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Abstract: Laser absorption spectroscopy tomography is an effective combustion diagnostic method
for obtaining simultaneous two-dimensional distribution measurements of temperature and gas
molar concentrations. For the reconstruction process of complex combustion flames, a new algorithm
named ‘multi-iterative adaptive optimization regularization’ (MIARO) is proposed. This algorithm is
a further development of another algorithm known as the ‘modified adaptive algebraic reconstruction
technique’ (MAART) with the improvement of the initial value and adaptive regularization parameter
selections. In MIARO, the problem of the MAART’s initial value sensitivity is compensated for, and
in addition, reconstruction parameters are also introduced into the regularization so that both the
quality of reconstruction and the convergence of regularization are guaranteed. In butane burner
experiments, an average relative error of 1.82% was achieved with MIARO, compared to 2.44% with
MAART, which is a significant reduction of 25.1%. The simulation and experimental results clearly
demonstrate that the MIARO algorithm can be used to reconstruct dynamic combustion fields and
eliminate boundary artifacts with improved measurement accuracy and robustness.

Keywords: laser absorption spectroscopy; combustion diagnostics; tomographic reconstruction;
reconstruction algorithm

1. Introduction

The diagnosis of combustion processes is a vital tool for both scientific research and
industrial applications. Over the years, various techniques have been devised and imple-
mented for this purpose. Acoustic thermometry (AT) [1–4], coherent anti-Stokes Raman
scattering spectrometry (CARS) [5], planar laser-induced fluorescence (PLIF) [6], radia-
tion thermometry [7,8] and laser absorption spectroscopy (LAS) are examples of such
techniques [9,10]. As a typical non-contact measurement method, tunable diode laser ab-
sorption spectroscopy (TDLAS) has many advantages, such as a fast measurement response,
high accuracy, high sensitivity, the simultaneous measurement of multiple parameters,
etc. TDLAS has been widely used in combustion diagnostics and trace-gas detection, and
its performance is particularly demonstrated when multiple-parameter measurement is
required. A more recent development in this field is the tunable diode laser absorption
tomography (TDLAT) technique [11,12], which combines the TDLAS technique and the
computed tomography (CT) technique. TDLAT has been gradually developed and has
been widely applied [13]. By detecting the spectral data for multiple angles and laser paths
through the measured field, combined with image reconstruction algorithms, the visualiza-
tion of temperature and component concentration distributions in complex combustion
fields is achieved using TDLAT, which was used in the experiments in this research [14,15].
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Two-dimensional distribution reconstruction is essentially the process of solving the
physical properties of each reconstruction parameter of a target region based on the mea-
sured projection values and sensitivity matrix of a measurement system. Reconstruction
algorithms play a key role as a bridge between the physical parameters and measured
projection values. Algebraic iterative-type reconstruction algorithms allow for the incor-
poration of a priori knowledge about the target field into the iterative process, and they
are widely used in incomplete data reconstruction. However, the reconstruction process
itself is an inverse problem that is often ill posed. In order to solve this type of ill-posed
problem, it is usually necessary to regularize the constraints on the reconstructed and
true distributions with the aid of additional a priori information to suppress the noise
and artifacts introduced by data incompleteness and to effectively improve the instability
of the inverse problem of process tomography. Therefore, the establishment of suitable
and accurate regularization terms becomes key to the success of a regularization method.
Li et al. [16] developed a Modified Adaptive Algebraic Reconstruction Technique (MAART)
to reconstruct the distributions of concentration and temperature simultaneously under
incomplete projections for fast computation and high quality. In this method, the author
introduced two correction coefficients, the relaxation factor and the smoothing factor, on
the basis of the traditional algebraic reconstruction algorithm. Through numerical simula-
tions, the influence of the correction coefficients on the convergence of the algorithm and
the imaging accuracy were analyzed, and the value interval of the correction coefficients
was optimized [17,18].

