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Abstract: The decision-making behavior of drivers during the driving process is influenced by
various factors, including road conditions, traffic situations, weather conditions, and so on. However,
our understanding and quantification of the driving environment are still very limited, which not
only increases the risk of driving but also hinders the deployment of autonomous vehicles. To
addpress this issue, this study attempts to transform drivers’ visual perception into machine vision
perception. Specifically, the study provides a detailed decomposition of the elements constituting
weather and proposes three environmental quantification indicators: visibility brightness, visibility
clarity, and visibility obstruction rate. These indicators help us to describe and quantify the driving
environment more accurately. Based on these indicators, a visual-based environmental quantification
method is further proposed to better understand and interpret the driving environment. Additionally,
based on drivers’ visual perception, this study extensively analyzes the impact of environmental
factors on driver behavior. A cognitive assessment model is established to evaluate drivers’ cognitive
abilities in different environments. The effectiveness and accuracy of the model are validated through
driver simulation experiments, thereby establishing a communication bridge between the driving
environment and driver behavior. This research achievement enables us to better understand the
decision-making behavior of drivers in specific environments and provides some references for the
development of intelligent driving technology.

Keywords: visual perception; environmental quantification; driving simulation; driving behavior
modeling

1. Introduction

In recent years, with the continuous development of emerging scientific and techno-
logical advancements, such as big data and mobile connectivity, the utilization of onboard
sensors has been widely applied. However, under adverse weather conditions, the recogni-
tion accuracy of most onboard sensors significantly decreases, posing higher demands on
drivers for safety, efficiency, and comfort during the driving experience. For instance, in
rainy or snowy weather, the capability of lidar sensors in obstacle detection is noticeably
limited, thereby severely impacting driving safety. To ensure the safety and stability of
driving in various environments, research on drivers’ perceptions and understanding of
the environment has become critically important [1].

Nevertheless, environmental research faces two major challenges. Firstly, the complex-
ity of weather conditions makes their quantification a formidable task. Weather phenom-
ena involve multiple variables and interactions, making it difficult to accurately describe
weather phenomena. Secondly, the variability of weather makes conducting real-world
testing highly challenging. The constantly changing weather conditions increase the uncer-
tainty of the actual testing environment, thereby limiting research on driving environments.
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Currently, there is relatively limited work on driving environments, especially concern-
ing weather research. This is mainly due to the difficulty of accurately describing the
environment and the challenges associated with conducting practical tests.

The decision-making processes and behavioral patterns exhibited by drivers during
the act of driving are subject to the influence of numerous factors, predominantly encom-
passing the external surroundings and the driver’s intrinsic attributes. Consequently, these
factors give rise to the emergence of potential hazards and risks within the driving context.
The external environment involves moving objects (motor vehicles, nonmotor vehicles,
and pedestrians) [2,3], static environmental elements (road boundaries, lane separation
lines) [4,5], dynamic traffic control signals (traffic lights) [6], and weather [7-9]. Wang et al.
constructed a unified driving safety field model that utilizes field theory to represent risks
caused by drivers, vehicles, road conditions, and other traffic factors [10,11]. Tan et al.
conducted a unified model of driving behavior in different scenarios. The use of field theory
to link the risk steady-state theory and the predictive following theory, two behavioral
theories [12], did not consider the impact of environmental factors on driving behavior.

There are many studies on the driver’s own factors in relevant studies. The driver’s own
factors include the driver’s driving experience [13,14], the driver’s driving style [15-17], the
driver’s physiological and psychological state, etc. Yang et al. considered the personalized
factors of human drivers and the traffic environment and derived a personalized humanoid
lane change trajectory planning model [18]. There have been relevant articles proving that
the same driver may exhibit different behaviors under different emotions because, under
the influence of emotions, the activation direction, intensity, and depth of the nervous
system have changed [19]. Under different weather conditions, the driving behavior of
the same driver can also change. Zhao et al. analyzed the driving behavior changes and
influencing factors of drivers under three different visibility conditions: no fog, light fog,
and heavy fog [20]. Jabee introduced a method of using visual data to detect weather
conditions and proposed a weather detection system based on deep learning technology,
but did not consider the relationship between driver behavior and the environment [21].
Indeed, weather conditions exert an influence on drivers’ perceptual and cognitive faculties,
encompassing visual, tactile, and other sensory modalities. The driver’s visual perception
serves as a crucial conduit for acquiring environmental information, and variations in
environmental conditions can significantly influence the driver’s sensory experiences.
Consequently, these disparities in sensory input can potentially alter the driver’s behavioral
responses. A schematic representation of the impact of the driving environment on driver
behavior is depicted in Figure 1. To establish the logical coherence of this article, the
subsequent assumptions are posited.
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Figure 1. The influence of the environment on behavior.

