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Abstract: Clarifying the noise source and the contribution of each path is essential for the system’s
noise control. The auxiliary converter cabinet, which is a crucial component of rail transportation, has
numerous intricate noise sources. The contribution of each path point must be inverted-solved using
known transfer functions and target point test values when identifying noise sources. This article
suggests a method for diagnosing noise using transfer path analysis and neural networks (TPA-NN).
Firstly, the principle and scheme for analyzing the transmission path of the converter cabinet are
proposed. The transfer function of each path is obtained by selecting suitable path points, reference
points, and target points for air and structure acoustic vibration experiments. The external target
point data are then combined with the neural network’s linear fitting function, and the contribution
of each path is used as an output for network training while some path point contributions are rebuilt.
The results indicate that the method’s outcomes are most accurate when the converter cabinet’s path
point is 13 and the target point is 6. This approach offers an innovative technique for locating noise
sources in intricate systems.

Keywords: noise source identification; transfer path analysis; neural network; path contribution

1. Introduction

Low noise performance has grown in importance as a key indicator of product quality
with the booming urban rail transportation sector [1]. Transformers, resistances, and
centrifuges are only a few of the various sources of motivation that are integrated internally
as part of the railway vehicle’s core equipment. In order to ensure the ventilation effect
of the electrical components, the higher power fan will ineluctably produce noises such
as wind noise caused by the wind path and windshield rotation. In addition, cabinet
vibration will produce noises such as vibrational radiation and electromagnetic noise while
the transformer, resistor, and other electrical components are operating [2].

Multiple excitations that arrive at the target position via various transmission paths
combine to form mechanical systems’ vibration and noise. A thorough analysis of the
condition of every excitation and transmission path is required to diagnose and optimize
vibration and noise more effectively. Decomposing the contribution of path points to target
points using transmission path analysis (TPA) is a useful technique. TPA quantifies the
contribution of various sound streams and their paths to vibration and noise. To preserve
noise and vibration within preset target values, TPA can be used to identify the dominant
transmission pathways for vibration and noise. These pathways can then be improved
and controlled. The transfer path analysis method has evolved with the signal processing
method of the multi-input, multi-output system. After many years of development, the
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TPA method has formed many different types of sub-methods, according to the basic
theory, mainly divided into conventional TPA (CTPA) [3,4], operational TPA (OTPA) [5,6],
operational-X TPA (OPAX) [7–9], and various variants of TPA. Conventional TPA stimulates
the transmission function of the direct measurement of the path through the force hammer
and the reverse matrix method is used to calculate the load. The transmission function
for measuring the source to the target point requires the joint system to be disconnected
and the active components to be dismantled, so efficiency is not high. Influenced by the
conditional matrix values of the transmitted function and data measurement errors, the use
of singular value decomposition (SVD) is generally used to solve the reverse non-adaptation
problem of sound source recognition [10]. Conventional TPA has been the standard for the
automotive industry’s noise, vibration, harshness (NVH) analysis [11]. For example, TPA
contribution analysis for low-frequency vibration problems on bus steering wheels by Ye
and others has shown that exhaust systems are linked to the steer transmission function as
the main cause of steer vibration [12].

To increase test effectiveness, the researchers proposed the operational TPA method [13],
which represents the target point response as a combination form of the load position re-
sponse, capturing only the work condition data, without the need for the transmission
function measurement, thus greatly reducing testing and modeling time. During the TPA
test process, all stimulus points and target response points are collected simultaneously, so
that the stimulus point and target response point matrix are interconnected. The presence
of interference between the inputs can cause the matrix to reverse the value problem, so that
it is not possible to accurately solve the transmission function of the system. The accuracy
of the method is too dependent on mathematical methods and is vulnerable to noise signal
interference [14]. De Klerk and others [5] detailed the basic theory of the operational TPA
method and proposed the odd value decomposition method for the disconnection between
input signals. Ström [15] conducted an analysis of the contribution to the driver’s indoor
noise by using the operational TPA method at a speed of 130 km/h for the shift to the shelf
region, and the results showed that the internal noise of the driver is primarily derived from
structural stimuli in the shifting to the shaft region, while the air stimulus only contributes
to the noise in the cabin in the high frequency band [16].

