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Abstract: The shearer positioning method is of great significance to the automation of longwall
mining. The research teams in the Longwall Automation Steering Committee (LASC) of Australia
and China University of Mining and Technology (CUMT) have focused on shearer positioning and
identified the shearer inertial navigation system, the measurement of longwall retreat and creep
displacement, and the backward calibration of the shearer trajectory as three key technologies to
obtain accurate shearer positioning information. In underground environments without GPS, due to
the characteristics of inertial navigation system (INS) autonomous full-parameter navigation, shearer
positioning based on INS is adopted by the LASC and CUMT, and error reduction algorithms are
proposed to inhibit the rapid error accumulation of INS. In order to obtain the periodic calibration
information when the shearer reaches the end of the longwall face, it is necessary to measure the
retreat and creep displacements in order to back-correct the shearer trajectory. Finding a suitable
measurement method for this task is challenging, especially in the presence of dust and moisture.
The LASC used a scanning laser and FMR 250 microwave radar to measure these two displacements,
while CUMT adopted an ultra-wideband (UWB) radar. In terms of the backward calibration method,
minimum-variance fixed-interval smoothing (MFS) proposed by LASC and the global optimiza-
tion model (GOM) for the shearer trajectory from CUMT are described in detail. The experiment
demonstrates that the GOM outperforms MFS in terms of accuracy but requires more computational
resources. Therefore, our next research objective is to develop an efficient and accurate algorithm for
performing backward calibration on the shearer trajectory.

Keywords: shearer positioning; longwall mining automation; inertial navigation system; longwall
retreat and creep displacement measurement; backward calibration

1. Introduction

Longwall mining is a primary method for extracting coal from underground mines.
As shown in Figure 1, three kinds of mining equipment used in the longwall face are a
shearer, an armored face conveyor (AFC), and a roof support system. The shearer moves
back and forth along a rail connected to the AFC, while the roof support system maintains
the stability of the coal seam roof. Traditionally, the shearer and roof support system are
controlled manually, which inevitably causes the rock to contaminate the coal and reduces
the mining productivity. In addition, worker safety is greatly threatened because they
are directly exposed to the mining worksite. Improving mining productivity, protecting
worker safety, and achieving environmental sustainability are the goals that the coal mining
industry has been pursuing [1,2]. Longwall mining automation is a mining process that
is carried out using mining equipment without the need for manual intervention. It
involves the intelligent perception of the mining environment, intelligent control of the
mining equipment, and autonomous operation of the mining process [3,4]. Longwall
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mining automation technology has shown significant potential to achieve those goals
through providing shearer positioning, face alignment, horizontal control, seam tracking,
visualization and monitoring, and remote control [5,6]. Among them, shearer positioning
is a foundational aspect of the autonomous mining operation, and it is a key technology
that enables face alignment and horizontal control. Therefore, the accurate positioning of
the shearer is of great significance to longwall mining automation.
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As early as 2001, the Commonwealth Scientific and Industrial Research Organization
(CSIRO) of Australia began developing the longwall automation technology known as
the Longwall Automation Steering Committee (LASC). LASC is the abbreviation for the
research team responsible for this technology. The LASC can fix the 3D position of the
shearer, maintain the straightness of the conveyor and supports, raise the shearer drum
automatically, and provide 3D remote monitoring video feeds [7–9]. The technical frame-
work is shown in Figure 2b. The latest version, LASC 2.0, has been adopted in 70% of
Australia’s coal mines. DBT, JOY, and Eickhoff are all licensed manufacturers of LASC. The
social benefits of LASC application have contributed to reducing the number of accidents
and deaths, and the costs that are avoided as a result are likely to save mining industries
millions of dollars each year. In addition, improving the accuracy of longwall mining
operations and reducing the amount of waste rock leads to less environmental disruption.
LASC technology has great influence on the development of longwall mining automation
around the world.
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In China, research on the automation of longwall mining commenced at a relatively
later stage. Under the support of the National High-tech Research and Development Pro-
gram (863 Program) and the National Natural Science Foundation of China, our research
group at China University of Mining and Technology (CUMT) has devoted significant
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efforts to the longwall mining automation. Figure 3 shows the technical framework devel-
oped by CUMT for this purpose. The digital model of a coal seam is constructed using
drill geological data and the seismic CT detection technique. Combining the digital model
of the coal seam, shearer positioning technology is employed to obtain the shearer 3D
positioning within the coal seam [10]. Based on this, it is possible to achieve AFC trajectory
straightening and shearer cutting path planning. The industrial test was carried out and
demonstrated satisfactory performance.
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Whether it is for LASC or CUMT, the shearer positioning method plays an important
role in longwall mining automation. The shearer inertial navigation system, the measure-
ment of longwall retreat and creep displacement, and the backward calibration of shearer
trajectory are three crucial technologies to acquire the shearer’s accurate positioning. There-
fore, this paper aims to present an overview of three technologies utilized by the LASC
and CUMT, and compares the backward calibration methods proposed by the LASC and
CUMT through a conducted experiment.