The remaining sections of this article are presented as follows: In Section 2, we delve
into the design of experimental scenarios, experimental paradigms, and the collection of
experimental data. Section 3 provides an in-depth exploration of the methodology utilized
in this article. This includes a detailed analysis of environmental components, image
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feature extraction, quantification methods for environmental indicators, and the selection
of driver behavior features. Section 4 introduces the modeling process and evaluation.
Section 5 is dedicated to a comprehensive discussion of the driving process under various
weather conditions. Section 6 addresses the limitations of our study and summarizes the
conclusions drawn from our research. Additionally, we will touch upon potential avenues
for future research.

2. Experiment Design
2.1. Experimental Scenario Design

This paper uses the open-source autonomous driving simulator CARLA as a research
tool. CARLA provides an experimental environment that enables researchers to build
virtual scenarios and test autonomous driving algorithms. The simulator has a variety of
sensors and experimental components, including lidar, cameras, GPS, etc. These sensors
can simulate real-world perception capabilities and provide an important data source for
algorithm development and evaluation.

In this experiment, this paper uses the CARLA simulator and RoadRunner (2022b) for
joint simulation to build a virtual scene. Through the integration with RoadRunner (2022b),
we can more accurately simulate the real traffic environment and provide more challenging
test scenarios. This cosimulation approach can help us study the performance and safety of
autonomous driving systems in complex traffic situations. This paper uses the open-source
feature of CARLA to independently design elements, such as pedestrians, vehicles, trees,
and signs, in the experimental scene. At the same time, we also adjusted the weather
element parameters, including rain, snow, fog, etc., to create simulated experimental
scenarios under different environmental conditions. Such a setup can help us study the
ability of the automatic driving system to cope with various weather and road conditions.

The construction process of the simulated driving platform in this paper includes the
installation and configuration of CARLA, the design and placement of scene elements,
sensor settings, and the adjustment of experimental scene parameters. Through this process,
we are able to establish a highly controlled experimental environment for systematic testing
and performance evaluation. The construction process of the simulation driving platform
is shown in Figure 2.

PartI: software configuration Part III: experimental
equipment

Y P

Figure 2. Simulation driving platform and equipment.

To ensure the integrity of the driving process and data, the entire driving process needs
to encompass stages of acceleration, deceleration, constant speed, turning, and straight
driving [15]. In order to present a more intuitive representation of the simulated driving
environment, this paper designs an overhead view of the simulated driving scenario, as
shown in Figure 3. In practical simulated driving processes, the scenario primarily includes
elements such as roads, bridges, and roadside structures. The design of the scenario takes
into consideration the different stages of the driving process and provides corresponding
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guidance and prompts. The entire driving scenario can be divided into six stages, each
characterized by unique features and driving operation requirements. Detailed descriptions
of the six driving stages are listed in Table 1. To guide drivers in their acceleration and
deceleration maneuvers, this study incorporates auxiliary facilities such as deceleration
signs and brake reminders. For instance, during S3, drivers will receive prompts stating
“Please decelerate when approaching the bridge ahead,” and corresponding road signs will
be placed on the right side of the road approaching the bridge. These design measures aim
to remind drivers to adjust their vehicle speed to safely pass the bridge. Similarly, other
stages will also provide relevant guidance and prompts according to specific circumstances,
assisting drivers in completing various driving operations.

end S6 S5
S4
// bridge \
900m $3
\ E 1300m /J
start S1 s2
Figure 3. Top view of simulated driving scene.
Table 1. Descriptions of Six Driving Stages.
Stage Behavior Description
S1 Accelerate Accelerate gradually to the limit speed
S2 Decelerate Bridge ahead, please slow down
S3 Straight Straight ahead first
S4 Turn Turning
S5 Uniform Speed Keep going at your current speed
S6 Parking Park the vehicle safely

Additionally, the driving scenario design takes into account the inclusion of various
road and environmental factors that can affect the driving experience. This includes
considering weather conditions, visibility, and road surface conditions, among other factors.
By incorporating these elements into the simulated driving scenario, drivers can gain
a more realistic and comprehensive understanding of different driving situations. The
scenario design also includes the placement of relevant road signs, traffic signals, and
landmarks to replicate real-world driving scenarios accurately.

