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Abstract: A high-level control strategy for a quad rotorcraft Unmanned Aircraft System to perform
trajectory tracking tasks is presented, which is based on a regressor-based adaptive approach. The
high-level control is designed to interact with a low-level (internal) control loop that cannot be
modified to suit the needs of academic researchers. Hence, the proposed control framework computes
the appropriate high-level inputs for the inner controller, enabling the trajectory tracking task. The
controller includes an integral action to overcome steady-state errors that may occur due to parameter
estimation errors or constant disturbances. The stability of the equilibrium point is analyzed using
Lyapunov theory, which shows that the tracking errors converge to zero and the parameter estimation
errors remain bounded. The proposed control framework was tested on a real-time quad rotorcraft
platform, and its performance was compared with four different control strategies. The results
indicate that the proposed controller exhibits high accuracy and has better performance with respect
to the other controllers.

Keywords: adaptive control; Lyapunov’s stability; quadrotor; robust control; trajectory-tracking

1. Introduction

Among the different types of unmanned aerial vehicles, quadrotors became the most
popular. There are many reasons for this: mechanical simplicity, compact size, maneu-
verability, vertical takeoff and landing, and hover are the most representative. Added to
this, several applications have been found for them [1–4], and new ones will probably
appear soon. Nevertheless, controlling such vehicles still represents a challenging task,
especially considering their applications and the changing environments where they op-
erate. Quadrotors are nonlinear underactuated systems with strongly coupled dynamics;
hence, controllers must be able to ensure both stability and task accomplishment. Aiming
to solve the trajectory tracking task of quadrotors, different control techniques have been
employed [5–11].

1.1. Literature Review

Linear control schemes like proportional–integral–derivative (PID), H∞, linear quadratic
regulator, and some others have been reported. Nonetheless, the development of linear
controllers requires a simple approximation of the system dynamics, which neglects non-
linear aerodynamic phenomena. Thus, the real behavior of the quadrotor is not portrayed
with fidelity. This is an issue for real outdoor applications where the environment in-
teracts with the vehicle in uncertain ways and when the vehicle needs to perform tasks
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that require higher velocities. To overcome the aforementioned issues, nonlinear schemes
have been employed to address the trajectory tracking task of quadrotors. For example,
control algorithms based on feedback linearization, backstepping, model-based control,
neural networks, and sliding mode control are reported in the literature. Many of the
nonlinear schemes aim to provide robustness against parameter uncertainties, unmodeled
dynamics, and external disturbances. However, only a few of them address the control of
a quadrotor with an internal loop controller; the clearest examples of this are commercial
quadrotors for recreational purposes. These platforms are mainly designed to be operated
by a pilot. Owing to this condition, manufacturers include an inner controller that cannot
be modified and which helps the pilot maintain the stability of the vehicle during the
flying tasks. As discussed in [12–14], this fixed inner controller is not an impediment to
employing them as platforms for testing control algorithms or even implementing them
for real applications. These commercial platforms represent an affordable and economical
option for actual implementation and experimental tests of controllers for quadrotors.

The works in references[15–25] addressed the control of a quadrotor under the as-
sumption that an inaccessible and unmodifiable inner controller is present. Schemes such
as inverse dynamic control, adaptive neural PID, cascade control, and adaptive gener-
alized regression neural networks were introduced. In spite of the robustness of these
controllers, some of the system parameters are required. To the best of the authors’ knowl-
edge, regressor-based adaptive control has yet to be applied to a quadrotor equipped
with an embedded controller. Thus, this is a novel regressor-based adaptive controller
since an accurate knowledge of the system parameters is not needed and the control
law is system-parameter-free. Additionally, in contrast with the neural network-based
approaches, the proposed scheme is simpler and easier to implement.

