution, Eformer was suggested by Luthra et al. in [15] for
medical image denoising. The authors proposed SUNet for image denoising in [16] by
way of combining UNet and the Swin transformer [17]. The authors of [18] suggested
DenSformer as a method for image denoising. The three modules that made up the
DenSformer were preprocessing, feature extraction, and reconstruction.

Anomaly detection is another potential use. In [19], a unique ViT network for image
anomaly detection and localization was created. The authors of this study used the BTAD
real-world dataset. In a similar vein, the authors of [20] suggested AnoViT for anomaly
detection and localization. TransAnomaly is a video ViT and U-Net-based framework that
Yuan et al. proposed in [21] for the detection of anomalies in the videos.

The results show that the main applications of ViTs are as follows: 50% are for image
classification, 40% are for object detection, 1% are for segmentation, 1% are for compression,
2% are for super-resolution, 3% are for denoising, and 3% are for anomaly detection [22].
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2.3. Attaining Data Balance through Augmentation

In the pursuit of building resilient machine-learning models, tackling data imbalance
assumes a pivotal role. Researchers have used data augmentation techniques as an effective
tactic in the field of recognizing facial emotions. These methods cover a wide range
of modifications, from colour adjustments and random erasing to geometrical tweaks
like rotation and scaling [23]. By using these augmentation strategies, the dataset’s class
distribution is made more equitable, which improves model performance and resilience.

The foundation of our work is the integration of several interrelated research fields—
computer vision transformer models, facial emotion recognition, and data augmentation.
Our research focuses on using vision transformers’ potential to improve the precision of
emotion recognition. We aim to push the limits of accurate emotion recognition by utilising
the synergies between these domains.

3. Analysis of Vision Transformer Models

The use of vision transformers is widespread in common tasks such as object detection,
image segmentation, image classification, and action recognition. In the present research,
we used vision transformer (ViT) models to tackle the issue of identifying facial emotions.
This part introduces the topic by examining the fundamental mechanics and architectural
features that these models have, as well as illuminating the conceptual framework of
ViT models.

3.1. Vision Transformer Models
3.1.1. Base Vision Transformer (ViT)

An innovative model that expands the transformer architecture to handle image
classification problems was introduced by Dosovitskiy et al. [3] in 2020. ViT takes a
distinctive approach to image processing, much like its equivalent in natural-language
processing. The typical transformer model used a one-dimensional sequence of word
embeddings as input due to the model design, which was based on NLP. On the other
hand, when the transformer model is used for the problem of image classification in CV,
the input data is given to it as two-dimensional images. Figure 2 presents an illustration of
the main ViTs.
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Divided into smaller two-dimensional patches, the input image, with height, width,
and number of channels, is used to structure the input image data in a manner consistent
with the input’s structure in the NLP domain. As a result, there are N = HW

P2 patches, with
each patch having a resolution of (P, P) pixels.

The following operations are carried out prior to feeding the data into the transformer
encoder:

• Every picture patch is flattened into an xn
p vector of length P2 × C, where n = 1, . . . N.

• Mapping the flattened patches to D dimensions using a trainable linear projection, E,
produces a series of embedded picture patches.

• The classification output, y, is represented by the learnable class embedding, xclass,
which prefixes the list of embedded image patches.

• Finally, positioning information, which is also learned during training, is added to
the input by augmenting the patch embeddings with one-dimensional positional
embeddings Epos.

The embedding vectors that arise from the aforementioned procedures are as follows:

z0 =
[
xclass; x1

pE; . . . ; xN
p E
]
+ Epos (3)

where, Epos is the positional embedding matrix, xn
p is a flattened vector of image patches,

and xclass is the class embedding vector.
At the input of the transformer encoder, a stack of L identical layers z0 is fed for

classification. They then proceed to feed a classification head with the value of xclass at the
Lth layer of the encoder output.

