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Abstract: One of the main problems of modern manufacturing systems is the increasing complexity
related to modern Industry 4.0 technologies that are fundamentally changing manufacturing and
logistics processes and operations. Industry 4.0 includes, e.g., flexible automation and robotization,
which make complex manufacturing systems difficult to analyze. Some modeling and simulation
methods are being used to solve industrial problems and can serve as an interface between the pro-
duction level and management level. The new trend of the Digital Twin, creating simulation models
as similar as possible to the real system, and a Digital Twin framework for a manufacturing line from
the automotive industry, was considered. Simulation models typically start from the empty state and
some warmup time is required to achieve the stable state. The Key Performance Indicators were also
analyzed for the stable state. However, there are many stochastic parameters such as machinery fail-
ures, human errors, quality issues, etc., that make the real processes differ from simulated processes,
and cause the instability of production throughput and changes in the Work in Process. To analyze
the Work in Process in the model, initialization of the model with proper production data is required,
as the Digital Twin uses data synchronization with the production database. In this paper, the digital
model of a human-robot-operated manufacturing system with Work-in-Process data synchronization
is analyzed, and the results of the statistical analysis of simulation experiments are presented. The
obtained results show high variability of finished production, which is related to system instability
due to random failures, especially when the system starts from an empty state. However, an increase
in initial Work in Process results in better efficiency and stability for the whole system. The DT
simulation of the manufacturing system can be very helpful, as it becomes a repository of knowledge
about the real system and enables the analysis of its dynamics. However, for proper functionality,
the model should include information about the current WIP state, which enables the start of the
simulation with exactly the same number of queues as in the real system. The presented method can
also be used in similar enterprises from other industries, especially for those with discrete processes
or high WIP variability, and for further synchronization of other DT parameters.

Keywords: DES; digital twin; human factors; Industry 4.0; industrial robots; KPI; OEE; ToC; WIP

1. Introduction

Currently, manufacturing processes in industry are becoming more and more complex
because of global competition and the need for more advanced products. The answer to
the growing demand of the global market is the Fourth Industrial Revolution (Industry 4.0,
I4.0) [1–6].

The I4.0 concept is under development mainly in the European Union, as it was
originally designed as a national initiative for the development of the German economy
in 2011 [7]. Differently, in the United States, the terms Smart Manufacturing or Digital
Factory are commonly used, and the National Network for Manufacturing Innovation was
established [7]. In China, there is an initiative “Made in China 2025” under development,
which sets to modernize China’s industry, focusing heavily on Intelligent Manufacturing.
Similarly, in Japan, a “Society 5.0” plan was proposed for the development of science
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and technology in a future society based on systems that highly integrate cyberspace and
physical space [7].

Large international companies from the manufacturing sector were the ones most
involved in the Industrial Revolution, including, at the forefront, the mechanical, automo-
tive, and electrotechnical industries [8]. There is also an increasing number of publications
related to Industry 4.0 and Logistic 4.0 in Small and Medium Enterprises (SME), which
constitute a great part of the economy of the European Union [9].

The main goal of this work is to develop a framework for developing a simulation
model as close to real production processes as possible, including the changes of the WIP
and building a framework of a Digital Twin. We have analyzed some manufacturing lines
for assembling and welding automotive components. Typically, the workspace consists of
some robotic welding stations and some manually operated workstations, therefore, human
and robot factors should both be taken into consideration. In addition, there is a significant
equipment failure rate and variable quality rate, which are related to irregular changes
in the WIP [10,11]. Human labor especially is very stochastic, and therefore the results of
simulation experiments often deviate from the production plans, and the actual production
volume may also differ. At a later stage, the model may be developed further, along with
the subsequent phases of the production system life cycle, and refined to obtain a Digital
Twin. Integration, including the exchange architecture, simulation creation, performance
optimization, and predictive analysis of the production process conditions combine in
order to obtain high flexibility of the production system [12].

This article considers the framework model of a Digital Twin for an automotive
production line. The next chapters include a literature review and description of the
simulation methods used to model Digital Twins and a description of the problem under
consideration with an example case study. Subsequent chapters contain the results of
simulation experiments for various scenarios and a discussion of the WIP results as well as
final conclusions.