2. Longwall Mining Method

Longwall mining is widely recognized as a highly efficient method for extracting
coal from underground mines. In a coal seam, many elongated and narrow roadways are
excavated to form the boundaries of several longwall panels, as shown in Figure 4a. The
roadways serve as a passageway of transportation for coal, equipment, and workers. The
sectional area of roadway is approximately 5 × 4 m in general. The coal is extracted from
the longwall panel, which is generally 300 min wide and 5000 min long, with a thickness
ranging from 1.2 to 8.0 m. At the end of the longwall panel, the shearer, AFC, and roof
support system are installed across the longwall face.

As shown in Figures 4b and 5, the shearer moves along a rail associated with the
AFC, cutting a 0.8 m-wide slice of coal from the coal seam. The extracted coal is deposited
onto the AFC and subsequently transported far away the longwall face. When the shearer
is in motion, the hydraulic push arms, which are connected to the roof support system,
gradually push a section of the AFC behind the shearer along the advancing direction for
the next cutting cycle. In Figure 6, the shearer is in operation during n-th cycle, while the
AFC behind the shearer has been moved into the n + 1 cycle. When the coal is cut, the
roof support systems support the roof of the coal seam. There are approximately 200 roof
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support systems in a typical longwall face. After the AFC is pushed towards the coal seam,
the roof support systems are relocated along the advancing direction. Behind the roof
support systems, the collapse of the roof results in the formation of a goaf.
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3. Shearer Positioning Technology

The shearer positioning method includes three components, the shearer inertial nav-
igation system, the measurement of longwall retreat and creep displacements, and the
backward calibration of the shearer trajectory. Researchers in the LASC and CUMT have
been focusing on those three aspects and have acquired good results.

3.1. The Shearer Inertial Navigation System

Due to the unavailability of Global Position System (GPS) and BeiDou Navigation
Satellite System (BDS) signals in underground environments, the positioning method based
on the inertial navigation system (INS) is considered to be a feasible shearer positioning
method. The INS exhibits a high level of autonomy, making it widely applied in aircraft [12],
ships [13], submarines [14], and so on. The accelerometer and gyroscope serve as the core
measurement units to obtain the state of an object. The tri-axis accelerometer measures the
linear accelerations of an object with respect to its body reference frame in three orthogonal
axes. The gyroscopes are utilized to quantify the angular velocities of rotation of the object
with respect to the inertial reference frame. In summary, the navigation algorithm of the
INS is founded upon the principles of Newton’s laws of motion. The attitude angles
are derived through the integration of rotational angular velocities. Subsequently, the
rotation matrix, also known as the direction cosine matrix (DCM), is obtained. Through
integrating the measured accelerations from the accelerometers and applying the rotation
matrix transformation, the velocity and position in the navigation coordinate frame can
be determined [15,16].

In order to acquire the shearer position in three dimensions (3D), the LASC has devel-
oped a measurement system known as the Shearer Position Measurement System (SPMS).
This system utilizes a Northrop Grumman LN270 INS, as shown in Figure 7a. The LN270
was installed within an explosion-proof enclosure in the shearer body. In addition to
the INS, an odometer, connected to the shearer haulage unit, was required to accurately
measure the distance traveled across the longwall face. Afterwards, the second-generation
SPMS (SPMS-II) using IXSEA PHINS INS was finished, as shown in Figure 7b. Due to
the noise and vibration in underground environments, the INS calculation error increases
exponentially over time. That is to say, the INS exhibits a very low relative error over
short time periods, but over long time periods, the error increases dramatically. Based on
this, Reid et al. [17] employed zero-velocity updating technology (ZUPT) to periodically
correct the velocity error during stationary motion for an INS. Furthermore, the devel-
opment of integrated navigation with an INS and odometer aims to continually enhance
performance. After replacing the odometer with a Doppler radar, Dunn et al. [18,19] in-
troduced a practical and accurate aiding source. Through analyzing the longwall mining
method, Reid et al. [20] determined that the horizontal closing distance between two adja-
cent cutting cycles remained constant. This constant value was found to be instrumental in
enhancing the longtime stability of the INS. The 3D path of a shearer in an underground
mine, measured using the SPMS, is shown in Figure 8.
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Figure 8. The shearer’s 3D path in an underground mine measured using the SPMS [21].

