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Abstract: The inertial Navigation Systems/global navigation satellite system (SINS/GNSS) has
become a research hotspot in the field of train positioning. However, during a uniform straight-line
motion period, the heading misalignment angle of the SINS/GNSS is unobservable, resulting in the
divergence of the heading misalignment angle and ultimately causing a divergence in the train’s speed
and position estimation. To address this issue, this paper proposes an estimation and compensation
method for the heading misalignment angle for train SINS/GNSS integrated navigation system
based on an observability analysis. When the train enters a straight-line segment, the alignment of
the train’s sideslip angle and the satellite velocity heading angle allows the achievement of velocity
heading observation values that resolve the issue. In a curved segment, the heading angle becomes
observable, allowing for an accurate estimation of the SINS’s heading misalignment angle using
GNSS observations. The results showed that, whether the train is on a straight or curved track,
the position estimation accuracy meets the simulation design criteria of 0.1 m, and the heading
accuracy is better than 0.25◦. In comparison to the results of pure GNSS position and velocity-assisted
navigation, where heading divergence occurs during constant velocity straight-line segments, the
method proposed in this paper not only converges but also achieves an accuracy comparable to
the GNSS velocity-based heading alignment. The simulation results demonstrate that the proposed
strategy significantly improves the accuracy of the heading misalignment angle estimation, thereby
enhancing the accuracy of speed and position estimation under a GNSS-denied environment.

Keywords: train positioning; SINS/GNSS integrated navigation system; observability analysis;
estimation of heading misalignment angle

1. Introduction

Currently, there are two main methods for determining train positioning: one is the
combination of signal lights and odometers [1–3], and the other is based on satellite signals
and multi-sensors fusion [4]. The combination of signal lights and odometers is the most
commonly used train positioning method at present [5]. This method utilizes the position
information provided by signal lights to correct the cumulative errors of the odometer.
However, it has the disadvantage of high cost of construction and maintenance, especially
in Western China [6]. The global navigation satellite system (GNSS) signal positioning
method is required to be installed on the top of a train’s receiving antennas to receive signals
from multiple satellites and calculate the accurate position of the train [7–9]. Its advantages
include global coverage, high positioning accuracy, and real-time performance [10–12].
However, GNSS signals may be attenuated in environments with dense obstructions such
as urban areas, tunnels, or forests, leading to inaccurate train positioning [13–15].
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Inertial navigation systems (INS) measure a train’s speed and directional changes using
inertial sensors and calculate its current position based on its initial position using dead
reckoning [16–18]. Its advantages include independence from external signals, good real-time
performance, reliability even in signal-obstructed environments, and the ability to obtain
comprehensive navigation information, including speed, position, and attitude [19–21]. How-
ever, due to the working principle of dead reckoning, INS is susceptible to cumulative errors,
which gradually increase over time and require correction through other means [22]. The
SINS/GNSS integrated navigation system, consisting of INS and GNSS, leverages information
fusion to obtain real-time navigation data for the train, including attitude, speed, and position.
By overcoming the issue of INS error divergence over time, this system has the potential to
become the new mainstream equipment for train speed and location measurement [23–25].

However, based on an observability analysis, it is inferred that, during a uniform straight-
line motion, the heading misalignment angle of the train SINS/GNSS integrated navigation
system is unobservable, leading to a significant problem of large heading misalignment angles
that ultimately causes a low precision in train speed and position estimation [26,27]. The errors
in inertial navigation solution are also strongly correlated with the dynamic characteristics of
the moving platform [28]. For a train, which is constrained to a one-dimensional motion on the
track, its motion trajectory can be decomposed into straight lines and curves, with its motion
on the track mainly divided into acceleration and deceleration phases and uniform motion
phases [29]. Therefore, the errors in inertial navigation solution can be analyzed through the
decomposition and combination of the train’s motion trajectory and dynamic modes. Using
an observability analysis, it is found that the heading misalignment angle during the most
dominant motion mode of the train, i.e., uniform straight-line motion, is unobservable when
aided by position and velocity information [30,31]. When entering a satellite signal blockage
scenario, the accumulated heading misalignment angle will have a cubic impact on the train’s
position accuracy and a quadratic impact on the train’s speed accuracy with respect to the
navigation time [32]. The estimation of attitude is closely related to the maneuvering mode of
the moving platform, especially the estimation of the heading angle. By analyzing the train’s
motion modes, it is observed that pitch and roll angles are strongly observable, and thus, the
roll and heading angles can be accurately estimated throughout the entire train route [33].
However, the heading angle is unobservable during the train’s uniform straight-line motion,
which severely affects the accuracy of position and speed estimation when satellite signals
are lost.