1.2. Contribution

The contribution of this work is the development and design of an outer loop regressor-
based adaptive controller for a quadrotor equipped with an inner loop controller to achieve
trajectory tracking. In this regard, the procedure is performed in two major steps: First,
similar to previous works [15–25], we assume the presence of an inaccessible and unmodi-
fiable inner loop controller that not only guarantees internal stability but also allows one
to transform the inputs from forces and torques to kinematic commands and represents
the dynamics of the quadrotor as a general second-order system. Second, we design an
outer loop controller directly on the already-obtained second-order system, thus achieving
trajectory tracking and simplifying the analysis. As the outer loop is a regressor-based
adaptive controller, the uncertainties coming from the inner loop are compensated in
real time. In addition, the proposed outer loop scheme includes an integral action that
increases the robustness of the controller and helps to cope with constant external distur-
bances. The proposed outer loop controller aims to provide a simpler adaptive solution
in comparison with [24,25], which are more elaborated adaptive neural network-based
controllers. Furthermore, the proposed scheme’s regression matrix is simpler in contrast to
the proposed schemes in [19,21].

1.3. Organization and Notation

The organization of the document is the following. The dynamic model and the control
objective are described in Section 2. In Section 3, the design and stability analysis of the
proposed regressor-based adaptive controller are presented. The results of the experimental
comparative study are shown in Section 4 and the conclusions are given in Section 5.

Notation: The notation adopted along this document is the following. ‖x‖ =
√

x>x
is the Euclidean norm of the vector x ∈ Rn, given a symmetric positive definite matrix
A ∈ Rn×n; its minimum and maximum eigenvalues are denoted as λmin{A} and λmax{A}.
diagn{x} ∈ Rn×n stands for diagonal matrices with x in each diagonal element.
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2. Preliminaries
2.1. Quadrotor Dynamic Model

The dynamic model of a quadrotor in the inertial reference frame is given as [24,25]

mp̈ + mgz + Dp(η)ṗ = R3(η)F, (1)

M(η)η̈+ C(η, η̇)η̇+ Dη(η)η̇ = W(η)−>τ, (2)

where (1) and (2) represent the position and attitude dynamics, respectively; p = [x y z]> ∈
R3 is the cartesian position; η = [φ θ ψ]> ∈ R3 is the attitude; m ∈ R is the mass of
the vehicle; gz = [0 0 g]> ∈ R3, with g being the gravitational acceleration constant;
Dp(η) ∈ R3×3 and Dη(η) ∈ R3×3 are matrices that model the aerodynamic drag and
damping effects, respectively; R3(η) ∈ R3 is the third column of matrix R(η) ∈ R3×3,
which is a rotation matrix; M(η) ∈ R3×3 is the inertia matrix; C(η, η̇) ∈ R3×3 is the Coriolis
matrix; W(η) ∈ R3×3 is a transformation matrix; and F ∈ R and τ ∈ R3 are the control
inputs in the body reference frame. It is worth mentioning that representation (1)–(2) is
valid for |θ| < π/2 and φ, ψ ∈ R.

2.2. Inner Loop Controller

Based on [16,18,19,21,24–26], an inner loop controller serving as a stabilization system
and acting as an intermediate between outer commands and the inputs of the quadrotor
dynamic model is assumed to be

F =
m

cos(φ) cos(θ)

(
g +

żmaxuż − ż
τż

)
, (3)

τ = W(η)T [M(η)τ̃ + C(η, η̇)η̇], (4)

τ̃ =


ω2

φφmaxuφ − 2ξφωφφ̇−ω2
φφ,

ω2
θ θmaxuθ − 2ξθωθ θ̇ −ω2

θ θ,
ψ̇maxuψ̇−ψ̇

τψ̇

. (5)

The parameters ωφ, ωθ , ξφ, ξθ , τż, τψ̇, θmax, φmax, żmax, and ψ̇max are strictly positive
constants, and their physical meaning can be consulted in [25]. The variables uθ , uφ, uż,
and uψ̇ are the inputs for the inner loop controller.