2.2. Experimental Paradigm

This experiment selected experienced drivers with at least one year of driving experi-
ence as participants, which means that these drivers have obtained a driving license and
completed a one-year driving probation period. This experiment gathered driving data
from a cohort of 20 drivers, comprising 15 males and 5 females, whose ages ranged be-
tween 20 and 35 years. The average driving experience among the 20 participants surveyed
amounted to 5.2 years. This article chose not to establish an age-gradient experimental
group for several reasons. First, using a homogenous group of participants of the same age
allowed for a more unified and streamlined analysis of the results, thereby increasing the
clarity with which conclusions can be drawn from the data. Secondly, the main focus of
this paper is to study the impact of weather conditions on driving behavior. Therefore, the
decision to maintain consistent age groups was made to mitigate potential confounding
factors caused by age-related changes.
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Prior to the start of the experiment, drivers received training on the driving simulator
to familiarize themselves with its practical operation. After the training was completed,
their proficiency was evaluated. For participants who did not pass the pre-experiment
training, this article deletes their experimental data and only retains the experimental data
of those who passed the training. Subsequently, participants underwent driving simulation
experiments in different environments. The experimental site was situated indoors, and
throughout the experiment, we diligently strived to minimize potential disruptions or
extraneous influences that might impact the driver’s concentration while operating the
vehicle. During the experiment, drivers were required to perform driving maneuvers
based on their personal driving habits and experience. The selection of the experimental
timeframe was based on the experimenter’s personal considerations, specifically to ensure
optimal alertness and energy levels, ranging from 10:00 am to 5:00 pm. Each individual
experimental session had a duration of fifteen minutes. Every participant was obliged
to undertake two such experiments, with a prescribed ten-minute intermission between
them, strategically designed to safeguard the driver’s preparedness and physical condi-
tion. Throughout the experiment, drivers encountered various driving scenarios and road
conditions to simulate real-life driving situations.

The high-definition projection screen of the driving simulator displayed realistic
roads and environments, enabling drivers to experience a lifelike driving experience. The
operational devices such as the steering wheel, pedals, and gear lever in the driving
simulator were similar to those in real vehicles, allowing drivers to perform operations
such as steering, acceleration, braking, and gear shifting. The position and angle of the
driver’s seat could be adjusted according to the driver’s personal preference to ensure
their comfort and realism within the simulator. A camera located beneath the seat was
used to record the driver’s facial expressions and driving behavior, which was crucial for
subsequent data analysis and evaluation. The driving simulator primarily consisted of
the following components: high-definition projection screen, driver’s seat, steering wheel,
wheelbase, pedals (including clutch, accelerator, and brake), gear lever, connectors, and
a computing unit. The driver sat on the driver’s seat, positioned 1.2 m away from the
central screen, facing forward. A camera was placed beneath the seat to record video data
of the driver. The simulated signals generated from the driving maneuvers were converted
into electrical signals by the wheelbase and then transmitted to the computing unit. The
computing unit was equipped with an i7 processor (Intel® Core™, Santa Clara, CA, USA),
32 GB of memory, and an 8 GB dedicated graphics memory GPU. Table 2 lists the details of
the main components of the driving simulator test.

Table 2. Descriptions of Main Components in Driving Simulator Tests.

Device Serial Number Equipment Device Description
GIMI Z7X .
! (XGIMI Technology, Chengdu, China) Resolution of 1920 > 1080
2 (Logi teciolg\}:fxczzrfzil] USA) Steering wheel, Pedals and Shifter
Computing unit .
3 (Yokogawa Electric Corporation, Tokyo, Japan) Intel i7, 32Gb RAM, 8Gb VRAM
GPU
4 (Nvidia Corporation, Santa Clara, CA, USA) NVIDIA GeForce RTX 2060 SUPER
Camera .
5 (Intel Corporation, Santa Clara, CA, USA) Intel RealSense D4351
6 Driver seat

(Logitech, Newark, NJ, USA)

2.3. Experimental Data Collection

Calibrating the control components is crucial prior to using a driving simulator, involv-
ing several key aspects of optimizing the driving experience from an academic perspective.
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Firstly, calibration is required for the brake and accelerator pedals to adjust their minimum
and maximum rotation angles as well as sensitivity based on the driver’s habits. Such
adjustments ensure that the driver achieves a sense of operation in the simulator that aligns
with their individual driving habits, thereby enhancing the authenticity and reliability of
the simulation experiments. Regarding the steering wheel, parameters such as sensitivity,
maximum steering angle, force feedback strength, and damping also need to be adjusted to
simulate the handling characteristics of real-world driving.