The Literature Review

Industry 4.0 is based on cyber-physical system technologies and includes many dig-
ital technologies such as augmented reality, virtual reality, cyber-physical infrastructure,
cloud computing, Internet of Things, artificial intelligence, big data analytics, additive
manufacturing, smart sensors, autonomous robots and systems, and mobile technologies.

The main areas of implementation of I4.0 technologies are production resources,
transport, and storage systems [1–8]. Accordingly, an increasing use of automation and
robotization can be observed, which is replacing human work. Industrial robots have a
mobility similar to the human arm and, like humans, can perform a variety of complex
tasks. In addition, they do not experience exhaustion or boredom and can work in harmful
conditions. That is why, nowadays, more and more robots work in industry, especially per-
forming repetitive and very precise tasks (e.g., welding) or monotonous activities requiring
physical effort (e.g., machine handling, palletization, etc.) [13–16]. In addition, production
and logistics processes are becoming more complex and more difficult to analyze due
to many technical and organizational limitations, which determine the different perfor-
mances of workstations and the formation of so-called bottlenecks during the production
flow [17]. Industry 4.0 depends on the digital integration of technical and network aspects
of manufacturing systems [18].

One part of Industry 4.0 is computer modeling and simulation, which are involved in
managing the increasing complexity of manufacturing systems and can act as an integrator of
solutions obtained in the process of improving existing or newly designed subsystems [19,20].

From the system designer’s point of view, the simulation of the cyber-physical ap-
proach (digital objects, with their structure, connections, and existing meta-information
and semantics) is the next step in the development and systematic approach to the design
of multi-level systems. (Figure 1).
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The Theory of Constraints (TOC) is a management paradigm that views any manage-
able system as being limited in achieving more of its goals by several constraints. The TOC
gives a methodology for identifying the most important limiting factor (i.e., equipment,
people, policy) that stands in the way of achieving a goal and then systematically improving
the aforementioned constraint until it is no longer the limiting factor. The improvement of
the manufacturing process and removal of one constraint is often referred to as shifting the
bottleneck [21,22].

Tests on real production systems are usually not possible due to production being in
process and the high costs associated with each delay. Mathematical analysis of complex
production processes is also difficult due to the large number of interrelated parameters.
Therefore, computer simulation methods are often used, i.e., the simulation of discrete
events (DES—Discrete Event Simulation), which is utilized in many programs for the
analysis of discrete production processes, such as Arena, Enterprise Dynamics, FlexSim,
Plant Simulation, and others [23–25].

To evaluate the performance of a production system various Key Performance Indi-
cators (KPIs) can be used [26,27]. There are financial KPIs, customer-focused KPIs, and
process-focused KPIs that aim to measure and monitor operational performance across the
organization. The most popular KPIs used in manufacturing include production through-
put, utilization rate, number of finished and unfinished products, Work in Process (WIP),
quality rate, availability, performance, etc. [28].

The term WIP is broadly used in production and supply chain management and means
partially finished goods waiting for completion [29]. There is also the similar term of Work
in Progress, used in a slightly broader sense and meaning the value of those unfinished
goods, which is used in accounting and financial management or project management [30].
On the other hand, the Work-in-Process inventory is one of the basic components involved
in the cost of production in an enterprise and it is expressed in inventory units. Articles
about WIP are related to optimizing the size of the inventory [31], especially for batch
production [32], or cycle time forecasting according to the fluctuation of WIP levels [33]
and the allocation of buffers on the effectiveness of an assembly manufacturing system [34].
The research [31,32] shows the phenomenon of the accumulation of WIP in the process
route in the manufacturing industry, which is related to a great and uneven distribution
that is dependent on different factors, including batch supply transport, the maximum
volume and maximum load capacity of the buffers, various types of products, complex
scheduling, and a long production cycle with a bottleneck on some machines [33–35].