The OPAX method requires the acquisition of working status data, supplemented
by a small amount of system frequency function data, to identify the workload on the
basis of a parametric load recognition model [17]. The method is time-efficient, and
analytical accuracy is higher than the working condition TPA, but there is still a gap with
the traditional TPA. At the same time, the OPAX method requires researchers to have a
clear understanding of the test data or model used, thereby determining the accuracy of
the OPAX model established [18]. Rao and others [19] use the OPAX method for dynamic
rigidity recognition of the suspension of a full-time quad-drive SUV, and use the recognition
results to establish the NVH performance simulation model of the drive system. From the
above analysis of the characteristics of various methods of transmission path analysis, it
can be seen that the choice of the TPA method is based on the combined consideration of
the study object, the study objective, and other multiple factors.

Computer science has driven the development of neural networks [20–24], and net-
works of various structures have been widely used [25–27], such as convolutional neural
network (CNN) [28,29], recurrent neural network (RNN) [30,31], and variational autoen-
coder (VAE) [32,33]. Neural networks have powerful linear alignment capabilities that can
quickly and accurately align data. Each neuron in a neural network has weights and biases,
and they are arranged in various layers. The network updates weights and bias using
backpropagation errors, which lowers the loss function’s value. The algorithm determines
the weight gradient and loss function bias, then modifies the parameters in accordance
with the gradient descent principle. After a sufficient number of training iterations, the
neural network will be able to accurately output the predicted results. During the training
process, the neural network will gradually adjust the weights and biases to minimize the
loss function.
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Measuring the system’s transfer function and collecting data on different operating
conditions are necessary in order to ascertain the path points’ contribution in the TPA
problem. There will be an ill-posed problem in reverse solving when the number of
unknowns is greater than the number of equations, and the solution for the path point
contribution obtained is not unique when solving the path contribution from the target
data in reverse when the number of target points is less than the number of path points.

Therefore, by fusing neural networks with conventional TPA testing, we suggest
a noise source diagnosis approach for TPA-NN. This article’s primary contribution is
as follows: (1) Choose appropriate reference points and path points based on the rail
transit converter cabinet’s characteristics. Apply conventional TPA techniques, such as the
reciprocity of the transfer function and the inverse matrix method. Conduct experiments to
verify the converter cabinet system’s target point signal and transfer function. (2) Under
representative working conditions of the converter cabinet, forward solve the accurate
contribution of each path point in the following order: reference point, path point, target
point. (3) Integrate the neural network and the TPA technique, then feed the acquired
contribution data into the neural network to begin training. Finally, the contribution of the
neural network reconstruction path was compared with the actual contribution results in
order to confirm the viability and accuracy of the TPA-NN method. The outcomes show
that this strategy produces accurate results, and reverse solving will not encounter any
poorly posed issues.

This article is organized as follows: Section 2 introduces the inverter cabinet’s structure
and sound source characteristics as well as the fundamentals of the TPA method. Section 3
provides specifics about the TPA testing plan. In Section 4, the TPA-NN results are examined
and discussed. Section 5 provides a summary of the entire content.

2. Converter Cabinet System and Transfer Path Analysis Method
2.1. Converter Cabinet System

The converter cabinet mainly relies on the transformer, which uses the fan to dissipate
heat, so the main noise sources are transformers and fans. The fan and transformer in
the converter cabinet need to be operational at the same time, and the fan air duct must
enter from both sides and exit through the transformer from the middle. The air outlet is
right under the electric reactor. Figure 1 depicts the converter cabinet’s structural layout.
The transformer is suspended on the left and right crossbeams through four rigid lifting
eyes, and the fan is suspended on the same crossbeams through two rigid lifting eyes. The
fan base is also connected to the bottom plate through four bolt holes. Zoom in on these
installation locations in Figure 1, and as shown in Figure 2, the bolted connect locations
between the converter cabinet, transformer, and fan are indicated by numbers 1 through 10.
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By analyzing the working principle and structural characteristics of the converter
cabinet, the following main noise sources are identified. The fan produces strong eddy
current noise while rotating, as well as flow noise at the flow channel’s corners and variable
cross-section, which is primarily transmitted from the air channel’s inlet and outlet. Under
the influence of an electromagnetic field, the transformer body produces electromagnetic
force, which stimulates it to produce loud noise. The entire cabinet vibrates and emits
noise when the transformer is operating owing to the magnetostrictive effect of the silicon
steel sheet material used in the construction of the transformer, which is transmitted to the
cabinet system through the bolt installation point. The fan vibrates when it is operating
because it is periodically struck by airflow. This vibration is then transmitted to the cabinet’s
equipment via the bolts holding the fan in place, which increases cabinet vibration and
emits noise.