During the experimental process, driving simulators like CARLA incorporate built-in
data collection modules that can collect real-time driving data from the driver. This data
includes driving speed, steering wheel angle, throttle, and brake pedal positions, among
others, which are then saved for subsequent processing and analysis. The collected data
from the simulator primarily encompasses aspects such as mechanical control data, vehicle
status, and environmental conditions. Some useful data includes throttle pedal pressure,
steering wheel angle, gear lever position, vehicle speed, acceleration, position, engine
status, fuel consumption, road conditions, and weather information.

Through these driving simulator experiments, a large volume of driving data can be
gathered, covering crucial information, such as the driver’s operational behavior, reaction
time, and attention allocation. This data is crucial for assessing the driving ability and
safety of drivers in different driving scenarios. By analyzing this data, it is possible to
gain in-depth insights into the driver’s behavior patterns and decision-making processes.
Additionally, it enables the study of the driver’s ability to respond to emergency situations,
adapt to complex traffic environments, and interact with other road users.

3. Methodology
3.1. Analysis of Environmental Composition Elements

Many factors affect driver behavior. By examining the influence of various surround-
ing environments on the driver’s driving behavior in a connected vehicle, it is possible to
study how the driver reacts in the absence of changes in traffic signals, lanes, and dynamic
or static objects [22]. In this particular study, a series of weather environments were created
using the simulation open-source platform CARLA. The weather conditions in CARLA
consist of multiple elements that can be manipulated by assigning specific values to each
element. Weather elements include sun altitude angle, sun azimuth angle, cloudiness, fog
density, fog distance, fog falloff, precipitation, wetness, and precipitation deposits. Thus,
different weather environments can be generated. For the purposes of this study, a total of
eight weather environments were constructed, each with varying brightness, clarity, and
obstacle levels.

The eight weather environments constructed constitute the experimental environment
set W, and each environment becomes an element in the set W, as shown in Figure 4.

W= {w1/w2/w3/ e /w7/w8} (1)

Wy

Figure 4. Eight weather environment scenes. The eight environments generated by changing the
sun’s azimuth angle, rain and fog concentration, each with different visual senses.
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In different external driving environments, the visual perception of drivers varies
according to the characteristics of the environment [23-26]. In order to accurately quantify
the features of different environments, we propose three measurement indicators: visual
brightness, visual clarity, and visual obstruction. Each indicator is influenced by one
or more environmental factors, including natural light intensity, rainfall, and potential
obstructions. To study the impact of these indicators on driving behavior, we divided
them into high and low levels, namely high visual brightness and low visual brightness,
high visual clarity and low visual clarity, as well as high visual obstruction and low visual
obstruction. By combining these three indicators, we obtained eight different external
weather conditions. Among them, the combination of high visual brightness and high
visual clarity represents good weather conditions where drivers can clearly observe the road
and surrounding environment. In contrast, the combination of low visual brightness and
low visual clarity indicates adverse weather conditions with dim light and blurred vision.
Furthermore, in environments with high visual obstruction, various obstructions may limit
drivers’ visibility of the road and the surrounding environment. In environments with low
visual obstruction, drivers can see the road and surroundings more clearly. Through the
research and comparison of these eight different external weather conditions, we can better
understand the impact of different environments on drivers’ visual perception.

3.2. Image Feature Extraction

In order to extract features of the driving environment more efficiently, this paper
uses a convolutional neural network for feature extraction from image information. The
extraction neural network architecture is shown in Figure 5. Unlike conventional convo-
lutional neural networks, this paper incorporates a convolutional block attention module
(CBAM) during the training process. The CBAM module calculates attention maps from
two different dimensions: channel and space, and then multiplies the obtained attention
maps with the input feature maps for adaptive feature refinement [27]. Since CBMA is a
lightweight universal module, it can be seamlessly integrated into any CNN architecture
without additional overhead and can be trained end-to-end with the basic CNN. The layout
of its fused convolutional neural network architecture is shown in Figure 6. Among them,
the channel attention module uses average pooling and maximum pooling to aggregate
spatial information, which is then processed and input into a multilayer perceptron (MLP),
and finally outputs feature F/. Unlike channel attention, the spatial attention module
first performs average pooling and maximum pooling operations to aggregate channel
information, and finally outputs F” as a feature map.