However, simulation models typically start from an empty state (with WIP = 0) and
some warmup time is required to achieve a stable state and filled WIP, which creates an
issue [36]. To reduce this gap, information about the current WIP state is required. This
information can be used for model initialization, and it enables the start of the simulation
with the same number of queues as in the real system.
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According to the Lean Manufacturing paradigm, a large amount of inventory and WIP
is a waste, because storage does not give any additional value to the product. Therefore,
a small amount of stock and one-piece flow is recommended [37]. On the other hand,
we can now observe heavy disturbances in global supply chains, and so producers try to
increase their safety stock of scarce materials and parts. Therefore, the buffer allocation
problem, which deals with finding optimal buffer sizes to be allocated into buffer areas in a
production line, is becoming more important [34,38].

In addition to these simple indicators, composite metrics are also used, including OEE
(Overall Equipment Effectiveness), which is a combination of Availability, Performance,
and Quality [39–41]. OEE is a measure of how well a manufacturing process is utilized
compared to its full potential in ideal conditions, during the periods when it is scheduled
to run. Similar metrics are also utilized, including OTE—Overall Transport Effectiveness
and OFE—Overall Factory Effectiveness [42–44], with slightly different designations.

The quality of the products plays an important role in a competitive market. Therefore,
the TQM (Total Quality Management) paradigm is supposed to control the product quality
at every stage of the production process, decrease the number of poor-quality products,
and detect an insufficient quality as soon as possible in order to process the products with
no faults, which would limit excessive production costs [45,46].

A common problem is determining the effectiveness of new robotic processes com-
pared to existing manual processes. This requires taking into account many factors related
to human work (human factors) and the work of a robot [47–49]. While robots work in
a highly repeatable manner and it is possible to define determined work parameters for
them, human work processes are subject to large fluctuations and should be defined using
stochastic parameters. Another important factor is human error, which can significantly
disrupt the production flow [50,51]. The main advantage of human work is flexibility in re-
sponding to changes and the ease of learning new tasks. In turn, robots require integration
with the workplace and programming, which significantly extends the implementation
time and increases costs. The failure rate of robots may also be a problem, because the robot
requires repair, while a human can easily be replaced by another worker [52,53].

Knowledge about the current condition of the production system is necessary for
the proper management of a company. Modern companies often use a Manufacturing
Execution System (MES) together with an Enterprise Resources Planning (ERP) system for
management support, but there is usually a gap between the business and production tiers
of a company [54,55]. Consequently, there is a need to ensure that data are extracted directly
from the production system, analyzed, and presented in an appropriate form. Each type
of production system requires a different approach to data collection, due to the diversity
of facilities and conditions. Therefore, the ability to acquire data in companies strongly
depends on the specific industry, the level of automation of technological processes, the
number of manual operations, the type of production, etc., [56].

A diverse market and personalized approach to customers leads to a wide variety of
products. The shortened product life cycle also results in diversified products. Moreover,
the global market competition forces producers to introduce new products faster and
changeover their production lines more frequently.

Therefore, the Digital Twin concept emerged, which is related to creating a virtual
copy of the physical system, providing a link between the real and virtual systems to collect,
analyze, and simulate data in the virtual model, and thus improve the performance of
the real system [57–61]. Various architectures for realizing Digital Twin cases are being
developed. What is missing, however, is a clear, comprehensive architecture that includes
the necessary components of the Digital Twin to realize different use cases in an intelligent
automation system [62], and the other problem is a simulation of unstable human work in
a non-fully automated system [36].
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2. Materials and Methods
2.1. Simulation of Manufacturing System and Digital Twin

Simulations can be understood as imitations of the behavior of a dynamic system. The
basic purpose of a simulation is to determine the result based on known input parameters.
Their sequence and value determine the final behavior of the system [63]. The simulation
model is based on the conceptual design of a real problem, for example, a newly projected
manufacturing system. The creation, verification, and validation of the model are time
consuming, therefore, the model is often simplified. In the case of simple models of
production systems, results can be obtained relatively quickly, but they do not fully reflect
the functioning of the production system, e.g., due to failures or disturbances caused
by human and robotic factors which are difficult to model. The development of more
sophisticated models is laborious and requires the use of advanced methods of statistical
analysis of the results.