To solve this problem, this paper proposes an estimation and compensation method for
the train SINS/GNSS integrated navigation system based on an observability analysis. As
the train’s motion is constrained to the track, the velocity heading angle will be highly accu-
rate under high-speed conditions. This paper primarily utilizes this valuable information to
estimate the zenith gyro zero bias, thereby achieving the precise estimation of the heading
misalignment angle. Depending on the different track segments of the train’s movement,
the observability of the heading angle continuously changes. Specifically, the heading
angle is unobservable during straight-line segments, but it becomes fully observable with
the availability of satellite velocity heading angle. Additionally, when the train enters a
curved segment, the heading angle gains observability, and the observability strengthens
with an increased curvature. Therefore, in a train-positioning system primarily based on
inertial navigation, it is necessary to estimate the inertial navigation attitude misalignment
angle before satellite navigation fails. One feasible approach is to estimate the attitude
misalignment angle before entering a signal-unavailable track segment such as a tunnel.
The following measures can be adopted: Firstly, introducing a new responder technology,
namely, the attitude position responder, where the solution of a virtual attitude responder
has been proposed by France’s ixblue company. Secondly, using GNSS velocity heading
information for heading correction. The analysis of this strategy will be elaborated below.

According to the results of [34], the train tracking, stopping, and starting in the zone
of the train’s longitudinal accuracy requirements vary between 50 m, 13 m, 5 m, and 0.5 m.
This paper adopts the SINS/GNSS integrated navigation framework, which can meet the
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requirements of the train-positioning accuracy under the circumstance of the unavailability
of GNSS. When GNSS is unavailable, it is derived from the observability analysis, after the
train travels a distance in a straight line at a constant speed, with the assistance of position
measurement, the heading angle is still not observable, but it can be analyzed by simulation
depending on which grade of inertial guidance device accuracy is used to meet the final
train-positioning accuracy requirements, which is an important basis for the allocation of
error margins in the design of the combined navigation system and the selection of the device
accuracy.

The paper is divided into four sections. Section 1 introduces background information,
the problem, and a literature review related to this issue. Section 2 elaborates on the detailed
construction process of the system equations, measurement equations, and observability
analysis in the proposed method. Section 3 involves the simulation and analysis of the
theoretical results. Section 4 summarizes the main findings of the entire paper.

2. Train SINS/GNSS Integrated Navigation System Model

In this study, the “east-north-up” (ENU) geographic coordinate system is selected
as the navigation reference coordinate system, denoted as n The computed navigation
reference coordinate system based on navigation solutions is denoted as n′. Additionally,
the “right-front-up” (RFU) coordinate system is chosen as the carrier coordinate system
with the inertial measurement unit (IMU) as the origin, denoted as the coordinate system.
The e coordinate system is defined as a coordinate system in the equatorial plane, where x
intersects the Greenwich meridian and z coincides with the polar axis North. To leverage
the constraint that the train moves on the track and simplify the problem while capturing
key elements, we assume that the train’s motion is constrained to a two-dimensional plane.
The motion of the train, either in straight lines or curves, is illustrated in Figure 1. During
turning, there is a sideslip angle during turning, which is the angle between the direction
of train velocity and the extension of the train carriage’s central axis, as shown in Figure 2.
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Figure 2. Train’s curved motion and sideslip angle schematic. (black line: rail; red line: bogie axle; 
blue dot: blue dot: center point of train carriage). 
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blue dot: blue dot: center point of train carriage). 

Figure 2. Train’s curved motion and sideslip angle schematic. (black line: rail; red line: bogie axle;
blue dot: blue dot: center point of train carriage).