In this paper, a new reconstruction algorithm, named the Multi-iterative Adaptive
Regular Optimization (MIARO) algorithm, is proposed, which is a further development of
MAART, and the initial value and adaptive regularization parameter selections are its main
added features. This proposed algorithm solves the problem of the initial value sensitivity
encountered in MAART by adopting multiple iterations and by introducing reconstruction
parameters into the regularization parameters to determine the adaptive iteration step
size and establish a regularization optimization control process, so that the global optimal
solution can be found in a shorter time, and therefore, both the quality of the reconstruction
objective and the convergence of the regularization can be guaranteed.

2. Principle of Tomographic Laser Absorption
2.1. Laser Absorption Spectroscopy Tomography

Laser absorption spectroscopy (LAS) is a method of image reconstruction that works
by inverting multiple line-of-sight (LOS) measurements to obtain the two-dimensional
distribution of parameters in a region of interest (ROI) [19,20]. According to the Beer–
Lambert law, the spectral absorptivity α(v) in a gaseous medium along the path l (cm) at
the frequency ν (cm−1) can be expressed as [21,22]

α(v) = − ln(
It

I0
) =

∫ L

0
P(l)X(l)Sv(T(l))ϕ(v, l)dl (1)

where I0 and It are the incident and transmitted laser intensities, l is the position along
the total length of the path L (cm), P(l) (atm) is the total pressure, X(l) is the gas mole
fraction, T(l) (K) is the gas temperature, S(T) (cm−2 atm−1) is the temperature-dependent
line intensity, and ϕ(v) (cm−1) is the linear function. Since the linear function is normalized
to
∫ +∞
−∞ ϕ(v, l)dv ≡ 1, the absorbing area along the path can be expressed as

Av,i =
∫ ∞

−∞
αvdv =

∫ L

0
P(l)X(l)Sv(T(l))dl =

∫ L

0
αvdl (2)

where v is the wavenumber. αv is the path integral density, also known as the local integral
absorption area.
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For absorption spectroscopy tomography, Equation (2) can be rewritten in the follow-
ing matrix form to improve computational efficiency:

Lαv = Av (3)

where L ∈ RM×N is the sensitivity matrix, which is calculated based on the geometrical
distribution of the laser prior to the measurement. Its element li,j represents the laser
path of the i-th laser beam when it passes through the j-th pixel. i (i = 1, 2...., M) and
j (j = 1, 2..., N) are the indexes of the laser beam and pixel, respectively. The spectrally
integrated absorption area Av = {Av,1, Av,2, Av,N }T and the locally integrated absorption
area αv = {αv,1, αv,2, αv,N }T are column vectors, where αv,j = Pj Xj S(Tj), from which the dis-
tribution of flame temperature and gas concentration parameters can be extracted [23–25].

2.2. Principles of the MIARO Algorithm

Using the proposed algorithm MIARO, the global optimal solution can be found in
a shorter time because of the realization of the adaptive iteration step size and the regular
optimization of process control, which takes advantage of different iteration algorithms.
Firstly, global optimization is sought by the Landweber algorithm, and the initial iteration
value is provided based on MAART by iterating a small number of times. The Landweber
algorithm is a synchronous iterative reconstruction algorithm or simultaneous iterative
reconstruction technique (SIRT), where each iteration involves all rows of the system of
equations, which can realize fast global optimization. The specific iteration form is

α(k+1) = α(k) − λkLT
(

Lα(k) −A
)

(4)

where α is the reconstruction parameter, and A is the integral projection value. L is the
sensitivity matrix, and λk is the k-th iteration step. The specific value of λk can be found in
refs. [26,27], and its expression is as follows:

λk =

〈
r(k), r(k)

〉
∥∥LTr(k)