According to the different transmission path, the noise of the transformer and fan to
the target point is divided into two categories: structural noise and air noise. When the
transformer and fan work, they vibrate themselves and transmit vibration to the whole
cabinet through their respective connected structures (beams and baseboards), and they
radiate noise from the cabinet to the target point. The noise radiated by the vibration of
the shell of the transformer and the fan during work or the aerodynamic noise generated
during work is transmitted to the evaluation point through the flow channel or leaks from
the structural gap to the target point, or it is transmitted from the cabinet wall panel to the
target point (due to the strong sound insulation ability of the wall panel, the transmitted
part can be ignored).

2.2. Transfer Path Analysis Method

The primary objective of transmission path analysis is to reduce the complexity of
the system into an analysis model of incentive source transmission path target point. By
analyzing the contribution of the excitation source transmitted to the designated target
point, the main sound source can be located, giving instructions for system noise control.
The noise sound pressure or vibration level at the target point is equal to the sum of the
energy propagated along various paths to the evaluation point by each excitation source
under working load excitation, assuming that the entire converter cabinet system is linearly
invariant. When considering both structural sound and airborne sound, the target point
noise can be expressed as

Pl(t) =
u

∑
i=1

Pli(t) +
v

∑
j=1

Pl j(t) (1)

The number of transmission paths for the structural and acoustic loads, respectively,
are indicated by u and v in the equation. Pl(t) is the total contribution response of the l-th
target point; t is a time variable; Pli(t) is the contribution of the structural load of the i-th
path to the target point l; Pl j(t) is the contribution of the air load of the j-th path to the
target point l.
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Through the reference point signal and the transfer function from the path point to the
reference point when the converter cabinet is working, the load at the path point when the
converter cabinet is working can be obtained by using the inverse matrix method.F1

...
Fn

 =

HX1/F1 HX1/F2 . . . HX1/Fn
...

...
. . .

...
HXm/F1 HXm/F2 . . . HXm/Fn


−1 a1

...
am

 (2)

which can be simplified as
[F]n = [H]−1

m×n [a]m (3)

The term m in the equation represents the number of reference points, and n represents
the number of path points. [F]n represents the load at the path point. Term [H]m×n is the
transfer function matrix from the path point to the reference points. Term am represents the
acceleration response of the reference point during operation.

The number of reference points m (m = 26) and path points n (n = 13) tested satisfy
the matrix statically indeterminate condition: m ≥ 2n, ensuring sufficient accuracy when
solving the inverse matrix. [H]−1

m×n =
(
[H]T [H])−1[H]T is created when m > n and takes

the place of [H]−1
m×n. Singular value decomposition (SVD) for [H], which is transformed into

orthogonal space through SVD, is performed concurrently in order to prevent calculation er-
rors brought on by improperly conditioned matrices. Different singular values and singular
vectors in the system matrix represent various linear independences or independent terms.
Utilizing LMS TPA software (Siemens LMS Test.Lab 17A), perform SVD decomposition on
the frequency response function matrix to determine the load at the working path point
based on the measured data. The target point response is calculated by calculating the load
at the path point and the transfer function from the path point to the target point.P1

...
Pq

 =

HP1/F1 HP1/F2 . . . HP1/Fn
...

...
. . .

...
HPq/F1 HPq/F2 . . . HPq/Fn


F1

...
Fn

 (4)

simplified as
[P]q = [H]q×n [F]n (5)

where term q in the equation represents the number of target points; the term [P]q represents
the sound pressure at each target point; the term [H]q×n refers to the transfer function
matrix from the path point to the target point.

3. Transfer Path Analysis Test
3.1. Testing Arrangement

The test mainly collects the vibration and noise signal and transfer function of the
flow cabinet in different states and working conditions and analyzes the vibration and
noise transmission characteristics of the transformer under test by using the transmission
path. Position the microphone and accelerometer as described below, connect the data
acquisition system (LMS. Test. Lab 17A, 24 channels) to the laptop computer, use the
sampling analyzer FFT for spectrum analysis, and use the time recorder to record the
time domain data. The sound excitation source is provided by LMS Company (Louvain,
Belgium), model E-MVVFS. The main test contents are shown in Table 1.