Typically, many simulating experiments are needed, usually according to an experi-
mental scenario. The results obtained after the implementation of the simulation can be
interpreted as a form of consequence for the real system. Based on those results, a decision
can be made as to whether the system should be modified or whether changes to another
system parameter should be investigated [31]. An illustration of the main phases of a
simulation project is presented in Figure 2.
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The theoretical assumptions and the principles of DES modeling and simulation have
been presented in many publications, including [23–25,63]. The simulation model M of a
manufacturing system can be defined as a set of components:

M = {X, Ω, R, C, T, Y} (1)

Including:

• X—inputs, e.g., raw materials, energy;
• Ω—objects, e.g., machines, employees, transport, stores;
• R—relations, connections between objects defining material or information transfers;
• C—constraints, parameters defining limitations of resources, e.g., buffers capacity;
• T (time)—the life cycle and timespan of modeled processes, and disturbances;
• Y—outputs, finished products with good or bad quality, waste.

The graphical representation of the model is presented in Figure 3.
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The state of the process at time t can be described by the transition function f(g, t),
which transforms input elements X to output elements Y, based on the state of the system
elements at time t − 1:

Y = f(g, t), and g = (X, Ω, R, C, t− 1), for t ∈ T (2)

The scheme of the modeling and simulation methodology is presented in Figure 4.
The DES model should take into account all resources in the production system, i.e.,
machines, buffers, warehouses, means of transport, and the necessary workers or industrial
robots. It is also necessary to define the relations between objects and constraints, i.e., the
operating parameters of all objects (e.g., the time of execution of a given operation) and the
relationships (relations) between the objects (e.g., transport routes) [44,61]. DES simulation
reflects changes in the state of objects in the model that occur at certain points in time at the
time of certain events (e.g., the start or end of an operation) and the flow of intermediates
between the system input and output. The simulation can be used to analyze the existing
production systems in the case of reorganization of production processes, as well as in
the case of designing new production systems in order to analyze various concepts of the
building of a production system [63,64].

Modeling requires a diverse knowledge of the system being considered. That knowl-
edge includes understanding the historical, current, and/or anticipated characteristics
of the system. The simulation then becomes a repository of that knowledge and the re-
sulting dynamics, and it makes these available to others, for example, for management
purposes [64]. However, current modeling methods and tools still rely on manual data
entry and require human verification of the results. This makes the application of these
methods very difficult, especially in the context of the modeling and simulation of bigger
and more complex systems, which is one of the main difficulties in this field [65].

Work efficiency and the use of the means of production can be expressed by using the
OEE metric that depends on three factors: availability, performance, and quality [15,41].

OEE = (Availability) × (Performance) × (Quality) (3)

Availability is the ratio of the time spent on the realization of a planned task to the
available time. Availability is reduced by disruptions at work and machine failures.

Availability =
Planned time− Failure time

Available time
(4)
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Performance is the ratio of the time to complete a task under ideal conditions compared
to the realization in real conditions, or the ratio of the products obtained in reality to the
number of possible products to obtain under ideal conditions. Performance is reduced



Appl. Sci. 2023, 13, 12261 8 of 18

(loss of working speed) by the occurrence of any disturbances, e.g., transport, machine
loading/unloading, etc.

Performance =
ideal cycle time
real cycle time

(5)

Quality is expressed by the ratio of the number of good products and the total number
of products.

Quality =
number of good products
total number of products

(6)

The number of good quality products is a random variable, which can be described
by a normal distribution with standard deviation sigma. Quality levels are determined
for ranges of the standard deviation sigma. In traditional production systems, the level
of ±3 sigmas is considered to be sufficient as it correspond to about 99.73% good quality
products. However, in modern automated and robotic systems, the level of 4–6 sigmas is
possible to achieve [15]. The quality factor can vary widely for different processes.

The structure of loss of available work time according to OEE is presented in Figure 5.
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The need for making a better simulation model leads to the concept of a Digital Twin
(DT). The DT is a virtual, dynamic model in the virtual world that is fully compatible with
the corresponding physical existence in the real world and can simulate its physicality,
characteristics, behavior, life, and performance at the appropriate time [66].