In CUMT, the authors of this paper built the Shearer Positioning and Attitude Systems
(SPAS), including SPAS-I and SPAS-II, as shown in Figure 9. The Spatial FOG INS from
ADVANCED NAVIGATION provided the attitude angles of heading, pitch, and roll. The
axial encoder connected to the travelling unit provided the velocity value of the shearer. The
shearer position was then obtained using the dead-reckoning algorithm. The effect of the
installation and initial alignment noncoincidence of the INS on the shearer positioning error
was analyzed, and a calibration method for the two deviation angles with the two-point
method was proposed [22,23]. The current axial encoder is a 12-bit system with a resolution
of 1/4096. This implies that the accuracy of INS attitude greatly affects the position error,
especially the heading angle accuracy. Based on previous research, the heading angle
error was found to increase at a faster rate than the pitch error and roll error over time.
Furthermore, it was observed that the heading angle error directly affected the plane
positioning accuracy [24,25]. According to the longwall mining method, two constraints
on the shearer velocity and position were obtained. Therefore, the dynamic zero velocity
update (DZUPT) model [26] and the closing path optimal estimation model [27] were built
using a Kalman filter. In order to improve shearer positioning accuracy, an information
filter was proposed to integrate these two models [11]. An underground field test was
performed at 18,201 longwall faces in Shanxi Province, China, and Figure 10b shows the
shearer trajectory acquired via the SPAS.
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Figure 10. The diagram of (a) the underground field test in Shanxi and (b) the shearer trajectory
acquired using the SPAS [28].

3.2. The Measurement Method of Longwall Retreat and Creep Displacements

In Section 3.1, the utilization of auxiliary sensors, ZUPT, DZUPT, and kinematics
model reduced INS drift error and improved the positioning accuracy. However, due to the
lack of periodic GPS calibration, the INS longtime error is still relatively large. After several
cutting cycles, the shearer positioning accuracy cannot meet the requirement of the longwall
mining automation. According to the longwall mining method, the shearer reciprocates
between two roadways along the longwall face. When the shearer reaches the end of the
longwall face, the longwall retreat and creep displacements become significant parameters
to measure, which can be utilized to back-correct the shearer trajectory after the completion
of each cutting cycle. As shown in Figure 11, according to the longwall mining method, the
retreat displacement is actually the advancing distance of the mining equipment along the
advancing direction every time. Due to the different levels of inclination of the longwall
face, there will be a height difference between the two ends of the longwall face. When
the mining equipment is installed on the inclined longwall face, the force acting on the
equipment is not balanced, which makes the equipment slide along the longwall-face
direction and produces the displacement of sliding up and down.
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In the LASC, Reid et al. [20] installed the scanning laser on the roadway conveyor
structure linked to the AFC to scan the roadway profile. Accordingly, the first generation of
a scanning device with SICK LMS200 as the core sensor and the second generation of an
explosion-proof 3D laser scanning device called ExScan have been developed. The current
scan was matched to the global map with the scan-matching algorithm to acquire the
retreat and creep displacements, as shown in Figure 12. However, the dust and moisture in
an underground mine would greatly increase the attenuation and distortion of the laser
beam, which affect the laser measurement accuracy. Then, Hargrave et al. [29–31] used
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the FMR 250 radar from Endress-Hauser company in Germany to measure the retreat and
creep displacements, and a field test in Australia’s Beltana mine was carried out to verify
the effectiveness of the proposed method, as shown in Figure 13. The radar is sensitive
to distance information, and the creep displacement was obtained through measuring
the distance between the radar and roadway wall. The number of bolt-plates on the
roadway surface represented the position information, thus enabling the measurement of
retreat displacement through the recognition of these bolt-plates. However, in the majority
of mines, the bolt-plates lack position information, thereby limiting the applicability of
this method.
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Figure 13. The diagram of (a) the Endress-Hauser FMR 250 radar and the (b) field test in an
underground mine [29–31].