When the converter is not working, a microphone is used to test the background
noise on the surface of the converter body. The test environmental conditions require the
background noise level (SPL) to be low enough. Generally speaking, the difference between
the background noise and the total noise of the test object sound source is less than 3 dB
(A), so the measurement is not accurate. It needs to be corrected to between 3 and 10 dB (A).
When the noise of the tested object is more than 10 dB (A) higher than the background noise,
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the result does not need to be corrected. Install the inverter cabinet on the test bench during
a quiet period (when there is no activity or little noise impact in the traction test room).
The background noise at each measurement point is more than 10 dB (A) lower than the
test noise, which can be seen through noise testing to be 14.88 dB (A) on average. The test
results do not need to be corrected. Through the above analysis, n theoretical transfer paths
(n = 13) can be analyzed according to the structural characteristics and source characteristics
of the transformer tank of the test object. According to the general requirements of the
TPA theory above, 26 reference points are arranged in the test scheme. Figures 3 and 4
depict the measurement point layout, and the layout form is as follows. Six target spots are
designated A1 through A6, each 0.8 m from the cabinet’s surface; the 13 path points are
designated P1–P13. Six vibration points are among them and each are transmitted twice
along the beam, in the Z and X directions, with little or no effect in the Y direction, which
is the beam’s axial direction. Three of the four places on the fan’s suspension system that
convey vibration in one direction are air noise path points. The bottom air outlet is where
P13 is located; to gather surface normal acceleration data, there are 26 reference points
labeled I1a, I1b–I13a, and I13b, which are all positioned on the left or right sides of the
13 path points.

Table 1. Test content.

Test Type Test Content Remark

Working signal The noise or vibration signals of I1b-I13a and A1–A6 points are
collected under four working conditions

The signal is collected three
times for each working
condition, and the average
value is obtained.

Transfer function

force-sound I1b-I13a was excited, respectively, and
P1–P13 signals were collected The signal was measured

three times for each excitation
point and averaged.sound-sound I1b-I13a was excited, respectively, and

P1–P13 signals were collected
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3.2. Testing Procedure

During the actual operation of the converter, the fan must run continuously to dissipate
heat from the transformer; therefore, only two representative operating conditions—full
speed and half speed—are used to determine the vibration and noise characteristics of
a single fan. This serves as the basis for testing the transformer’s vibration and noise
characteristics under complex working conditions with half load and full load. The working
condition data are then measured. Close the cover plate of the converter cabinet and
operate the converter cabinet according to the working conditions. Measure the noise and
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vibration responses of target points and reference points. The reference point signal is
used to calculate the path load, and each working condition is measured 3 times. The test
conditions are shown in Table 2.
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Table 2. Test conditions.

Condition Number Condition State

1 Fan at half speed and transformer at no-load
2 Fan at full speed and transformer at no-load
3 Fan at half speed and transformer at full load
4 Fan at full speed and transformer at full load

(1) Working condition data measurement. Close the upper end of the cover plate of the
converter cabinet, and operate the converter cabinet according to the requirements
of the four working conditions in Table 2 under normal operation. The noise and
vibration response of the target point and reference point are measured. The reference
point signal is used to calculate the path load. Each working condition is measured
3 times. The test conditions are shown in Table 2.

(2) Transfer function measurement. The reciprocity principle reveals the reciprocity
between vibration and sound transmission in a linear time-invariant elastic system,
that is, the ratio of an incentive applied at one point A in the system to the response
generated by that incentive at another point B in the system is equal to the ratio of an
incentive applied at B to the response generated at A. Due to the complexity of the
structure of the measured object and the limited internal space structure, it is difficult
to directly test the response of the reference point and the target point, respectively,
with the excitation path points. The transfer function is an inherent attribute of the
structure and does not change with the excitation force, so the reciprocity method is
used for measurement. Remove the converter cabinet and fan, close the cover plate,
open a hole in the cover plate to lead out the sensor cable, and seal it with mastic.
Firstly, the reference point is stimulated by a hard hammer, the response of the internal
path is measured, and the transfer function from the reference point to the path point
is obtained. Then, the volume sound source excites the external target point, measures
the response of the internal path, and obtains the transfer function from the target
point to the internal path. At this point, the transfer function between the reference
point, the path point, and the target point can be obtained and the contribution can be
solved. The test procedure is shown in Figure 5.
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4. Noise Source Diagnosis by TPA-NN
4.1. Sound Source Contribution Analysis Based on TPA Test

According to the calculated path load and the transfer function from the path to the
target point, the synthesized noise at the target point A3 can be obtained using LMS TPA
software. At the same time, the microphone was used to test the actual noise data at point
A3 under the same working condition. As shown in Figure 6, the synthetic noise was
basically consistent with the test noise in the entire frequency range, which characterized
the rationality of the TPA model. The A3 point contribution chromatography is shown in
Figure 7.
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4.2. Network Structure

The contribution of the path point is inversely solved by the transfer function from
the path point to the target point through the response of the target point when working
in the converter cabinet. Simultaneously, the unknown contribution is 13 and the known
response is 6. According to the mathematical analysis, when the unknown is greater than
the number of equations, the solution of the path contribution is not unique. Taking the
above target point response as the input and path contribution as the output of the neural
network, the network structure in this paper is determined by comparison and parameter
adjustment, as shown in Figure 8. Among them, red represents the input/output layer, and
green represents the hidden layer.
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Figure 8. Neural network structure diagram.