It is crucial to understand the transformer encoder and its essential components. These
are the parts of the transformer encoder:

• Multi-head self-attention (MHSA) layer: By using multiple “heads”, the ViT model can
simultaneously focus on different segments of an image. Each head calculates attention
independently, allowing for a variety of image representations to be generated. These
representations are then combined to create a final image representation. This approach
allows the model to capture more nuanced interactions between input components.
However, this also makes the model more complex and computationally expensive
due to the need to aggregate the outputs from all the heads. Within the images in
Figure 3, we offer insights into the visualization of the attention mechanism in a
vision transformer. We explore different numbers of heads in the multi-head self-
attention layer. The upper-left corner displays the original image and its attention
visualization using the mean value of the heads. Meanwhile, the lower part of the
image showcases visualizations with varying numbers of heads in the multi-head
self-attention layer. Based on Figure 3, it is evident that as we increase the number
of heads in the MHSA layer, the model’s ability to identify interrelated objects in our
dataset improves. However, it is worth noting that using a large number of heads can
also negatively impact the accuracy of the model. Therefore, in most cases, it is crucial
to determine the optimal number of heads for each model. In Figure 3, the ideal choice
would be to set the number of heads to 4.

• Layer normalization (LN): LN is used to normalize the training data before each
block, preventing the introduction of any new dependencies. This improves overall
performance and training effectiveness.

• Feed-forward network (FFN): The MHSA layers produce outputs that are processed
by the FFN. It has a nonlinear activation function and two linear transformation layers.

• Multi-layer perceptron: This layer uses the GELU activation function in a two-layer
structure.

To sum up, ViT utilizes the encoder part of the transformer framework. The encoder
takes in a series of embedded image patches, along with positional information and a learn-
able class embedding added at the start of the sequence. The learnable class embedding
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value is sent to a classification head linked to the encoder’s output, which utilizes it to
generate a classification outcome based on its condition.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 3. Attention maps in a vision transformer (ViT) with varying head numbers. 

• Layer normalization (LN): LN is used to normalize the training data before each 
block, preventing the introduction of any new dependencies. This improves overall 
performance and training effectiveness. 

• Feed-forward network (FFN): The MHSA layers produce outputs that are processed 
by the FFN. It has a nonlinear activation function and two linear transformation 
layers. 

• Multi-layer perceptron: This layer uses the GELU activation function in a two-layer 
structure. 
To sum up, ViT utilizes the encoder part of the transformer framework. The encoder 

takes in a series of embedded image patches, along with positional information and a 
learnable class embedding added at the start of the sequence. The learnable class 
embedding value is sent to a classification head linked to the encoder’s output, which 
utilizes it to generate a classification outcome based on its condition. 

3.1.2. Attention-Based Approaches 
To capture various features of the image, a number of models use several ViTs 

operating in tandem. A self-attention module and a class attention module, for instance, 
are used in the CaiT [24] architecture. While the class attention module learns the 
connections between the patches and the class labels, the self-attention module focuses on 
the connections between the patches themselves. The model can learn both the local and 
global aspects of the image using this method. Models such as ViT for Small-Size Datasets 
[25], Deep ViT [26] and Cross Former [27] also employ attention-based strategies. 

  

Figure 3. Attention maps in a vision transformer (ViT) with varying head numbers.

3.1.2. Attention-Based Approaches

To capture various features of the image, a number of models use several ViTs operat-
ing in tandem. A self-attention module and a class attention module, for instance, are used
in the CaiT [24] architecture. While the class attention module learns the connections be-
tween the patches and the class labels, the self-attention module focuses on the connections
between the patches themselves. The model can learn both the local and global aspects
of the image using this method. Models such as ViT for Small-Size Datasets [25], Deep
ViT [26] and Cross Former [27] also employ attention-based strategies.

3.1.3. Patch-Based Approaches

Other ViT architectures focus on improving the segmentation of images into smaller
sections. One example is the Tokens-to-Token vision transformer (T2T-ViT) [28] architecture,
which creates patches in an iterative manner using a token-to-token module, as shown in
Figure 4. This allows the model to capture patches of different sizes, which can be helpful
in capturing varying levels of image detail.