In CUMT, the authors of this paper provided a novel measurement solution with
the ultra-wideband (UWB) radar imaging method [32]. UWB radar is characterized by a
radar with a fractional bandwidth exceeding 25%. Through transmitting electromagnetic
wave signals with a strong ability to penetrate a coal-dust environment, UWB radar can
obtain target or scene images all day and in all weather, which has the technical advantage
of application in the complex environment at the end of a longwall face. As shown in
Figure 14a, the radar was mounted on a slide-way, and the slide-way was placed on the
roadway conveyor structure connected to the head of the AFC. The radar was moved along
the slide-way to image the bolt-plates. Two imaging results were obtained before and after
the movement of the longwall face. Then, the feature-based image registration algorithm
was employed to identify the correct-match pairs, and subsequently, the similarity trans-
formation model was calculated to determine the retreat and creep displacements. The
measurement device was developed (Figure 14b), and the algorithm program including
radar imaging and image registration were embedded. The field text was performed in
Xuzhuang Coal, China National Coal Group Corporation, and the mean values of retreat
and creep measurement displacements were 8.0 mm and 8.6 mm, respectively.
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3.3. The Backward Calibration of Shearer Trajectory

According to the measured retreat and creep displacements outlined in Section 3.2, the
start and end points of each cutting cycle can be determined. In the LASC, the minimum-
variance fixed-interval smoothing (MFS) algorithm was applied to correct the shearer
trajectory backwardly when the shearer remains stationary at the end of the longwall
face [33]. In fixed-interval smoothing, the estimation of the current state is based on the
utilization of the measurement data from both before and after the current time within
the interval. Smoothing is an off-line processing algorithm. Compared with filtering,
smoothing can provide better estimation accuracy with the double computation load. The
minimum-variance fixed-interval smoothing algorithm is briefly expressed as follows.

Suppose that the system satisfies the state equation and observation equation as
Equations (1) and (2).

Xk+1 = FkXk + BkWk (1)

where Xk is the state vector, Fk is the state transition matrix, Bk is the noise transition
matrix, and Wk is the state noise whose covariance is Qk.

Zk = HkXk + Vk (2)

where Zk is the observation vector, Hk is the observation transition matrix, and Vk is the
observation noise whose covariance is Rk.
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There are N sample data in the system. The smoothing algorithm has two steps. Step 1:
calculating (3) from k = 0 to k = N to obtain αk. Step 2: calculating (4) from k = N to k = 0 to
acquire βk under the known αk from (3).[

Xk+1
αk

]
=

[
Fk − KkHk Kk

−Hk(HkPk−1Hk
T + Rk)

−1/2
(HkPk−1Hk

T + Rk)
−1/2

][
Xk
Zk

]
, X0 = 0 (3)

[
Yk−1

βk

]
=

[
Fk

T − Hk
TKk

T Hk
T(HkPk−1Hk

T + Rk)
−1/2

−Kk
T (HkPk−1Hk

T + Rk)
−1/2

][
Yk
αk

]
, YN = 0 (4)

where Kk is the gain, which can be given as (5), and Pk is the mean square of the system,
which is updated as (6).

Kk = FkPk−1Hk
T(HkPk−1Hk

T + Rk)
−1

(5)

Pk = HkPk−1Hk
T − Kk(HkPk−1Hk

T + Rk)Kk
T + BkQkBk

T (6)

Therefore, the estimated output is expressed as

Ẑk = Zk − Rkβk (7)

In CUMT, the authors of this paper proposed the global optimization model (GOM) for
shearer trajectory through borrowing the simultaneous localization and mapping (SLAM)
technology. The SLAM frame is divided into front-end and back-end procedures [34,35].
The front-end process acquires the environment information using a camera or lidar to
realize the map construction. The back-end step is to realize the map optimization and
obtain the estimated pose according to the constraint information from the loop closure.
This step is generally implemented using g2o [36] and Ceres-solver [37]. The GOM is
described in detail as follows.

The dead-reckoning algorithm is used to calculate the shearer position based on the
INS and axial encoder as (8).

Nk = Nk−1 + vkT cos ϕk cos θk

Ek = Ek−1 + vkT sin ϕk cos θk

Uk = Uk−1 + vkT sin θk

(8)

where Nk, Ek, and Uk are the shearer measurement position in the north, east, and up; vk is
the shearer velocity provided by the axial encoder; T is the sampling period; and ϕk and θk
are the heading and pitch angles measured by the INS. As introduced in Section 3.1, the
heading drift error is much larger than the drift error of the pitch. Therefore, this paper only
considers the heading drift error. According to the dead-reckoning algorithm, the position
error caused by the heading drift in the north (∆Nk) from k − 1 to k can be expressed as

∆Nk = vkT cos ϕk cos θk − vkT cos(ϕk + ∆ϕk) cos θk (9)

where ∆ϕk is the absolute drift error of heading angle at k time, which is the sum of relative
drift error (ek) in each sampling period as (10).