CBAM
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Figure 5. Image feature extraction network.
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The output feature map shows that the pretrained convolutional neural network
method can effectively classify different environmental images. The ability to automatically
extract features through deep learning enables better understanding and utilization of
image data [28]. The generated image features can provide reference, for the selection of
environmental quantification indicators in the future.

3.3. Quantitative Methods for Environmental Indicators

This paper utilizes the depth camera and sensors in CARLA to sample eight driving
weather conditions, and performs image analysis and quantitative processing on the
quantified metrics for each environment. By using CARLA’s depth camera and sensors, we
are able to capture rich information in various driving weather conditions, including rainy,
foggy, and sunny conditions, among others. Through analyzing these sampled data, we
can understand the variations in driving scenarios under different weather conditions and
extract key quantitative metrics. In the image analysis stage, this study employs computer
vision techniques to analyze the sampled images, extracting various visual features and
attributes, such as visibility, road conditions, and lighting intensity, to obtain important
information about the driving environment. The sampling results are illustrated in Figure 4.
Finally, a quantitative processing approach is adopted to convert the information in the
images into measurable numerical metrics. By comparing and analyzing these quantitative
metrics, we can evaluate different driving weather conditions. Next, this paper will discuss
the quantification process of three quantitative indicators.

(1) Visual brightness. Visual brightness refers to the degree of brightness perceived by the
visual sensory system [29], which is influenced by factors such as cloud cover, sun al-
titude, and azimuth angle. In RGB images, brightness is manifested by the magnitude
of pixel values at each point, where higher pixel values indicate higher luminance. In
grayscale images, higher grayscale values correspond to higher brightness levels.

In this paper, a method combining RMS pixel height and perceived brightness is used
to quantify field-of-view brightness. The pixel height can reflect the reflection (projection)
density information of the image, that is, it reflects the brightness information. RMS
obtains the root mean square value of the pixel value of each channel in the image, and its
calculation formula can be written as:

[1 & X2t xg 4 4o
— 2 _ 1 2 n
Xims = N; X; —\/ N )

where X5 represents RMS pixel height value. {x1,x2,x3, -, x,} represents the pixel
height of each channel.

Due to variations in human perception and response to different colors of light when
acquiring visual information, researchers have proposed a formula to calculate the “per-
ceived brightness” of individuals based on the relative intensities of three primary colors of
light: red, green, and blue. This formula takes into account the differing sensitivities of the
human eye to these colors and converts the pixel values of a color image into brightness
values that align with human perception [30]. This conversion allows for a more accurate
reflection of the human visual system’s perception of the image, enabling more precise and
rational image processing and analysis. The formula for this calculation can be expressed as:

Xoms—p = V/0.241 x R2 4 0.691 x G2 4 0.068 x B2 ©)

where X5, represents the driver’s perceived brightness, R, G, and B represent the three
channel colors of red, green, and blue in the image, respectively.

The image brightness is quantified by the above method, and the quantified results
are shown in the following Table 3.
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Table 3. Visual Brightness Quantification Result.

Weather Xims Xims—p
wq 200.32 199.84
Wy 155.82 156.47
w3 201.18 201.31
Wy 167.02 167.60
ws 66.66 59.47
We 75.61 76.10
wy 72.40 63.71
wg 80.77 81.30

(2) Visual clarity. Visual clarity is a measure of the level of clarity in a driver’s vision [31],
which is influenced by factors such as fog density in the driving environment. When
drivers encounter dense fog while driving, higher fog density in the external envi-
ronment leads to lower visual clarity. In such circumstances, the fog scatters light,
preventing drivers from clearly seeing the road conditions, obstacles, and other vehi-
cles ahead. Insufficient visual clarity reduces the driver’s perception of the road and
increases the risk of accidents. In this paper, the Laplacian gradient function is used
to quantify the driver’s vision clarity.

The Laplacian gradient function employs the Laplacian operator to extract gradient
values in both the horizontal and vertical directions. By converging with the image, it
obtains the high-frequency components. The high-frequency components are then summed
to serve as a measure of image sharpness. The expression for calculating the Laplacian
operator and image sharpness is as follows:

Laplace(f) = Af = it + 32712[

9x2

D(iap = L Xy [G(x,9)|, (G(x,y) > T)

(4)

where Laplace(f) represents Laplacian operator, D(f),,),
calculated by the Laplace method, G(x,y) represents pixel point (x, y) of the convolution
of the Laplacian operator, T is the given edge detection threshold.