2.3. Quadrotor under Inner Loop Controller

In agreement with [16,18,19,21,24–26], the inner loop controller in (3)–(5) applied to
dynamic models (1) and (2) leads to the second order system

q̈ = T(ψ)Kuu− Kvq̇ + δ, (6)

where
q = [x y z ψ]> ∈ R4 (7)

contains the position in three-dimensional space (x, y, z) and the yaw angle ψ, Ku ∈ R4×4

and Kv ∈ R4×4 are positive definite diagonal matrices containing the parameters of the
vehicle and the inner controller, explicitly given as

Ku = diag
{

gθmax gφmax żmax/τż ψ̇max/τψ̇

}
(8)

and
Kv = diag

{
dx dy 1/τż + dz 1/τψ̇ + dψ

}
, (9)

the matrix T(ψ) ∈ R4 is a transformation matrix given by
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T(ψ) =


cos(ψ) sin(ψ) 0 0
sin(ψ) − cos(ψ) 0 0

0 0 1 0
0 0 0 1

,

and δ ∈ R4 represents constant external disturbances that are bounded by ‖δ‖ ≤ δB ∈ R
with δB > 0. Finally, the vector [24,25]

u = [uθ uφ uż uψ̇]
> ∈ R4

is a nondimensional input vector for the inner control loop with the following parameters:

uθ is an angular position command related to the displacement along the x-axis.
uφ is an angular position command related to the displacement along the y-axis.
uż is a velocity command related to the displacement along the z-axis.
uψ̇ is a velocity command related to the rotation around the z-axis.

A graphical representation of the quadrotor dynamics (1)–(2) under the inner loop
controller (3)–(5), which result in (6), is provided in Figure 1.

Figure 1. Block diagram of a quadrotor with inner loop controller, which leads to system (6).

It is worth noticing that the inner loop controller given in Equations (3)–(5) is used
only for demonstrative purposes, and any other inner loop controller can be used. In this
sense, as long as the second-order system in Equation (6) is recovered, the proposed outer
loop controller (presented in the next section) can be applied.

2.4. Control Objective

Let us assume that the matrices Ku and Kv in (8) and (9) are unknown, and the vectors
q ∈ R4 in (7) and q̇ ∈ R4 are available for measurement. Defining the trajectory tracking
error as

e(t) = qd(t)− q ∈ R4, (10)

and its derivative
ė(t) = q̇d(t)− q̇ ∈ R4, (11)

where q is defined in (7) and qd = [xd(t) yd(t) zd(t) ψd(t)]> ∈ R4 is the reference signal,
which is assumed to be three times continuously differentiable. The objective is to design
an outer loop controller u(t) = [uθ(t) uφ(t) uż(t) uψ̇(t)]

> ∈ R4 so that the limit

lim
t→∞

[
e(t)
ė(t)

]
= 0 (12)

is guaranteed.

3. Main Result
3.1. Outer Loop Design

The outer loop controller derivation is carried out for the system described in (6). The
given outer loop scheme computes the required commands for the inner loop controller in
order to achieve the objective (12).
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Defining the variable
s = Γe + ė, (13)

where Γ ∈ R4×4 is a positive definite diagonal matrix, the dynamics of the variable s ∈ R4

are given by
ṡ = Γė + q̈d + Kv(q̇d − ė)− T(ψ)Kuu− δ(t). (14)

Assuming θmax = φmax from (8), it holds that [25]

T(ψ)Ku = KuT(ψ),

allowing one to multiply (14) by K−1
u , obtaining

Λ1ṡ = Λ1 f1(q̈d, ė) + Λ2q̇− T(ψ)u−Λ1δ(t), (15)

being Λ1 = K−1
u , Λ2 = K−1

u Kv, and f1(q̈d, ė) = Γe + q̈d. Equation (15) is linearly parame-
terizable as follows:

Λ1ṡ = Φ(q̈d, q̇d, ė)Θ− T(ψ)u−Λ1δ(t), (16)

where

Θ =

[
1

gθmax

1
gφmax

τż

żmax

τψ̇

ψ̇max

dx

gθmax

dy

gφmax

dzτż + 1
żmax

dψτψ̇ + 1

ψ̇max

]>
∈ R8

is the vector containing the system parameters which is bounded as ‖Θ‖ ≤ ΘB ∈ R with
ΘB > 0, and