2.1. SINS State Equation

We use the expanded Kalman filter (EKF) as our data fusion architecture and loosely
coupled loop integration architecture for the data of GNSS and INS. The state quantity is
chosen as the error state, and the whole process is shown in Figure 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 20 
 

2.1. SINS State Equation 
We use the expanded Kalman filter (EKF) as our data fusion architecture and loosely 

coupled loop integration architecture for the data of GNSS and INS. The state quantity is 
chosen as the error state, and the whole process is shown in Figure 3. 

 
Figure 3. Schematic diagram of the integration scheme of the GNSS/INS system. 

In order to emphasize the role of observability analysis in train positioning and to 
simplify the theoretical derivation process, train motion is simplified to a motion in a two-
dimensional plane. This makes it easier to highlight the non-observability of heading 
when the train is moving in a uniform straight line. Thus, only two horizontal accelerom-
eters and one celestial gyroscope are used in the article instead of the usual inertial meas-
urement component including three gyroscopes and three accelerometers. The error equa-
tion for inertial navigation is as shown in Equation (1): 

( ) ( )2 2

n n n n n
en

n n b n n n n n n n n
b ie en ie en p

n n n
in in ib

r r v v
v C f f v v g

δ ω δ δθ δ
δ δ φ ω ω δ δω δω δ

φ ω φ δω δω

= − × + × +
= + × − + × + × + +

= − ×



+ −










 (1)
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Figure 3. Schematic diagram of the integration scheme of the GNSS/INS system.

In order to emphasize the role of observability analysis in train positioning and to
simplify the theoretical derivation process, train motion is simplified to a motion in a two-
dimensional plane. This makes it easier to highlight the non-observability of heading when
the train is moving in a uniform straight line. Thus, only two horizontal accelerometers
and one celestial gyroscope are used in the article instead of the usual inertial measurement
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component including three gyroscopes and three accelerometers. The error equation for
inertial navigation is as shown in Equation (1):

δ
.
rn

= −ωn
en × δrn + δθ × vn + δvn

δ
.
vn

= Cn
b δ f b + f n × φ−

(
2ωn

ie + ωn
en
)
× δvn + vn ×

(
2δωn

ie + δωn
en
)
+ δgn

p.
φ = −ωn

in × φ + δωn
in − δωn

ib

(1)

where, r, v, φ represents position, speed, and attitude. ωn
en represents the projection of the

angular velocity of the n-system relative to the e-system under the n-system, ωn
in represents

the projection of the angular velocity of the n-system relative to the inertial coordinate
system under the n-system, ωn

ie represents the projection of the angular velocity of the
e-system relative to the inertial coordinate system under the n-system, The superscript n
denotes the projection into the n-coordinate system and the prefix δ denotes the error of the
corresponding variable, Cn

b represents the rotation matrix of the b system relative to the n
system. The error of the specific force vector resolved in the n-frame is referred to as δ f b,
while the error of gyro output is denoted as δωn

ib.
To use the error-state Kalman filter as the combination framework for integrated

navigation computation, the continuous-time system equation used is as follows:

.
X(t) = F(t)X(t) + G(t)w(t) (2)

where X is the system state, F is the system matrix, G is the noise covariance matrix, and w
is the system noise.

The system error state is as follows:

X =
[

φz δpn
E δpn

N δvn
E δvn

N ∇x ∇y εz
]T (3)

where φz represents the misalignment angle in the heading axis between the computed nav-
igation frame and the relative navigation frame; δpn

E, δpn
N are the eastward and northward

position errors; δvn
E, δvn

N are the eastward and northward velocity errors; ∇x ∇y are the
eastward and northward accelerometer biases; and εz represents vertical gyroscope drift.
Under the conditions of plane navigation for trains, due to the gyroscope drift, there is a
misalignment angle between the integrated true heading angle and the computed heading
angle φz. {

φz =
∫ t

t0εz + ngdτ
.
φz = εz + ng

(4)

where ng is noise of gyroscope.
Position error differential equation is as follows:{