The quantified results are shown in the following Table 4. From the table, it can be
seen that the second and fifth weather environments have lower visual clarity, which is
consistent with human visual perception.

represents the image sharpness

Table 4. Visual Clarity Quantification Result.

Weather D(f)1ap
w1 131.77
wy 13.18
w3 136.17
wy 182.98
ws 27.59
We 155.95
wy 180.15
wg 110.18

(3) Visual obstruction. During the driving process, external conditions such as rainy or
snowy weather may obstruct the driver’s field of vision. Therefore, we propose the
concept of visibility obstruction rate as a metric to quantify the extent of visibility ob-
struction experienced by drivers. The normalized cross correlation (NCC) algorithm,
based on grayscale information from images, is a commonly used method for compar-
ing image similarity. The NCC algorithm involves selecting an arbitrary pixel in the
original image and constructing a matching window of size n*n. A corresponding
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NCC(p,d) =

window of the same size is then created at the same location as the target image [32].
By analyzing the similarity between these two windows, the NCC algorithm can
ultimately assess the similarity between the two images. This calculation can be
expressed as:

L)W, (11(x,y) ~ I (P Py)) * (Iz(x +d,y) — L(px+d, Py))

- 2 -
\/Z(x,y)ewr, (11 (x,y) = hi(px, Py)) * L(xy)ew, (Iz(x +d,y) — L(px+d, Py))

©)

2

Due to the relative nature of occlusion, this paper only compares the impact of rainy
weather on visibility occlusion for drivers under the same conditions of clarity and bright-
ness. We separately calculate the occlusion rates of driver visibility in rainy and nonrainy
weather. Since the rainfall amount in the simulated rainy environment of this study is
constant, the average relative occlusion rate is used to represent the visibility occlusion
for drivers in different environments. The quantitative results obtained through the NCC
method are presented in Table 5.

Table 5. Visual Obstruction Quantification Result.

Field of View Obstruction NCC(p,d)
existence 1.566
nonexistence 0.254

3.4. Selection of Driver Behavior Feature Set

For the experimental data of the driver during the driving process, this paper used the
difference between the highest speed and the lowest speed, the average speed, the maxi-
mum and minimum opening and closing angles of the accelerator, the average opening and
closing angle of the accelerator, the brake holding time, and the maximum and minimum
angle difference of the brakes. The nine feature sets of the value, the average braking angle,
the steering wheel angle interval, and the driving time represent the characteristics of the
driver during the driving process. The specific features are expressed in Table 6.

Table 6. Driver Data Feature Set.

Symbol Feature Description Unit
Umax maximum speed m/s
Uavg speed average m/s
Omax throttle maximum angle ©
Oavg throttle average angle ©
Smax braking maximum angle °
Savg braking average angle °

n the proportion of braking time 1
o steering wheel angle range °
t driving time s

4. Modeling and Assessment
4.1. Index Normalization and Correlation Analysis

In order to model driver behavior in different environments, it is necessary to further
normalize the quantified values obtained through different methods. By using the method
of min-max normalization, we can ensure comparability of the quantified values obtained
in different environments, thereby facilitating better behavior modeling and analysis. The
three environmental data indicators are normalized using the min-max normalization
technique, resulting in values within the range [0, 1]. The transformation function is
as follows:

* A —min

A=—-——— 6
max — min ©)
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where max represents the data with the largest median value of the environmental index,
min represents the data with the smallest value in the environmental index, A represents
the quantitative values of each environmental indicator, A” represents the normalized
results of each indicator.

To validate the correlation between different environmental indicators and driver be-
havior, this study conducted a correlation analysis between driver data and environmental
indicators. In the correlation analysis, this paper collected a dataset of driver features and
compared it with three quantified environmental indicators.

Table 7 presents the Pearson correlation coefficients between selected driver behavioral
features and environmental quantified indicators. All of these coefficients exceed 0.925,
indicating that the chosen indicators are accurate and that there exists a strong correlation
between driver behavior and the environment. This conclusion also confirms the validity
of our model based on assumptions. Based on this conclusion, we conducted a driver’s
environmental perception and behavior model.

Table 7. Correlation Analysis of Partial Behavioral Feature Sets and Environmental Quantitative Indexes.