Φ(q̈d, q̇d, ė) =


Φ11 0 0 0 Φ15 0 0 0

0 Φ22 0 0 0 Φ26 0 0
0 0 Φ33 0 0 0 Φ37 0
0 0 0 Φ44 0 0 0 Φ48

 ∈ R4×8,

where
Φ11 = Γ11 ėx + ẍd, Φ33 = Γ33 ėz + z̈d, Φ15 = ẋ, Φ37 = ż,
Φ22 = Γ22 ėy + ÿd, Φ44 = Γ44 ėψ + ψ̈d, Φ26 = ẏ, Φ48 = ψ̇,

is the regression matrix.
In order to stabilize systems (13) and (16), the following regressor-based adaptive

controller is proposed:

u = T(ψ)−1[Kss + Kiξ + Φ(q̈d, q̇d, ė)Θ̂
]
, (17)

ξ̇ = s, (18)

where Ks and Ki ∈ R4×4 are positive definite diagonal matrices and Θ̂ ∈ R8 is the
estimation of the parameter vector Θ ∈ R8, which is obtained through the following
update law:

˙̂Θ = NΦ(q̈d, q̇d, ė)>s, (19)

where N ∈ R8×8 is a positive definite diagonal matrix containing the adaptation gains. The
dynamics of s in (16) in a closed-loop with the proposed controller (17)–(19) is given by

Λ1ṡ = −Kss− Kiξ −Λ1δ + Φ(q̈d, q̇d, ė)Θ̃, (20)

where
Θ̃(t) = Θ− Θ̂(t) ∈ R8

is the parameter estimation error.
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Notice that (20) can be rewritten as

Λ1ṡ = −Kss− Ki ξ̄ + Φ(q̈d, q̇d, ė)Θ̃, (21)

where ξ̄ = ξ + K−1
i Λ1δ ∈ R4. Furthermore, recalling that δ is assumed to be constant ˙̄ξ = ξ̇

and based on (18),
˙̄ξ = s. (22)

3.2. Convergence Analysis

The closed-loop system resulting from the dynamics of the quadrotor with an inner
controller (6), the outer loop regressor-based adaptive controller (17)–(18), the update
law (19), and the change in variable in (21)–(22) is given by

d
dt e = −Γe + s,

Λ1
d
dt s = −Kss− Ki ξ̄ + Φ(q̈d, q̇d, ė)Θ̃,
d
dt ξ̄ = s,

d
dt Θ̃ = −NΦ(q̈d, q̇d, ė)>s.

(23)

Notice that the origin $ = [e> s> ξ̄> Θ̃>]> = 0 ∈ R20 is an equilibrium point of the overall
closed-loop system (23).

Proposition 1. Assume that matrices Γ and Ks are selected such that the inequality

λmin{Γ} >
1

4λmin{Ks}
(24)

is satisfied.
Then, the equilibrium point $ = 0 is uniformly stable in the sense of Lyapunov. Moreover,

the signals Θ̃(t) and ξ̄(t) are bounded, ∀t ≥ t0, and the limit (12) is fulfilled.

Proof. Consider the following Lyapunov function candidate

V($) =
1
2

e>e +
1
2

s>Λ1s +
1
2

ξ̄>Ki ξ̄ +
1
2

Θ̃>N−1Θ̃, (25)

which is globally positive definite, radially unbounded, and decrescent.
The time derivative of (25) is given by

V̇ = e> ė + s>Λ1ṡ + ξ̄>Ki
˙̄ξ + Θ̃>N−1 ˙̃Θ. (26)

By substituting the closed-loop dynamics in (23) into (26) and using the fact that

s>Φ(q̈d, q̇d, ė)Θ̃ = Θ̃>Φ(q̈d, q̇d, ė)>s,

the following is obtained:

V̇(e, s) = −e>Γe + e>s− s>Kss,

which can be rewritten as
V̇(χ) = −χ>Qχ, (27)

where χ = [e> s>]> ∈ R8 and

Q =

[
Γ − 1

2 I4
− 1

2 I4 Ks

]
∈ R8×8,
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where I4 ∈ R4×4 is the identity matrix. Notice that (27) is always a negative function
if Q is a positive definite matrix. In agreement with the Schur complement [27], Q is
a positive definite matrix if Γ > 0 and Ks − 1

4 Γ−1 > 0. This condition is satisfied with
Γ selected as in (24). Therefore, by fulfilling (24), V̇(χ) is guaranteed to be a negative
semidefinite function.