δ
.
pn

E = δvn
E

δ
.
pn

N = δvn
N

(5)

where δp represents position, and δv represents velocity.
For the velocity error differential equation, after expanding the three-dimensional

attitude error equation, there are more than ten error terms, making it difficult to identify
error propagation patterns. However, in the context of train applications, assuming a two-
dimensional plane navigation, the velocity error differential equation becomes relatively
simple, with a clearer physical meaning. Based on the specific force differential Equation (1)
and neglecting the effect of Earth’s curvature, i.e., ωn

en= 0, and considering that the Earth’s
rotational speed is 10−5 rad/s in magnitude, while train speeds are typically lower than
100 m/s, in the derivation of the error equation for short-term plane navigation, we can
simplify the specific force differential Equations (6) and (7).

.
vn

= Cn
b f b

sf − (2ωn
ie + ωn

en)× vn + gn (6)
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.
vn

= Cn
b f b

sf + gn (7)

In the two-dimensional plane assumption, according to the definition of the heading
angle in Figure 1, we obtain the following equation:

Cn
b =

[
cos ψ − sin ψ
sin ψ cos ψ

]
(8)

where ψ represents the heading angle.
To simplify the specific force equation, we use the following equation:

.
vn

= Cn
b f b

s f + gn

.̃
v

n
= C̃n

b f̃ b
s f + gn

.
vn

+ δ
.
vn

= [I − (φ)×]Cn
b ( f b + δ f b + nb

a) + gn

δ
.
vn

= Cn
b δ f b + Cn

b nb
a − (φ)× Cn

b f b

(9)

Similar to the anti-matrix of a three-dimensional vector, here, we define a two-
dimensional antisymmetric matrix and is as follows:

−(φ)× = −
[

0 φ
−φ 0

]
(10)

Then, we obtain the following:

−(φ)×Cn
b f b = −

[
0 φ
−φ 0

][
cos ψ − sin ψ
sin ψ cos ψ

][
fx

b

fy
b

]
= −

[
0 1
−1 0

][
cos ψ − sin ψ
sin ψ cos ψ

][
fx

b

fy
b

]
φ

= −
[

sin ψ cos ψ
− cos ψ sin ψ

][
fx

b

fy
b

]
φ = −

[
sin ψ fx

b + cos ψ fy
b

− cos ψ fx
b + sin ψ fy

b

]
φ

(11)

Substituting Equation (11) into Equation (9) and simplifying, we obtain the following:{
δ

.
VN

n
= −(sin ψ fx

b + cos ψ fy
b)φ + cos ψδ fx

b − sin ψδ fy
b + cos ψnb

ax − sin ψnb
ay

δ
.

VE
n
= (cos ψ fx

b − sin ψ fy
b)φ + sin ψδ fx

b + cos ψδ fy
b + sin ψnb

ax + cos ψnb
ay

(12)

According to the theory of linear systems, when a coefficient of the system has a
linearly unrelated change to other coefficients under certain conditions, and both the mea-
surement and state coefficients are known, then that state is considered to have an analytical
solution and is observable. As the corresponding coefficient of that state changes more sig-
nificantly, its susceptibility to noise decreases, leading to a higher observability. However,
when the train is in a state of constant velocity and linear motion, the train’s acceleration
output is equal to zero; thus, the coefficient in front of the heading misalignment angle
error is zero. Therefore, the heading is unobservable when the train is in a state of constant
velocity and linear motion.

From the velocity calculated in Equation (1), we obtain the following:

δ
.

V
n
=

[
δ

.
VE

δ
.

VN

]
= f n × φ + Cn

b∇ =

[
0 − f n

z f n
y

f n
z 0 − f n

x

] φE
φN
φU

+ [Cn
b ]2×2 ·

[
∇x
∇y

]

=

[
0 − f n

z f n
y

f n
z 0 − f n

x

] φE
φN
φU

+

[
cφcψ + sφsψsθ sψcθ
−cγsψ + sγcψsθ cψcθ

]
·
[
∇x
∇y

] (13)

where c represents cos, and s represents sin.
Because fz = g, the pitch and roll misalignment angles have strong observability from

above observability analysis, while the heading misalignment angle is unobservable when
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the train is in a state of constant linear motion due to the zero acceleration output. During
constant linear motion, the coefficients in front of ∇x and ∇y will never be zero, so the bias
is always observable. To avoid being influenced by irrelevant coefficients in the inertial
navigation error equation and to better focus on the problem, a simplified model is chosen
for problem analysis. The main estimation parameters are the train’s position, velocity, and
heading angle.