The network consists of one input layer, two hidden layers for a fully connected layer,
and one output layer. Fully connected layer operations are essentially linear transformations
from one feature space to another. Unlike convolutional networks that extract local features,
each fully connected layer neuron can be treated as a polynomial that optimizes the weight
coefficient through backpropagation to obtain the appropriate weight, and extracts global
features through the weight matrix.

The upper limit of transformer electromagnetic noise is about 6000 Hz, and in order
to avoid data omission, the upper limit of test data is raised to 10,240 Hz. The input
layer receives a two-dimensional array of the shape (10240,6), i.e., six target points in the
range of 0–10,240 Hz, through the first fully connected layer, which has six neurons and
applies the ReLU activation function to extract the input features; through the second fully
connected layer, which has nine neurons, and the ReLU activation function is applied to
further capture the relevant features in the input data; and finally, through the output layer
to obtain the contribution of each path to the target point. The output layer has 13 neurons,
and the Softmax activation function is applied, which converts the real value vector of the
output from the previous layer into a normalized probability distribution, which is the
normalized output, and the sum of the outputs is equal to 1.

The activation function expression is as follows:

ReLu = max(0, x) (6)

So f tmax =
ezi

∑K
j=1 ezj

(7)
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where Zi is an element of the input vector of the function, ∑K
j=1 ezj is a normalized term.

Equation (7) ensures that all output values of the function add up to 1, and that each value
is in the range (0, 1), thus constituting a valid probability distribution, where K is the
generic number.

To train and optimize the model, the optimizer Nadam (Nesterov-accelerated Adaptive
Emoment Estimation) is selected, and the Mean Squared Error MSE (Mean Squared Error)
is used as the loss function of the model. Minimize the difference between the model output
and the real output so that the model can accurately predict the desired output.

4.3. Network Training and Results

The spectrum data of the actual contribution obtained through the forward solution of
the test are sent to the neural network as data samples for training as shown in Figure 9.
The data sample is divided into the training set and the test set in an 8:2 ratio. The training
batch size was 64 and the training batch epochs was 800 rounds. The training loss and
test loss curves of the TPA-NN model are shown in the figure. It can be seen from the
figure that both training loss and verification loss decrease continuously with the increase
in training rounds, and the curves fit well. Finally, both training loss and test loss approach
6 × 10−4. As a result, the TPA-NN model’s training and verification effects might be
regarded as positive.
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In order to verify the accuracy of the network output results, six groups of target
points outside the data samples were randomly selected to inversely solve 13 path point
contributions in the test data with a frequency of 50 Hz. The comparison between the neural
network reconstruction contribution and the actual contribution is shown in Figure 10.
The comparison between the actual contribution and the reconstruction contribution of
13 paths that correspond to the six target points is displayed in six subgraphs. Figure 11
indicates the root mean square error between the reconstructed contribution and the actual
contribution of six randomly selected target points’ test data. The error does not exceed
0.02, indicating that this method has high accuracy and meets practical engineering needs.
The overall trend observation reveals that the contribution of the reconstruction path of
the six target points is basically consistent with the actual contribution, indicating the
reliability of this method in reverse solving the contribution during the actual operation of
the converter cabinet.
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Figure 10. Comparison of theoretical and reconstructed source contributions.
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5. Conclusions

According to the structure of the converter, the characteristics of the sound source
and noise transmission path of the converter are analyzed, and the traditional TPA test
scheme is designed. The data of four working conditions are tested, and the transfer
function matrix of each path point’s contribution to the target point is obtained. The actual
contribution of each path to the target point is calculated. In order to solve the inverse
ill-posed problem when the target points are smaller than the path points, the inverse
reconstruction method of TPA-NN, which combines the traditional TPA test scheme and
neural network, is proposed. In order to verify the accuracy of the proposed method,
the path point contribution at some frequencies is reconstructed. The results show that
when the path point number of the converter is 13 and the target point number is 6, the
root-mean-square error between the reconstructed contribution and the actual contribution
is less than 0.02, and the results of the proposed method are more accurate.

In future work, we will continue to promote the versatility and accuracy of TPA-
NN methods, including the combination of other types of TPA methods with neural
networks and the improvement of neural network structures, such as the introduction of
one-dimensional convolutional networks, to improve the accuracy of this method.
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