The concept of a DT of a production system is presented in Figure 6. There is a need
for an information link between the real system and the digital model. Therefore, an ERP
database including all data about the production system and actual processes can be used
in order to achieve up-to-date and correct information for the simulation. The simulation
results of a DT can be used for decision support at the management level, because it enables
a better understanding of the system behavior and prediction of the future state.
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There are different versions of digital models possible, including a simple digital
model with manual data flow, a digital shadow with one-way automatic data flow, and a
full DT with two-way automatic data flow [66,67].

In order for a DT model to be properly analyzed, information about the current WIP
state is required. This information can be used for model initialization, and it enables the
simulation to start without a warmup with exactly the same number of queues as in the real
system. Database connectivity with SQL access and PLC (Programmable Logic Controller)
emulation of simulation software combined with optimization features makes FlexSim a
favorable choice for prototypes and experiments using the DT concept [67].

There is a wide variety of OPC (Open Platform Communications) or ODBC (Open
Database Connectivity) software to choose from, and it is relatively easy to set up a
connection with a database server including, for example, Oracle, SQL, Microsoft Access or
Excel. Data obtained after simulation can be uploaded to a database similar to data from a
real production system and can be used for further analysis.

2.2. Problem Description

Some manufacturing lines for assembling and welding automotive components were
analyzed. Typically, there are some robotic welding stations and some manually operated
workstations, therefore, both human and robot factors should be taken into consideration.
In addition, there is a significant equipment failure rate and a variable quality rate, which
are related to irregular changes in the WIP. Human labor especially is very stochastic and
therefore the results of simulation experiments often deviate from the production plans,
and the actual production volume may also be different.

Accordingly, the next chapter considers the designing of a Digital Twin frame model
for an automotive production line to study the WIP phenomena. The problem is important
because the formation of queues is related to the occurrence of bottlenecks and has a major
impact on final production efficiency.

3. Example of a Manufacturing System

The design and simulation of a new production line for an automotive component
at a plant in Poland are taken into account. The line was dedicated to the production
of a dual exhaust system. Initial data included a production line consisting of one CNC
bending machine, two calibrators, and three robotized welding stations, leakage testing,
and geometry control. Seven operations in the manufacturing process are presented
in Table 1.

Table 1. The description of the production process.

Operation Description

OP10 Bending of the main pipe
OP20 Calibrating both end diameters of the main pipe

OP30 Manual pre-assembly of the resonator and clamping of components in the
welding fixture, and robotic welding of the middle part of the exhaust

OP40 Right end manual assembly and clamping, and robotic welding
OP50 Left end manual assembly and clamping, and robotic welding
OP60 Testing the geometry of the exhaust system
OP70 Leakage testing of the exhaust system

An initial analysis of the time required for each operation showed that the stations
would have to be automated to some extent, and four operators would be sufficient enough
to operate the line without loss of efficiency. Operators were assigned to workstations
as follows:

• Operator 1: OP10, OP20.
• Operator 2: OP30.
• Operator 3: OP40, OP50.
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• Operator 3: OP60, OP70.

Figure 7 shows the designated locations of the workstations with their assigned
operators. The OP30, OP40, and OP50 welding machines are equipped with two windows.
Manual workpiece clamping and assembly of components is carried out in one window,
while the robot welding process is carried out in the other. As a result, the welding process
of the robot is not interrupted by the actions of the operator manipulating the part.
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The production process includes the following activities:

• Operator 1 places the main pipe on OP10 and then multiple bending is performed; the
pipe is then taken to OP20 for diameter calibration of both ends.

• Operator 2 sets up the pre-assembly of middle components consisting of resonator,
holders, and sealings on OP30-1; then, robot1 welds the connectors on OP30-2.

• Operator 3 sets up the assembly of rear components consisting of muffler, holders,
and sealings sequentially on OP40-1 and OP50-1 and then robots 2 and 3 weld the
connectors on OP40-2 and OP50-2.

• Operator 4 performs a geometry check on OP60, leak test on OP70, and then segregates
good and defective parts.