3.1.4. Multi-Transformer-Based Approaches

Some vision transformer architectures improve the efficiency and effectiveness of
the ViTs’ self-attention module. A cross-attention module, for instance, is used in the
CrossViT [4] architecture (given in Figure 5) to allow information to be transferred across
the two branches of the model, one of which processes small patches, and the other, large
patches. This approach reduces the computational cost of attention while still allowing
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the model to learn long-range dependencies. An approach similar to the CrossViT is also
utilized in the Parallel ViT model [29].
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3.2. Hybrid Vision Transformer Architectures

Vision transformer differs from conventional convolutional neural networks (CNNs)
in several ways, including its capacity to learn long-range dependencies in the image
and its training on very large datasets. Although ViTs have certain drawbacks, such as
high computing costs and a propensity to disregard geographical data, researchers have
proposed several hybrid vision transformer (HVT) architectures that combine CNNs and
transformers to address these issues.

To grasp long-distance relationships, the LeViT [30] design utilizes a CNN to transfer
the local features extracted from the image to a ViT encoder. This approach allows the
model to promptly capture spatial data from the picture, improving its ability to execute
tasks such as object detection and segmentation. As well, several HVT models, including
EarlyConViT [31], Mobile ViT [32], Region ViT [33], and PiT [34] are integrated with CNN.

We investigated the use of facial emotion recognition with a variety of vision trans-
former (ViT) models, including those mentioned above.

4. Experimental Results

As described in this section, we conducted a comprehensive experiment to test vision
transformer models on facial expression databases. First, we provide a brief overview of
the databases used in our research.
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4.1. Datasets

We used two public facial expression recognition (FER) datasets (RAF-DB and FER2013)
and our new Balanced FER2013 dataset to showcase the performance of vision transformer
models across different datasets.

4.1.1. FER2013 Dataset

The FER2013 dataset (Figure 6), known for its wide range of facial expressions, serves
as the foundation for our empirical investigation. FER2013 consists of a total of approxi-
mately 35,887 images.
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This total includes images from the training, public-test, and private-test subsets
combined. The dataset includes seven different emotion categories—anger, disgust, fear,
happiness, sadness, surprise, and neutral—and offers a solid framework for assessing the
recognition abilities of various ViT models.

4.1.2. RAF-DB Dataset

The Real-World Affective Faces Database (RAF-DB) is an FER dataset (Figure 7) that
includes 29,672 facial images that have been annotated by 40 different taggers describing
simple and complex expressions. Facial photos can indicate seven basic emotions and
eleven complex emotions. The subject’s age, gender, ethnicity, and head posture, as well
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as the lighting, occlusions, and post-processing techniques, are all highly variable in the
photographs in the RAF-DB.
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4.1.3. Our Balanced FER2013 Dataset

As in other domains, one of the most crucial elements in enhancing the precision of
facial emotion recognition models is a balanced dataset. In this study, we used the cleaning
and augmentation techniques to build a new, balanced FER2013 dataset, which was based
on the existing FER2013 dataset. The FER2013 dataset is a well-known benchmark for
facial emotion recognition (FER) tasks. But there are some issues with the FER2013 dataset.
Among the main challenges are:

• Contrast variation: It is possible that the dataset contains photos that are either too
bright or too dark. CNN models, which learn visual features automatically, tend to
perform better with high-contrast images. Low-contrast images, on the other hand,
may affect CNN performance due to the lower amount of information they transmit.
This issue can be resolved by improving the quality of the faces in the pictures.

• Imbalance: When one class has many more photos than another, there is a class
imbalance. This may skew the model in favour of the dominant class. The model will
favour the cheerful class, for instance, if there are 100 photographs of joyful people
and 20 images of afraid people. To address this issue, data augmentation techniques
like horizontal flipping, cropping, and padding can be applied to increase the amount
of data available for the minority classes [35].
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• Intra-class variation: A range of facial expressions, including animated faces and
drawings, are included in the dataset. The features of real and animated faces differ,
which can make it challenging for the model to extract landmark elements. In order
to enhance model performance, only photographs of actual human faces should be
included in the dataset.