∆ϕk =
k

∑
k=1

ek (10)

Expanding ∆Nk into a power series of ∆ϕk at ∆ϕk = 0 yields

∆Nk ≈ H1∆ϕk +
1
2

H2∆ϕk
2 +

1
6

H3∆ϕk
3 (11)
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where H1, H2, and H3 are coefficients found in (12).

H1 =
d(∆Nk)

d(∆ϕk)
= vkT sin(ϕk + ∆ϕk) cos θk

H2 =
d2(∆Nk)

d(∆ϕk)
2 = vkT cos(ϕk + ∆ϕk) cos θk

H3 =
d3(∆Nk)

d(∆ϕk)
3 = −vkT sin(ϕk + ∆ϕk) cos θk

(12)

Similarly, the position error caused by the heading drift in the east (∆Ek) from k − 1 to
k is given as (13).

∆Ek = vkT sin ϕk cos θk − vkT sin(ϕk + ∆ϕk) cos θk (13)

∆Ek is expanded into a power series of ∆ϕk as

∆Ek ≈ J1∆ϕk +
1
2

J2∆ϕk
2 +

1
6

J3∆ϕk
3 (14)

where

J1 =
d(∆Ek)

d(∆ϕk)
= −vkT cos(ϕk + ∆ϕk) cos θk

J2 =
d2(∆Ek)

d(∆ϕk)
2 = vkT sin(ϕk + ∆ϕk) cos θk

J3 =
d3(∆Ek)

d(∆ϕk)
3 = vkT cos(ϕk + ∆ϕk) cos θk

(15)

Based on the above analysis, the objective function F(ek) is defined as

F(ek) =

∣∣∣∣∣( m

∑
k=1

∆Nk)− ∆PN

∣∣∣∣∣+
∣∣∣∣∣( m

∑
k=1

∆Ek)− ∆PE

∣∣∣∣∣ (16)

where m is the number of sampling periods in a cutting cycle, and ∆PN and ∆PE are
specifically described as (17).

∆PN = (Nm − N1)− (Nend − Nstart)

∆PE = (Em − E1)− (Eend − Estart)
(17)

where N1 and E1 are the measured position coordinates of the start point in the north
and east, Nm and Em are the measured position coordinates of the end point, Nstart and
Estart are the accuracy position coordinates of the start point, and Nend and Eend are the
accuracy position coordinates of the end point. Therefore, the global optimization problem
of shearer positioning trajectory is reformulated as solving the minimum value of the
objective function F(ek) as expressed in (18). In this study, the genetic algorithm (GA) is
employed to compute this equation.

ek
∗ = argmin

ek
F(ek) (18)

The corrected heading angle is obtained via (19), which is used to obtain the shearer
optimization trajectory with the dead-reckoning algorithm.

ϕk
∗ = ϕk +

k

∑
k=1

ek
∗ (19)
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In order to compare the performance of MFS and the GOM, an experiment was carried
out as shown in Figure 15. The INS was installed at the center location of the mobile
platform, and the axial encoder was connected to the wheel of mobile platform. At the
same time, a Global Positioning System–Real-Time Kinematic (GPS-RTK) mobile station
was installed above the INS, while the GPS-RTK base station was securely fixed on a
predetermined location with known coordinates. The measurement trajectory of the base
station was used to evaluate the positioning accuracy of the mobile platform. Additionally,
it provided the position coordinates of the start point and end point for each cutting
cycle. GPS-RTK height measurement exhibited an accuracy of less than 15 mm, while
plane measurement demonstrated an accuracy of less than 8 mm. The mobile platform
simulated four cutting cycles at a velocity of 0.1~0.2 m/s, and each cutting cycle covered
a distance of about 100 m. The calculation period is set as 0.5 s. There were 2013, 2182,
2309, and 2047 sampling data during four cutting cycles, respectively. Figure 16 shows the
comparison between GPS-RTK trajectory and shearer trajectories without processing, with
MFS, and with GOM. It was evident that the trajectories with MFS and the GOM exhibited
a higher degree of proximity to the RTK trajectory in comparison to the unprocessed
trajectory. The position error in the north and east during each cutting cycle were calculated
as described in Figures 17–20. For both the north and the east, the absolute values of
position error with MFS first increased and then decreased. However, there was no such
trend in position error with the GOM, which indicated that the GOM could restrain the
heading drift well. The maximum position error during four cutting cycles with MFS
and the GOM are listed in Table 1. The mean errors with MFS in the north and east were
0.1551 m and 0.1920 m, while the mean errors with the GOM were 0.0634 m and 0.0786 m,
respectively. Table 2 shows the recorded duration with MFS and the GOM for four cutting
cycles. In the GOM, the population size was 20 individuals, and the number of generations
was set to 100. It was easily observed that the GOM took much more time than MFS.
In brief, MFS had an advantage in terms of computation load, while the GOM achieved
excellent accuracy.
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Figure 16. Comparison between RTK trajectory and shearer trajectory: (a) shearer trajectory without
processing, (b) shearer trajectory with MFS, and (c) shearer trajectory with GOM.
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Figure 16. Comparison between RTK trajectory and shearer trajectory: (a) shearer trajectory without 
processing, (b) shearer trajectory with MFS, and (c) shearer trajectory with GOM. 
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Figure 17. The position error of the first cutting cycle in the (a) north and (b) east. 
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Figure 18. The position error of the second cutting cycle in the (a) north and (b) east. Figure 18. The position error of the second cutting cycle in the (a) north and (b) east.
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Table 1. The maximum position error (m) with MFS and the GOM during four cutting cycles.