3.1. System Parameters and Assumptions

Recent problems with global supply chains have forced production to one shift a day,
but unlimited availability of materials was assumed in order to assess the productivity of
the system. The planned production capacity is 170 pieces per shift, with 7.5 h of effective
working time. Constraints were assumed according to the ToC, involving availability,
performance, and quality, which gives the OEE metric (Equation (3)).

Availability is related to planned and unplanned breaks (failures). The plan of a shift
includes a 20 min rest break for workers, 5 min for machines at the beginning of the shift,
and 5 min for turning off machines at the end of a shift.

The failures of equipment cause unplanned breaks and lower the availability index.
Robot welding workstations have stable and high welding quality compared to manual

welding. However, some machinery failures may occur, including welding equipment, gun
cleaner, wire feeder, and other auxiliary equipment [68–72]. Therefore, for the purposes of
the simulation, the definition of failure was extended, including machine downtime affected
by welding parameter adjustments and replacement of the welding machine consumables.

The Performance index is related to the loss of time needed for the manual set-up
of machines, for example, loading and unloading of the workpiece. The Quality index
is related to the number of good quality products compared to the total number of all
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products (including bad quality products). The process parameters, including the time
of operations performed by employees, were obtained by time study. These data were
introduced into the simulation as the set-up time per one workpiece. In turn, the machine
cycle times (processing time) were established in regard to technological data.

To simulate the fluctuation of the operators’ work, a normal distribution with standard
deviation was used. The processing times were assumed constant due to automation, and
time values for subsequent operations are presented in Table 2.

Table 2. The values of process time parameters per workpiece.

Operation Set-up Time [s] Stand. Dev. [s] Processing Time [s]

10 35 2 48
20 22 2 12
30 65 3 110
40 46 2 117
50 48 2 132
60 33 2 60
70 30 2 60

Additional information on the causes and duration of machine downtime was deter-
mined based on existing, similar production processes [73], which provided a reference for the
simulation. Based on this analysis, the failure rates of welding workstations were specified
as follows: MTBF (Mean Time Between Failures) = 3600 s exponentially, and MTTR (Mean
Time To Repair) in uniform distribution. There is a different repair time for each worksta-
tion due to the complexity of the operations: MTTR30 = 300–600 s, MTTR40 = 300–900 s,
and MTTR50 = 300–1200 s. The failure rate of employees was defined based on photos of the
working day, MTBFp = 3 h and MTTRp = 300–600 s., which largely overlap with the time of
the rest break.

The planned Quality was 95%, but the real processes sometimes show a much greater
number of bad quality products, reaching about 10%. Therefore, additional visual in-
spection after each operation was introduced, including removing defective semi-finished
products from the queues in order to reduce the costs of production. There is also a
possibility of repairing some faulty products that can return into the process.

That, and equipment failures, affect the change of WIP, therefore there is a need to
include the initial WIP at the start of the shift into the simulation model. Then, the final
WIP state at the end of the shift can added into the database and can be used to initialize
the next simulation run. The scenario includes the start of work with empty machines.
Process control policies were used in order to control the flow of jobs in a manufacturing
system [74], including a push policy used for the main part of the assembly and a pull policy
for the subassembly components. Additionally, a closedown policy was implemented at
the end of shift in order to finish all required operations and not break the work in the
middle of welding and shut down empty machines [75].

Other assumptions are related to the following simplifications which were introduced
to avert excessive complexity of the model and thus enhance the readability of the paper.
All components and blanks in the process have been replaced with a single element that
determines the sequence of material flow in the process. The robot stations were modeled
as two machine-type objects. One is responsible for the simulation of the operator’s loading
process, and the other for the simulation of the automated welding process.

3.2. Model of the Manufacturing System

The model constructed in FlexSim 2022 according to the layout and adopted assump-
tions is shown in Figures 8 and 9, respectively. Figure 8 shows the model of the production
system at the start of the shift with initialized WIP in queues 1–5.
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Figure 9 shows the state of the model at the end of the shift with different WIP states.
The model includes a data import/export connection with Excel (another database can be
used) in order to automatically read/write the WIP data at the start/end of the simulation
of the shift. An additional procedure in Process Flow is used in order to generate the WIP
items in each queue.