Specifically, both the velocity error caused by heading error φ and the position error
caused by velocity integration do not contain heading error components. They cannot
be estimated or corrected for by velocity or position aiding measurements. Therefore, in
the navigation state where the train, especially high-speed trains, mostly operates in a
state of constant linear motion, the heading is unobservable in the GNSS/SINS integration
framework, and it will continuously diverge. Additionally, since the integration of the
vertical gyroscope drift ωz results in heading error φ, the vertical gyroscope drift will also
diverge.

In the case of GNSS signal availability, heading error φ does not affect the train’s
requirements for speed and position estimation. However, once GNSS fails and the system
switches to an inertial-based navigation mode, heading error directly leads to inaccurate
velocity and position estimates. When the train is in a state of acceleration or deceleration f b

x ,
f b
y and are not zero. When the train passes through curved sections, there are tangential

acceleration and centripetal acceleration, and the projection in the b-frame also makes f b
x ,

f b
y not zero. Therefore, the heading error is observable when the train passes through

curved sections. The summary of heading observability analysis for different motion
modes and track curvatures is shown in Table 1.

Table 1. List of heading observability in different motion modes and track curvatures.

Motion Mode Straight/Curve Observability

Constant Speed Straight Unobservable
Acceleration/Deceleration Straight Observable

Constant Speed Curve Observable
Acceleration/Deceleration Curve Observable

Gyroscopes and accelerometers are modeled as first-order Markov processes [35], and
the models are listed in Appendix A.

The F and G matrices of system equations are listed in Appendix B.

2.2. Measure Equation

The measured quantities include position, velocity, and heading measurements. In
this context, “position” can refer to either GNSS position measurements or known reference
points; “velocity” measurements can be the GNSS velocity or the odometer velocity, among
others; and “heading” measurements can be from GNSS dual antennas, track centerline
electronic map heading angles, or dual-wheel speedometer heading measurements.

For position measurements, we use the following equation:{
pmN = pN + npN
pmE = pE + npE

(14)

where p represents position.
For velocity measurements, we use the following equation:{

vmN = vN + nvN
vmE = vE + nvE

(15)

where v represents position.
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For heading measurements, we use the following equation:

ψm = ψ + nψ (16)

where ψ represents heading angle.
The system equations decouple the heading obtained from the other states, and when

heading measurements are available, both the heading misalignment angle and gyroscope
bias will converge as follows:

.
ψ = εz (17)

y = ψ + v (18)

Equations (17) and (18) are transformed into matrix forms and provided as
Equations (19) and (20), respectively.[ .

ψ
.
εz

]
=

[
0 1
0 0

][
ψ
εz

]
(19)

y =
[
1 0

][ψ
εz

]
+ v (20)

v ∼ (0, R) (21)

Then, Equations (14)–(21) are transformed into the standard Riccati differential equa-
tion as shown in Equation (22).

.
P = AP + PAT − PCT R−1CP + Q[ .

P11
.
P12.

P12
.
P22

]
=

[
2P12 − P2

11/R P22 − P11P12/R
P22 − P11P12/R −P2

12/R

]
(22)

In Equation (22), P represents the covariance matrix, A is the system matrix that can be

expressed as A =

[
0 1
0 0

]
, C is the measurement matrix that can be expressed as C =

[
1 0

]
,

R is the measurement noise, and Q is the system noise based on matrix calculations. The
analytical solution for the matrix can be obtained as follows:

∆ = 12R2 + P11(0)P22(0)t4 + 12P11(0)tR + 4P22(0)t3R (23)

P11(t) =
1
∆

4R
[

P11(0)P22(0)t3 + 3RP11(0) + 3t2P22(0)R
]

(24)

P12(t) =
1
∆

6RP22(0)t[P11(0)t + 2R] (25)

P22(t) =
1
∆

12RP22(0)[P11(0)t + R] (26)

The ∆’s magnitude is of the order of t4 in terms of time t; thus, the P will eventually
converge to zero. Therefore, according to the definition of random observability, when
accurate velocity and heading observations are available, the heading will converge.