Feature Sets Visual Brightness Visual Clarity
Umax 0.98915 0.98915
Vang 0.93976 0.97302
Omax 0.92844 0.93976
Oavg 0.95742 0.92844
Omax 0.96297 0.95742

4.2. Driver Behavior Modeling

This paper extracts sets of environmental quantification indicators and driving behav-
ior features, and attempts to establish a connection between them using drivers’ environ-
mental understanding and behavior models. After the normalization process mentioned
above, different driving environments can be represented by three quantified environmen-
tal indicators. Therefore, for various environments, a unified quantification formula can be
expressed as:

A =0aX Xpms—p+ B X D(f),, + A x NCC(p,d) (7)

where X5 represents visual brightness, D(f) lap Tepresents visual clarity, N CC(p,d)
represents visual obstruction. «, 3, and A represent corresponding coefficients.

The behavior of drivers is influenced by environmental factors. One crucial factor is the
lighting conditions, which play a significant role in shaping driver behavior. When visibility
is excellent due to good lighting conditions, drivers generally exhibit more aggressive
behavior on the road. This manifests in their tendency to drive at higher average speeds
and brake less frequently. The improved visibility allows drivers to perceive and react to
their surroundings more efficiently, potentially leading to a greater sense of confidence
and willingness to take risks. Conversely, when faced with poor lighting conditions, such
as at night or in inclement weather, drivers tend to adopt a more conservative driving
style. The reduced visibility in these situations necessitates caution and careful navigation.
Consequently, drivers often drive at lower average speeds and brake more frequently to
maintain control and ensure safety.

Recognizing the correlation between driving behavior and lighting conditions, we
introduce the concept of the driver conservation factor (DCR). DCR serves as a quantifiable
measure to assess the level of conservativeness or aggressiveness in driver behavior. The
model-building process is shown in Figure 7. It is determined by calculating the average
driving speed, with a higher average speed corresponding to a larger DCR value. This
factor allows us to establish a driver behavior model that incorporates the influence of
environmental conditions, particularly lighting, on driver decision-making and actions. By
considering the interplay between environmental factors and driver behavior, our proposed
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model aims to enhance our understanding of how drivers adapt and respond to varying
conditions on the road.

DCR = ¢ * Ugog + L * bavg + - - - + € * Jang 8

where DCR represents the driver conservation factor, v,y represents speed average, 040¢
represents throttle average angle, J,,;. Represents braking average angle. ¢, i, and ¢
represent corresponding coefficient.

R

W

Collected environmental Driver behavior
images data

- -

Feature extraction method

-

Driver's environment perception
and behavior model

Figure 7. Model Building Process.

The driver behavior characteristics in the driver behavior model can be increased or
decreased according to the scene, and at the same time, the coefficients can also be corrected
according to the experimental scene and experimental data, which improves the robustness
of the model. Verified by experimental data, there is a strong linear correlation between the
quantitative value of the environment and the driver’s behavior factors, which shows that
the model is effective under the premise of the experimental assumption.

5. Discussion

This experiment consisted of six driving stages, and we chose to conduct a detailed
analysis of the relationship between the position and velocity of a driver during the
acceleration stage, as shown in Figure 8. The figure illustrates the variations in the driver’s
velocity under different conditions, including visual brightness, visual clarity, and visual
obstruction. Based on the observations in the figure, it is evident that the driver’s speed
is significantly higher under conditions of maximum visual brightness, maximum visual
clarity, and minimum visual obstruction compared to other conditions. This indicates
a positive impact of favorable visual conditions on the driving speed of the driver. It
is worth noting that, during this acceleration process, the frequency of braking by the
driver noticeably decreases, highlighting the importance of studying the impact of weather
conditions on driving decisions. Additionally, the experiment observed instances where
the driver performed braking maneuvers in situations where it was not necessary. Through
further analysis, we speculate that this behavior may involve the presence of irrational
decision-making by the driver, wherein environmental factors and personal experience
could play a significant role. This finding emphasizes the importance of considering the
driver’s cognition and behavioral patterns, as well as environmental factors, when studying
driving behavior and safety.
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Figure 8. A Diagram of the relationship between speed and displacement of a driver in the accelera-
tion phase.

Studies have demonstrated that inclement weather conditions, such as rain, snow, fog,
hail, or strong winds, can significantly diminish road visibility and traction, subsequently
influencing driver decision-making and behavior. Drivers may find it necessary to reduce
their speed, increase their following distance, or select safer routes. These findings align
with the outcomes of our research, which reveal substantial alterations in driver behavior
during adverse weather conditions, primarily manifesting as an increased frequency of
deceleration and adjustments in speed.