The meaning of the item colors in the model is as follows: brown—semifinished parts,
gray—finished good quality products, red—bad quality products. The significant variation
of WIP in each queue can be observed as shown in Figure 10.
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Constructed models and obtained results are included in the Supplementary Materials.
The results of the simulation experiments are presented in the next section.

4. Results

The finished production level is often lower than planned due to failures and insuffi-
cient quality, therefore a series of simulation experiments was performed in order to study
the effect of WIP size on production efficiency.

4.1. Scenario 1—Series of Simulation Experiments with Different Initial WIP

The experimental scenario includes different initial parameters of WIP size from the
range of 0–8 pieces for each queue. The results are presented in Table 3 and show the
mean number of good quality products (OK), standard deviation of the mean, minimal and
maximal production volumes, and bad quality products (NOK).

Table 3. The values of mean, minimal, and maximal productions according to different initial WIP
sizes for one shift (for 20 simulation runs with a 95% Confidence Interval).

WIP
Scenario

Mean
Production
[OK Pieces]

Std. Dev. Min.
[Pieces]

Max.
[Pieces]

NOK
[Pieces]

0 156.75 ± 4.20 8.97 143.00 172.00 9.00 ± 1.50

1 159.75 ± 4.14 8.84 147.00 173.00 9.25 ± 1.54

2 162.95 ± 4.29 9.16 149.00 179.00 9.35 ± 1.52

3 165.55 ± 4.13 8.83 153.00 180.00 9.60 ± 1.54

4 167.00 ± 4.01 8.56 154.00 181.00 9.65 ± 1.54

5 168.15 ± 3.93 8.40 156.00 182.00 9.65 ± 1.54

6 169.35 ± 3.71 7.94 158.00 182.00 9.75 ± 1.52

7 170.65 ± 3.65 7.80 159.00 184.00 9.75 ± 1.52

8 171.75 ± 3.54 7.57 160.00 184.00 9.00 ± 1.50

The average WIP size for each queue according to different initial WIP sizes is pre-
sented in Table 4. The capacity of Queue 1 was set to 10.

Figure 11 shows the replication box and whisker plot of the value of good quality
production for each scenario.

Obtained results show that there is high variability of WIP, which is related to system
instability due to random failures, especially when the system starts from an empty state
(Scenario 0 with initial WIP = 0). However, the next scenarios show an increasing trend of
mean production and decreasing spread between extreme values. Therefore, increasing the
initial WIP gives better efficiency and stability to the whole system, and an initial value of
WIP = 7 is recommended in this case in order to achieve the planned production volume.



Appl. Sci. 2023, 13, 12261 14 of 18

Table 4. The values of average WIP in the queues after one shift according to different initial WIP
sizes (for 20 simulation runs with a 95% Confidence Interval).

WIP
Scenario Queue 1 Queue 2 Queue 3 Queue 4 Queue 5

0 10 2.68 10.34 9.16 0.58

1 10 2.72 10.47 9.71 0.57

2 10 2.79 11.11 9.95 0.58

3 10 3.05 12.02 10.39 0.74

4 10 3.42 12.96 11.46 0.83

5 10 3.82 14.12 12.62 0.97

6 10 4.31 15.24 13.77 1.11

7 10 4.82 16.65 14.63 1.29

8 10 5.41 18.01 15.52 1.51
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4.2. Scenario 2—Subsequent Simulation Experiment

In the next scenario, the production of 5 days per week was assumed and 5 subsequent
simulations were conducted. The first-day simulation was started from an empty state
(WIP = 0) and the WIP size at the end of the shift was used for the initialization of the next
simulation. The results are presented in Table 5.

Table 5. The values of WIP in the queues after one shift for five subsequent simulations.