3. Simulation and Analysis

The parameters of SINS inertial devices and GNSS error parameters in the simulation
experiment are set as shown in Table 2. We use MATLAB to perform the simulation studies,
the real train trajectory and speed are simulated first, and then, the GNSS observations are
simulated by adding Gaussian white noise to the train trajectory and speed information.
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The generation of gyro and accelerometer increments in the IMU data is implemented
based on the inertial navigation inversion algorithm, and the device noise is generated
based on the first-order Markov process.

Table 2. SINS inertial device parameters and GNSS error parameter settings.

Sensors Contents Parameter Settings

IMU
Gyroscope Bias εb 0.5◦/s

White noise 0.05◦/s

Accelerometer
Bias ∇b 0.1 g

White noise 0.001 g

GNSS
Position error 0.1 m (1σ)
Velocity error 0.01 m/s

Heading angle Heading angle error 0.25◦(1σ)

(1) Straight line

Position and heading truth values are generated using the train trajectory and speed
simulation. Under the given conditions specified in Table 2, the combination navigation
process of GNSS/SINS during the train’s constant velocity straight-line motion is simulated.
The results for the train’s position and velocity are shown in Figure 4. Figure 5 demonstrates
that, with the assistance of GNSS position and velocity, the navigation results are bounded,
with the position converging to approximately 0.1 m.
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During 300 s of navigation time, the heading misalignment angle linearly diverges,
confirming the earlier theoretical analysis that the heading is unobservable under a constant
velocity straight-line motion. Figure 6 displays the estimated values of gyro and accelerom-
eter biases. The accelerometer bias converges to the simulated setting of 0.1 g. However,
under the condition of constant velocity straight-line motion, the gyro bias, which was
initially set at 0.05◦/s, diverges to nearly 0.05◦/s within 300 s.
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In summary, the accelerometer bias exhibits a strong observability during a constant
velocity straight-line train motion, while the heading gyro bias is unobservable. The
simulation results are consistent with those of the theoretical analysis.

(2) Curved line

To further validate the observability of the train’s heading angle on curved tracks,
simulations were conducted on a curved trajectory, with their corresponding trajectory and
velocity shown in Figure 7. The minimum curvature radius is approximately 5500 m, as
depicted in Figure 8, which complies with the high-speed rail’s minimum curvature radius
requirements.
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From Figure 9, it can be observed that with GNSS position and velocity assistance, the
position convergence is approximately 0.1 m. The heading misalignment angle also con-
verges to around 0◦, and as the curvature radius decreases, the convergence performance
improves, as is evident in the latter part of the third subplot in Figure 10. As the processing
was conducted with simulated data, the accelerometer bias estimates quickly converge to
values near their true values.

By examining the estimation results of the heading misalignment angle and inertial
device biases in Figure 9, it can be observed that they converge to the set values of 0.1 g and
0.5◦/s during curved track segments. This confirms the observability of heading during
curved motion.
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Finally, based on the theoretical analysis and simulation results presented earlier, it
can be concluded that, when the train is moving at a constant speed on a straight track,
GNSS velocity and heading updates can be used to avoid heading divergence and the
unobservable gyro bias issue. Therefore, the simulation is set up as follows: the first 600 s
utilize GNSS position and velocity assistance, the middle 600 s include both GNSS position
and velocity assistance, and the last 600 s exclude velocity and heading assistance.

From Figure 11, it can be observed that, without heading assistance, position and
velocity consistently converge. However, the heading misalignment angle rapidly di-verges
in the first 600 s and approaches 180◦. However, starting from 600 s, with GNSS velocity
and heading assistance, not only is the heading misalignment angle estimated, as seen in
Figure 12, but also the gyro bias quickly converges to around 0◦ as shown in Figure 13.