Based on Lyapunov’s method [28], we have that $ = 0 is a uniformly stable equilib-
rium point of the overall closed-loop system (23), which implies that $(t), $̇(t) ∈ L20

∞ .
To assess the convergence of the error variables, consider the upper bound of (27),

given by
V̇(χ) ≤ −λmin{Q}‖χ‖2. (28)

Integrating both sides of (28), the following is obtained:

∫ t

t0

∣∣∣∣∣∣∣∣‖e(τ)‖‖s(τ)‖

∣∣∣∣∣∣∣∣2dτ ≤
∫ t

t0

‖χ(τ)‖2dτ ≤ V(t0)

λmin{Q}
,

leading to sufficient conditions to invoke Barbalat’s lemma [28], concluding that e(t), s(t)→
0 as t→ ∞, implying that ė(t)→ 0 as t→ ∞ as well, satisfying the control goal in (12).

4. Experimental Results

The functionality of the proposed controller was demonstrated through an experi-
mental test. Furthermore, its performance was assessed through comparison with other
controllers reported in the literature. The comparison consists of achieving the trajectory
tracking task. Four controllers were used in the comparison, an outer-loop PD scheme,
a neural network-based scheme with integral sliding modes, an adaptive generalized
regression neural network-based scheme, and an adaptive neural network-based scheme.

4.1. Benchmarking Platform

The benchmarking platform comprises two systems: a quadrotor and a motion capture
system. The quadrotor employed in this work is s QBall 2 from Quanser® (Markham, ON,
Canada), which is an off-the-shelf platform widely used in related research [24,25,29,30].
Figure 2 depicts a picture of the Qball 2. Figure 3 shows the motion capture system
Optitrack® (Corvallis, OR, USA), which is employed to measure the cartesian position
of the quadrotor and the yaw angle through an array of six Flex 3 cameras. Under this
setup, the data are sent to a ground station through Wi-Fi. The benchmarking platform was
configured and arranged in the same manner as in previous studies [24,25]. See [24,25] for
a detailed description.

Figure 2. Experimental platform: Qball 2 quadrotor from Quanser®.
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Quadrotor

Quanser QBall 2

Wi-Fi

Communication

Flex 3 camera array

Ground station

Figure 3. Optitrack® motion capture system and communication protocol.

The parameters of the QBall 2 with the controller (3)–(5) are [24,25]:

Ku = diag{15.812 15.812 10.6 2.38}, m = 1.79 [kg],
Kv = diag{0.02 0.02 1.4136 1.4036}, g = 9.81 [m/s2],
ωθ = ωφ = 13.944, ξθ = ξφ = 1.593, τż = τψ̇ = 0.728.

(29)

All the tested controllers were implemented using MATLAB® R2014b and Simulink® 8.4
with a sample frequency of 500 [Hz].

4.2. Implemented Controllers
4.2.1. Outer Loop PD Controller

The performance of all the other tested schemes was evaluated based on the per-
formance of the outer loop PD controller, which will be denoted hereafter as the PDC
(PD controller). The PDC scheme is defined in [24] and was implemented using the
gain matrices

KP = diag{4.5 3.0 7.5 3.0},
KD = diag{1.5 1.5 1.5 1.5}.

4.2.2. GRNNC

A generalized regression neural network belongs to the category of radial basis func-
tion neural networks (RBFNNs) [31,32]. The generalized regression neural network-based
controller hereafter denoted as GRNNC was introduced in [24]. The GRNNC scheme was
implemented with the following gains

Kr = diag4{0.001}, Υ = diag{3 2 5 2},
b1 = 1.5, b2 = 1.0,

b3 = 15, b4 = 0.1,

b5 = 0.1, l = 5,

whose definitions are reported in [24].