∥∥2
2

, r(k) = A− Lα(k) (5)

where <, > denotes the inner product.
In MAART, the adaptive change in the iterative step can be implemented, and re-

construction parameters can be introduced into the iterative relationship. The higher the
contribution of a reconstruction parameter to a projection value, the larger the possible step
size of an iteration. But the MAART iterative algorithm is sensitive to the initial value, and
it cannot be set to 0. The initial parameter is provided via a global search of optimization
using the Landweber algorithm so as to realize a faster iterative convergence. The iterative
form of the MAART algorithm is expressed as [28]

α(k+1,i) = α(k,i) − λ
(

Liα
(k,i) − Ai

)
(6)

λ = β×
α
(k)
j Lij

N
∑

j=1
α
(k)
j Lij

(7)

The reconstruction process is often a kind of pathological or ill-posed inverse prob-
lem. In order to solve such a problem, it is necessary to regularize the constraints on the
reconstructed and true distributions with the aid of some additional a priori information to
suppress the noise and artifacts introduced by data incompleteness. Regularization can
effectively improve the instability of the laminar inverse problem. Therefore, the establish-
ment of suitable and accurate regularization terms is key to the success of a regularization
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method. One of the frequently adopted regularization models is Tikhonov regularization,
which is usually used to attenuate the smoothness of the mutation response of neighboring
points in a reconstruction region, and a typical function is defined as follows:

α
(k)
(i,j) = (1− θ)α

(k−1)
(i,j) + θ(

j+1

∑
y=j−1

i+1

∑
x=i−1

α
(k−1)
(x,y) )/8 (8)

where i, j is the rank order of a grid. The Adaptive Regular Optimization (ARO) algorithm
proposed here is used to realize the change in the adaptive regularization parameters and to
introduce the reconstruction parameters into the iterative process. In ARO, the traditional
fixed smoothing coefficient θ cannot accurately reflect the actual distribution characteristics,
and the specific choice of the smoothing slip coefficient will also be directly related to the
reconstruction quality. When θ takes a larger value, the reconstruction parameters will be
over-smoothed. On the other hand, a smaller value of θ can result in the reconstruction
parameters falling into a local optimal solution, and hence, the reconstructed distribution
tends to become steeper. Therefore, in the iteration process, θ needs to be adjusted according
to the trend of the reconstruction parameters, and the amplitude of the smoothing coefficient
θ can be automatically tuned according to the ratio of the reconstruction parameter to the
mean value of other reconstruction parameters around it [29]. This ensures both the quality
of the reconstructed target and the convergence of regularization. The specific mathematical
expression is as follows:

θ = γ

(
j+1
∑

y=j−1

i+1
∑

x=i−1
α
(k−1)
(x,y) )

α
(k−1)
ARO

(9)

where γ is the initial regularization parameter, which is taken as 0.8 in this research.
A termination condition based on the relative difference in the projected values is

also proposed in ARO. The iteration terminates when the relative difference in the phase’s
projected value reaches the threshold ε, where κ ≤ ε. Equation (10) is used to specifically
define κ.

κ =

∣∣∣Lα
(k)
ARO − A

∣∣∣
|A| (10)

where the index k is the number of iterations, and α0
ARO is the initial reconstruction value.

In this application, a threshold of 0.001 was used. The detailed steps of the algorithm are
shown in Table 1.

Table 1. Steps for implementing the multi-iterative adaptive optimization algorithm.

Serial Number Specific Realization Steps

1 Obtain the initialized reconstruction parameters α0 =αLandweber using the Landweber algorithm;
2 Establish the image αiter by applying the MAART algorithm;

3 Impose the nonnegativity constraint such that all negative elements of α in the reconstruction process are set
to 0, yielding the new reconstruction parameter α;

4 Examine whether the convergence condition (a(k+1)
iter − a(k)iter)/a(k)iter ≤ ε is satisfied. If the condition is satisfied,

directly execute step 6; otherwise, go to step 5.