Day Queue 1 Queue 2 Queue 3 Queue 4 Queue 5 OK NOK OEE

- 0 0 0 0 0 0 0 -

1 10 1 46 29 2 161 12 0.7385

2 10 12 52 56 1 163 9 0.7477

3 10 1 68 81 2 176 8 0.8073

4 10 6 113 63 2 171 10 0.7844

5 10 3 119 77 2 179 5 0.8211

The increasing trend of WIP size in Queue 3 and Queue 4 can be observed, com-
pared to other queues, which is a consequence of the bottleneck in the next workstations
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(Operations 40 and 50). Also, significant variability in production is observed, which is
consistent with the production of the real system and is the result of system instability due
to random failures.

In order to assess the efficiency of the system, the OEE metric can be used. As the
model includes the constraints related to Availability, Performance, and Quality, the OEE
can be calculated directly from Equation (7) [43].

OEE =
OK

TOK
=

Number o f good quality products
Total number o f products in ideal conditions

(7)

The number of good quality products is given in column OK and the TOK Total number
of products in ideal conditions value was calculated including maximal throughput of the
bottleneck 27.27 pieces/hour and 8 h work per shift, which gives 218 pieces.

The average OEE was equal to 77.98% and was lower than the planned 80% (including
A = 0.9375, P = 0.9, Q = 0.95) because of failures and loss of availability and loss of work
speed, resulting from insufficient WIP content. The obtained result consists of average
Availability = 0.9265, Performance = 0.886, and Quality = 0.95 and reflects well the course
of the actual production process.

There are some possibilities for improvement of the OEE, including the enhancement
of the maintenance system or change of the Quality Control System (QCS), which enables
the removal of faulty semi-finished products from the process and returning of repaired
products into the process, which is related to WIP change and may be taken into account
during initialization of the model.

5. Conclusions

The simulation of Digital Twins of production systems is an important aspect of Indus-
try 4.0, as it allows the support of projects related to the development and implementation
of modern manufacturing systems throughout their life cycle.

The simulation of the manufacturing system is very helpful as it becomes a repository
of knowledge about the real system and enables the analysis of its dynamics, but for proper
functionality, the model should be closely similar to the physical system so as to constitute
a Digital Twin. The main problems are related to unstable human labor and human errors,
as well as machine failures, which are difficult to predict but have a major impact on
production processes.

In order to properly simulate the DT model, information about current WIP state is
required. This information can be used for model initialization, and it enables us to start
the simulation with exactly the same number of queues as in the real system, without the
need for a warmup. The main contribution of this work is the detailed methodology of
building a Digital Twin for a hybrid human–robot-operated manufacturing system with
unstable processes and WIP changes.

The results show that the initial WIP value has a significant effect on the productivity
of the analyzed manufacturing system, as the mean value of production was increased by
about 10% when the initial WIP was changed from 0 to 8 pieces. At the same time, better
stability of the whole system was observed with decreased dispersion of results by −17%
and the standard deviation was decreased by −26%.

The production effectiveness was measured by the OEE metric. The expected value
was 0.80 according to the production plan, however, the obtained OEE values were different
for each working day because of failures and quality issues, but low production during the
first and second days was recovered in the following days, and the weekly production plan
was realized with a total of 850 finished pieces.

The main problems were related to failures of the welding equipment, and there is
still room for improvement of the availability and quality, as a World Class OEE is defined
from the level of 85% or higher.

Database connectivity with SQL access and PLC (Programmable Logic Controller)
emulation of simulation software combined with optimization features makes FlexSim a



Appl. Sci. 2023, 13, 12261 16 of 18

promising choice for experimenting with the DT concept. There is a wide variety of OPC
(Open Platform Communications) or ODBC (Open Database Connectivity) software to
choose from, and it is relatively easy to set up a connection with a database server including,
for example, Oracle, SQL, Microsoft Access, or Excel. Data obtained after simulation can
be written to a database similar to data from a real production system and can be used for
further analysis.

The presented method can be also used in similar enterprises from other industries,
especially for those with discrete processes, high WIP variability, and for further synchro-
nization of other DT parameters.

Further research includes a full parameterization of the DT model with the states of
all objects (including machines, employees, robots, AGVs, product types, etc.), allowing
the simulation to start from the current state of the actual production system.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app132212261/s1. File S1: Scenario 1; File S2: Scenario 2.
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