4.2.3. ANNISMC

This controller was presented in [33] and was developed for the dynamic models
in (1)–(2). Hence, it is not only an outer loop controller but has a two-loop configuration. In
this scenario, controlling both position and attitude dynamics without access restrictions is
possible. In this control scheme, the outer loop is an adaptive RBFNN scheme that governs
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the position dynamics and the inner loop is an integral sliding mode scheme that handles
the attitude dynamics. This scheme will be referred to as ANNISMC (Adaptive neural
network integral sliding modes control) in the remainder of this document. The ANNISMC
was implemented using the following gains

c = [−1.5 − 1 − 0.5 0 0.5 1 1.5]>, kw = 4.5,

σ = [5 5 5 5 5 5 5]>, ρw = 1× 10−6,

Λ = diag{2.55 2.55 3.55}, kη = 15,

A = 0.15, ρη = 1× 10−4,

kv = 1.257.

The definition of each gain can be consulted in [24].

4.2.4. ANNC

This controller was introduced in [25], and it can be considered a PID-type controller
with an adaptive neural compensation. The scheme is based on adaptive neural networks
using the hyperbolic tangent function as an activation function. Similarly to [24], it com-
putes the control inputs for an inner loop controller to achieve the trajectory tracking task.
This scheme will be denoted as ANNC (adaptive neural networks controller) from now on
in the document. The ANNC was implemented with the following gains

Kp = diag{0.22 0.165 0.3 0.5},
Kζ = diag{0.0041 0.0041 0.1655 0.1655},
Kd = diag{0.165 0.1375 0.32 0.1},
∆ = diag4{0.001}, κ = 2.5, LN = 10,
B = diag10{0.189}, α = 0.2417,

where the definition of each gain can be consulted in [25].

4.2.5. ARBC

The proposed controller (17)–(19) will be referenced as ARBC (adaptive regressor-
based controller) in the remainder of this paper. The ARBC scheme was implemented with
the following gains:

Γ = diag{1.5 1.5 6 4.5},
Ks = diag{0.3675 0.3675 0.342 0.657},
ki = diag{0.001 0.001 0.002 0.001},
N = diag8{0.06},

and the vector of estimated parameters was initialized as zero, i.e., Θ̂(0) = [0 0 0 0 0 0 0 0]>.

4.3. Trajectory Tracking Task

The task concerns tracking an eight-shaped path while the height and the yaw angle
remain constant. The following equations describe the desired trajectory:

xd(t) = 0.5 sin
( 2π

4 t
)

[m],
yd(t) = cos

( 2π
8 t
)

[m],

zd(t) =

{
1− 0.7e−0.1t3

[m], t ≤ 5 [s],
1 [m], t > 5 [s],

ψd = 0 [◦],

where pd(t) = [xd(t) yd(t) zd(t)]> is the desired trajectory in the three-dimensional carte-
sian space. The paths obtained through the experimental tests for the PDC, ANNISMC,
GRNNC, ANNC, and ARBC schemes are depicted in a three dimensional fashion in
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Figure 4. Additionally, a top view of the same paths showing the drawn trajectories along
with the desired trajectory in the (x, y) plane is given in Figure 5.

11

0.6

0.50.5

0 0

0.8

-0.5-0.5

-1 -1

1

Figure 4. Paths drawn by the quadrotor obtained with the tested controllers.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 5. Paths drawn by the quadrotor on the (x, y) plane obtained with the tested controllers.
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The tracking of each of the desired signals is shown in Figure 6, where it seems that
the performance of all the tested schemes is similar, except for the PDC in the z coordinate
and the yaw angle ψ.

-0.5

0

0.5

-1

0

1

0.5

1

0 5 10 15 20 25 30 35
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Figure 6. Closed -loop system time response. Signals x(t), y(t), z(t), and ψ(t) obtained with the
tested controllers.