• Occlusion: When part of the image is hidden, this is known as occlusion. This may
occur when someone is wearing sunglasses or a mask, or when a hand covers a portion
of the face, like the right eye or nose. Occluded photos should be eliminated from
the dataset, since the eyes and nostrils are crucial characteristics for detecting and
extracting emotions.

The FER2013 dataset can be enhanced to become a more trustworthy standard for
FER research by resolving these issues. In this work, we present a new dataset, FER2013_
balanced, which is obtained by data augmentation methods, using the FER2013 dataset.
Initially, we excluded poor-quality photos from the FER2013 dataset, including those with
low contrast or occlusion. A depiction of poor-quality images from the FER2013 dataset is
shown in Figure 8, arranged according to the relevant categories.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 14 
 

may affect CNN performance due to the lower amount of information they transmit. 
This issue can be resolved by improving the quality of the faces in the pictures. 

• Imbalance: When one class has many more photos than another, there is a class 
imbalance. This may skew the model in favour of the dominant class. The model will 
favour the cheerful class, for instance, if there are 100 photographs of joyful people 
and 20 images of afraid people. To address this issue, data augmentation techniques 
like horizontal flipping, cropping, and padding can be applied to increase the amount 
of data available for the minority classes [35]. 

• Intra-class variation: A range of facial expressions, including animated faces and 
drawings, are included in the dataset. The features of real and animated faces differ, 
which can make it challenging for the model to extract landmark elements. In order 
to enhance model performance, only photographs of actual human faces should be 
included in the dataset. 

• Occlusion: When part of the image is hidden, this is known as occlusion. This may 
occur when someone is wearing sunglasses or a mask, or when a hand covers a 
portion of the face, like the right eye or nose. Occluded photos should be eliminated 
from the dataset, since the eyes and nostrils are crucial characteristics for detecting 
and extracting emotions. 
The FER2013 dataset can be enhanced to become a more trustworthy standard for 

FER research by resolving these issues. In this work, we present a new dataset, 
FER2013_balanced, which is obtained by data augmentation methods, using the FER2013 
dataset. Initially, we excluded poor-quality photos from the FER2013 dataset, including 
those with low contrast or occlusion. A depiction of poor-quality images from the FER2013 
dataset is shown in Figure 8, arranged according to the relevant categories.  

 
Figure 8. Examples of poor-quality images sourced from the FER2013 database.

Next, in order to enlarge the minority classes, we employed data augmentation
techniques on the remaining images. Finally, we eliminated a few photos from the happy,
neutral, sad, and other categories to balance our dataset. The FER2013_balanced dataset
contains an equal number of photos for every emotion category. This ensures a balanced
distribution of classes, reducing the possibility of bias towards the majority classes. Thus, it
serves as a reliable baseline for FER research. The number of images in each category from
the FER2013 and FER2013_balanced datasets is shown in Figure 9.
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4.2. Results

In this section, we will discuss the results of our evaluation and comparison of 13 dif-
ferent vision transformer (ViT) models on the facial expression recognition RAF-DB and
FER2013 datasets, as well as our Balanced FER2013 dataset. Our process involved training
the model on a portion of the dataset, testing it on a validation set, and then reporting its
accuracy on the test set. Before we describe the specific aspects of the model’s performance
on various datasets, we will briefly outline our training process. We ensured consistency in
the architecture and hyperparameters of each model and trained a single model for each
dataset. For all experiments, we utilized a workstation featuring an Intel i7 CPU with
32 GB of RAM and an Nvidia GTX 3090 GPU with 24 GB of memory. In this study, each
vision transformer model was trained for 25 epochs from scratch to develop the models. To
optimize the model, we applied an Adam optimizer with a learning rate of 3 × 10−5. In
order to ensure that the model was trained on a diverse range of images and could handle
minor variations, we applied data augmentation to the images in the training sets. This
involved flipping, zooming, rotating, and distorting the images to enhance the quality of
the data.