Appl. Sci. 2023, 13, 12085 13 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 
Figure 11. Train’s position and heading misalignment estimation. 

 
Figure 12. Train’s position and heading misalignment error estimation. 

Figure 11. Train’s position and heading misalignment estimation.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 
Figure 11. Train’s position and heading misalignment estimation. 

 
Figure 12. Train’s position and heading misalignment error estimation. Figure 12. Train’s position and heading misalignment error estimation.

In the final 600 s, when GNSS velocity and heading assistance are turned off, navigation
results are still maintained after compensating for the estimated gyro bias and heading
misalignment angle. However, when GNSS velocity and heading assistance are triggered
based on the track curvature and the yaw gyro measurement, the heading misalignment
angle rapidly converges, and the gyro bias is accurately estimated.

Finally, after canceling GNSS velocity and heading assistance, the heading misalign-
ment angle and gyro bias will remain in a slow divergence state.
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4. Field Experiment

In the field experiment, onboard measuring sensors were used to collect data from
Pontoise to Les grésillons, France. The environment is urban and open country, as de-
pictured as Figure 14. Figure 15 shows the French SNCF train used for data acquisition.
During the experiment, the train first stood still for five minutes to complete the initial
alignment, and then, it was accelerated to maintain the speed at about 15 m/s, and at that
time, the track was also straight, and the train maintained a constant speed and straight-line
travel for 250 s. After that, acceleration and deceleration maneuvers were performed, and
finally, the train was stopped for 300 s, as depicted in Figure 16.
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The data processing process, using the given true value attitude as the reference atti-
tude and then loosely combining GNSS and SINS, provides the position error results as
shown in Figure 16. Then, from Figure 17, it can be seen that the heading error is slowly
diverging during the 250 s of the train’s travel in a straight line at a constant speed, and it
converges after the train’s subsequent entry into the acceleration and deceleration maneu-
vering phase, and it remains steadily converging in the final phase due to the sustained
cornering, even though during this phase, the train is travelling at a constant speed. As
shown in Figure 18, the train’s heading is slowly diverging, and then converging after the
subsequent acceleration and deceleration maneuvers and entry into the curved segment.
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5. Conclusions

In this paper, the observability analysis theory is adopted to analyze the observability
of the common operation modes of a train, and it is concluded that the heading angle and the
heading gyro are not observable when the train is running in a straight line, while they are
observable when it is accelerating and decelerating and passing through curved segments.
Using this conclusion, simulation experiments were designed to provide a basis for device
selection in the design of a SINS/GNSS system that meets train-positioning requirements.
Whether the train is on a straight or curved track, the position estimation accuracy meets
the simulation design criteria of 0.1 m, and the heading accuracy is higher than 0.25◦. In
comparison to the results of pure GNSS position and velocity-assisted navigation, where
heading divergence occurs during constant velocity straight-line segments, the method
proposed in this paper not only converges but also achieves accuracy comparable to that of
GNSS velocity-based heading alignment.
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Appendix A. Models of Gyroscopes and Accelerometers

Gyroscopes and accelerometers are modeled as follows:
.
∇x = − 1

τ∇x + nax.
∇y = − 1

τ∇y + nay
.
εz = − 1

τ εz + ngz

(A1)

where τ is correlation time.
Assuming system noise w, and measurement noise v are Gaussian white noise. The

system noise is as shown in Equation (A1).

w =
[

ng nax nay nabx naby ngb
]T (A2)

Appendix B. F and G Matrices of System Equations

F and G matrices of system equations are organized as follows:

F =



1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

F41 0 0 1 0 cos ψ − sin ψ 0
F51 0 0 0 1 sin ψ cos ψ 0
0 0 0 0 0 −1/τax 0 0
0 0 0 0 0 0 −1/τax 0
0 0 0 0 0 0 0 −1/τax


(A3)

F41 = −(sin ψ fx
b + cos ψ fy

b) (A4)

F51 = (cos ψ fx
b − sin ψ fy

b) (A5)

G =



1 0 0 0 0 0
cos ψ − sin ψ 0 0 0 0
sin ψ cos ψ 0 0 0 0

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(A6)
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