In Figure 7, the tracking errors obtained with the tested schemes are presented. It can
be observed from it that the GRNN, ANNC, and ARBC have better performances than the
PDC and ANNISMC in the x and y coordinates.
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Figure 7. Time response of the tracking error obtained with the tested controllers.
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The obtained velocity errors are depicted in Figure 8. Notice that the closest to zero
for the x, y coordinates and the yaw angle ψ are the ones obtained with the ARBC.
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Figure 8. Time response of the velocity error obtained with the tested controllers.

The provided control inputs by each controller are shown in Figure 9, these signals are
the total thrust F(t) and the torques τ(t) = [τφ(t) τθ(t) τψ(t)]>.
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Figure 9. Control input signals computed by the tested controllers.
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The time evolution of the estimated parameters for the ARBC scheme during the
trajectory tracking task are shown in Figure 10.
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Figure 10. Parameter estimation over time obtained with the ARBC algorithm.

The root mean square (RMS) value of e(t) and ė(t) was computed in the time interval
10 ≤ t ≤ 35 [s] to quantitatively assess the performance of all the tested controllers. Addi-
tionally, for every scheme, the relative percentage of improvement (PI%) was computed
considering the performance of the PDC scheme as the comparison base point. Further-
more, the average of the PI% values regarding position and velocity errors was calculated.
Table 1 presents the quantitative results, where the highest PI% values are in blue, and the
lowest are in red. The values in blue mean that the performance on that specific feature
was the best, while those in red mean that the performance was the worst. Although the
ARBC scheme provided the best results for most features, it did not provided the best
average results for position and velocity errors. It is worth mentioning that the ANNISMC,
GRNNC, and ANNC schemes are all neural network-based schemes, while the ARBC is
a regressor-based adaptive scheme with a much simpler structure and fewer parameters
to be set up. Despite its simplicity, it significantly outperformed the other schemes in
some features. These results indicate that with the ARBC scheme, a similar performance
compared to other complex schemes can be achieved.
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Table 1. RMS values of e(t) and ė(t) for all the tested controllers.

Signal PDC ANNISMC PI% GRNNC PI% ANNC PI% ARBC PI%

ex [m] 0.0981 0.0952 2.93 0.0480 51.11 0.0475 51.63 0.0302 69.22
ey [m] 0.1104 0.0637 42.36 0.0348 68.47 0.0330 70.12 0.0265 76.00
ez [m] 0.0525 0.0256 51.29 0.0125 76.17 0.0132 74.81 0.0386 26.47
eψ [◦] 0.9444 0.4566 51.65 0.3426 63.72 0.4934 47.76 0.2709 71.32

Average 37.06 64.87 61.08 60.75

ėx [m/s] 0.0654 0.0773 −18.23 0.0444 32.15 0.0413 36.81 0.0243 62.90
ėy [m/s] 0.0537 0.0413 23.14 0.0351 34.61 0.0249 53.56 0.0164 69.38
ėz [m/s] 0.0166 0.0384 −132.04 0.0257 −55.06 0.0115 30.76 0.0219 −32.39
ėψ [◦/s] 1.0723 0.7651 28.65 1.0781 −0.55 0.8382 21.83 1.0358 3.40

Average −24.62 2.78 35.74 25.82

5. Conclusions

In this work, a regressor-based adaptive controller was introduced. The proposed
scheme was developed as an outer loop scheme for a quadrotor that has an inaccessible
and unmodifiable inner controller. The proposed controller was designed exploiting the
structure of the dynamic model of the quadrotor with an inner controller. In addition,
an integral action was included to overcome the steady-state error resulting from the
parameter estimation error and constant disturbances. The stability analysis of the closed-
loop system was presented, guaranteeing the fulfillment of the control goal and assuring
the boundedness of the parameter estimation errors. An experimental comparative study
regarding a PD scheme and other three neural network-based schemes was presented. The
proposed scheme showed competitive performance since similar position and velocity
errors compared to the tested controllers were obtained with it.
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ARBC Adaptive Regressor-Based Control;
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