We measured each model’s performance in terms of recognition accuracy. The follow-
ing Table 1 provides an overview of the accuracy results obtained:

Table 1. Classification accuracy (%) of different vision-transformer models on facial expression
recognition datasets.

Model RAF-DB FER2013 Balanced FER2013

Base ViT [3] 68.34 49.64 60.25
CrossViT [4] 69.74 50.27 62.43

CaiT [24] 70.45 45.68 60.15
ViT for Small-Size Datasets [25] 72.37 55.35 67.88

Deep ViT [26] 63.25 43.45 50.37
Cross Former [27] 72.47 59.95 75.12

Tokens-to-Token ViT [28] 76.40 61.28 74.20
Parallel ViT [29] 67.16 50.94 64.40

LeViT [30] 65.71 47.22 60.85
Early ConViT [31] 68.24 51.02 66.70

Mobile ViT [32] 74.28 62.73 77.33
Region ViT [33] 69.62 56.03 73.79

PiT [34] 72.84 58.67 76.09

The Tokens-to-Token ViT model outperforms all other models on the RAF-DB dataset,
achieving accuracy values of 76.40%. With high accuracy rates across all three datasets,
Mobile ViT, PiT and Cross Former models also produce great results. The Deep ViT and



Appl. Sci. 2023, 13, 12271 12 of 14

Parallel ViT models underperform on all three datasets. They may not be suitable for FER,
as they were developed for other tasks and may not work efficiently with small databases.

Further observations indicate that the models perform insufficiently on the FER2013
dataset compared to the RAF-DB dataset. The reason for this could be the challenging
nature of the images in the FER2013 dataset, which exhibit higher levels of noise and
occlusion. However, on the Balanced FER2013 dataset, the models perform better than on
the FER2013 dataset. This is because the Balanced FER2013 dataset has an equal number of
images for each expression class, while the FER2013 dataset is imbalanced.

In Figure 10, one can compare each emotion category’s accuracy with the Tokens-to-
Token ViT model’s application to the FER2013 and FER2013_Balanced datasets. As can
be seen from the following categories, the model achieves high accuracy when using the
FER2013_balanced dataset. The analysis covers a broad range of emotions including anger
which increased from 47.3% to 73.4%, disgust which improved from 43.5% to 91.2%, fear
which rose from 33.5% to 79.1%, and neutral which advanced from 60% to 79%. However,
it is also important to acknowledge a few negative outcomes in the categories of surprise,
sadness, and happiness. When it comes to overall accuracy of the Tokens-to-Token ViT, the
FER2013 dataset has an accuracy of 61.28%, whereas the FER2013_balanced dataset has an
accuracy of 74.20%.
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In terms of facial expression recognition (FER), the Mobile ViT and Tokens-to-Token
ViT models are the most effective ViT models, followed by the PiT and Cross Former
models. Conversely, the Deep ViT and Parallel ViT models showed subpar performance.
The Base ViT model, however, proved to be a decent baseline model for this task.

5. Conclusions

In this study, we used three datasets, the RAF-DB, the FER2013, and our Balanced
FER2013 Facial Expression Recognition dataset, to carry out a thorough investigation of
vision transformer (ViT) models for facial emotion recognition. Our research shows that
the Tokens-to-Token ViT and Mobile ViT models are more effective than the PiT and Cross
Former models for FER.

Our findings also suggest that ViT models can be successful in completing FER tasks,
even with challenging datasets like FER2013. However, to improve the performance of ViT
models on FER datasets with noise and occlusion, further research is needed.
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Our study provides valuable insights into the use of ViT models for FER. The results
can assist other researchers in selecting the most suitable ViT model for their FER work and
in identifying areas that require further exploration.
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