Furthermore, it is worth noting that lighting conditions also exert a substantial influ-
ence on a driver’s behavior. In accordance with our research findings, enhanced visual
brightness corresponds to notable improvements in driving speed and overall driving
stability.

6. Conclusions
6.1. Research Summary

This paper mainly has the following contributions and conclusions:

(1) The paper decomposes the weather components and introduces three environmental
quantitative indicators. Additionally, this paper establishes an environmental quantita-
tive method based on the driver’s vision. These metrics and methods serve as effective
tools for evaluating the driving environment under diverse weather conditions.

(2) Through simulation experiments conducted in various environments, the paper ex-
tracts a comprehensive set of drivers’ features and develops a cognitive evaluation
model for drivers in different weather conditions. The model provides insights into
the behavior patterns exhibited by drivers under distinct weather circumstances.
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(3 Through an examination of weather variables and driver behavior patterns across
various weather conditions, it has been determined that drivers exhibit more ag-
gressive driving behavior when visibility conditions are optimal. Furthermore, the
extent to which the occlusion rate of the visual field affects the overall environment is
considerably less significant than the impact of visual field brightness.

This research contributes to our comprehension of drivers’ cognitive processes and
their ability to adapt to their surroundings, thereby offering potential avenues for enhancing
driving safety.

Due to experimental constraints, the collected driving data in this study cannot repre-
sent the driving styles of all drivers. Therefore, the robustness of the mathematical models
built based on these data is poor. However, by incorporating additional driver datasets and
combining existing machine learning methods, a more accurate mathematical and physical
model can be trained. Simultaneously, it is imperative to recognize that this experiment is
rooted in simulation, and the dynamics of interaction between individuals and their envi-
ronment in actual driving scenarios are notably more intricate. Consequently, there exists a
need for further investigation into the mechanisms and intensity of such interactions.

Furthermore, while the focus of this experiment is on driver behavior data, future
research should pay more attention to drivers’ physiological indicators, visual feature
indicators, and spatiotemporal feature indicators. For example, wearable devices can
be used to collect drivers” physiological data, such as heart rate and conductivity, and
analyzing the variations in these indicators can assess the drivers’ emotional states and
physical conditions. Integrating these multimodal data and indicators can establish a
comprehensive model for understanding and predicting driver-environment interactions,
thereby better capturing driver behavior patterns and dynamic changes, and enhancing
driving safety and experience.

6.2. Research Recommendations and Limitations

The significance of investigating the influence of the driving environment on driving
behavior is multifaceted. In light of the research findings presented in this article, several
pertinent recommendations emerge:

(1) Visual brightness, as a key factor among weather-environment indicators, exerts a
substantial impact on driving behavior. This observation offers valuable insights for
traffic management authorities and researchers, suggesting ways to enhance visual
brightness to bolster driving safety in inclement weather conditions.

(2) Adverse weather conditions can lead to irrational decision-making behaviors among
drivers. Consequently, this research bears the potential to guide the formulation of
effective traffic regulations and policies that account for the environmental factors
influencing driving, including the establishment of specific guidelines tailored to
adverse weather conditions.

(3) This article, to a certain extent, elucidates the model relationship between driving
behavior and the driving environment. Within the realm of autonomous driving
research, these insights can inform the development of autonomous vehicles and
advanced driver assistance systems. These technologies can effectively adapt to
diverse driving environments, optimizing transportation systems and mitigating the
environmental impact associated with driving.

However, the application of driver simulation experiments to real-world scenarios
necessitates a stringent validation procedure to ascertain the viability, safety, and efficacy of
the system. For instance, it is imperative to undertake simulation environment verification,
which serves to validate the consistency of road and traffic simulations with re-al-world
conditions. Furthermore, the vehicle model utilized in the verification simulation must
undergo validation with respect to vehicle dynamics, control systems, and sensors to
accurately replicate the vehicle’s performance and behavior. Simultaneously, a critical
evaluation is essential to confirm the representativeness of the data generated during the
simulation process for effective testing and assessment. Moreover, this verification process
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extends to encompass security validation, rule verification, and other pertinent aspects.
These multifaceted verification measures play a pivotal role in mitigating potential risks
and ensuring the adaptability and reliability of autonomous driving technology.
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