Cutting Cycles
MFS GOM

North East North East

First 0.1795 0.2017 0.0631 0.0781
Second 0.1583 0.1975 0.0725 0.0820
Third 0.1272 0.1669 0.0617 0.0868

Fourth 0.1553 0.2018 0.0562 0.0673

Mean error 0.1551 0.1920 0.0634 0.0786

Table 2. The elapsed time (s) with MFS and the GOM during four cutting cycles.

Cutting Cycles MFS GOM

First 1.6942 202.5673
Second 1.8814 260.5997
Third 1.9999 293.0323

Fourth 1.7098 229.5243

4. Discussion

The industrial experiments in acquiring the 3D shearer position conducted by the
LASC and CUMT have all demonstrated satisfactory performance, which indicates that
integrated navigation using the INS and axial encoder is an effective approach for address-
ing the shearer automation positioning. One difference is that the LASC uses the IXSEA
PHINS INS, while the Spatial FOG INS is adopted in CUMT. The cost of the Spatial FOG
INS is only one fifth that of the IXSEA PHINS INS. The same performance as a military INS
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is achieved because the authors of this paper develop a series of error reduction algorithms
through fully analyzing the longwall mining method as introduced in Section 3.1.

For the measurement of longwall retreat and creep displacements, the proposed SAR
imaging method has two advantages. First, the propagation of radar signals in underground
mines is hardly affected by the presence of dust and moisture. Second, this method is an
autonomous measurement technology which does not depend on external information.
This method images the bolt-plates fixed in the roadway wall as the targets due to their
higher reflective intensity. Although the surrounding objects may affect the imaging result,
this method still has strong robustness from the final result of image registration.

Compared with MFS, the GOM has better performance in backward-correcting the
shearer trajectory. Because it needs to iterate to find the optimal value with GA, the GOM
has more working time. In the experiment, there are about 2000 data in each cutting cycle,
which takes 4 min for the GOM to complete. If a typical longwall face is 300 m long, the
running time of the GOM (more than 12 min) will be greater than the time when the shearer
is stationary at the end of the longwall face, which limits its practical application. Therefore,
it is an urgent problem to find a backward calibration method with high precision and
small calculation load.

5. Conclusions

In order to realize the automatic and accurate positioning of shearers in underground
mines, the LASC and CUMT adopt the same technical route, which includes three key
technologies, the shearer inertial navigation system, the measurement of longwall retreat
and creep displacements, and the backward calibration of the shearer trajectory. With INS
as the core unit, the LASC and CUMT develop SPMS and SPAS, respectively. At the end of
a longwall face, a scanning laser and a FMR 250 microwave radar are used to measure the
retreat and creep displacements, and a UWB radar is adopted in CUMT to measure those
two displacements with consideration of the complex environment with dust and water
vapor. In order to perform backward calibration of the shearer trajectory, MFS and the
GOM are proposed by the LASC and CUMT, respectively. Comparisons are made through
the experiment, which shows that MFS has better performance in computation load, while
the GOM achieves satisfactory accuracy. Next, a high efficiency and accurate algorithm to
back-correct the shearer trajectory is our research goal.
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