5

Enter the adaptive optimization algorithm:

a. Execute Equations (8) and (9) to iterate the process so as to update the regularization parameter θ;
b. When the ratio κ satisfies κ ≤ ε in Equation (10), then set a(k+1)

iter = a(k)ARO, end the iteration process, and
return to step 2 for the next generation step;

c. When the convergence condition is not met, revert to the regularization optimization process;

6 Withdraw from the program.
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The iterative reconstruction algorithm based on the multi-iterative adaptive opti-
mization algorithm can achieve better quality for reconstructed images and can reduce
the requirements for iteration parameters. The specific algorithm flowchart is shown in
Figure 1 below:

Figure 1. Flowchart of MIARO algorithm.

3. Simulated Results and Error Analysis
3.1. Reconstructed Distribution Setup for Dynamic Temperature Field Simulation

In hydrocarbon flames, water vapor, the main product of the combustion process,
absorbs strongly in the near-infrared region. Therefore, water vapor was chosen as the
target absorbing species in both simulations and experiments. Two absorption spectra,
centered at v1 = 7185.6 cm−1 and v2 = 7444.36 cm−1, were used in this work because of
their moderate line intensities and good temperature sensitivity. The specific parameters
of the two chosen spectral lines can be combined with the HITRAN database [30]. The
absorbances of the two spectral lines at different temperatures are given in Figure 2a,b, and
the line intensities and intensity ratio of the two spectral lines are depicted in Figure 2c.

Figure 2. Absorbance and line intensity ratio of selected spectral lines: (a) 7185.60 cm−1 and
(b) 7444.36 cm−1. (c) The line intensities and line intensity ratios of the two spectral lines.
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According to some classical combustion field parameter data, in an adducted combus-
tion chamber, the temperature T is in the range of 600~1600 K, and the concentration X is
between 0.02 and 0.05 mol/mol. In order to verify the validity of the proposed method,
two regions with non-uniform temperature and H2O concentration distributions were
chosen to simulate the complex combustion field distributions. Figure 3 shows the ax-
isymmetric and non-axisymmetric distributions used for simulations. The axisymmetric
distributions for both water vapor and temperature are Gaussian. The non-uniform regions
were created using one symmetric and three overlaid asymmetric Gaussian distributions.
The scanning area for reconstruction was 200 mm × 200 mm, with a grid division of
120 × 120 and a grid size of 1.67 mm × 1.67 mm. The specific field distributions are
expressed using Equations (11) and (12):

T = 600 +
K

∑
k=1

1600 · ηk · exp

−
(

x− xk
c

)2
+
(

y− yk
c

)2

σ2

 (11)

X = 0.02 +
K

∑
k=1

0.05 · ηk · exp

−
(

x− xk
c

)2
+
(

y− yk
c

)2

σ2

 (12)

where x and y denote the horizontal and vertical coordinates of the reconstructed region,
respectively. (xc

k, yc
k) is the center of the k-th Gaussian peak, η is the Gaussian distribution

peak parameter, and σ is the standard deviation. The detailed distribution parameters used
for the simulations are provided in Table 2.

Figure 3. Simulated non-uniformly distributed regions of (a) axisymmetric temperature distribution,
(b) axisymmetric H2O concentration distribution, (c) non-axisymmetric temperature distribution and
(d) non-axisymmetric H2O concentration distribution.

Table 2. Axisymmetric and non-axisymmetric distribution settings.

η (xc
k, yc

k) (cm) σ (cm)

Axisymmetric simulation distribution 0.4 (10, 10) 4

Non-axisymmetric simulation distribution
0.4 (6, 14)

40.35 (14, 14)
0.2 (9, 6)
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Often, in complex combustion flame parameter tests, the acquired signals are in-
evitably affected by mechanical vibrations and thermal radiation in the flame. Photode-
tectors are also subjected to calibration errors. In order to evaluate the performance of the
system in noisy environments, 2%, 4%, 6% and 8% uniform noise levels were added to
the LOS measurements A to study and analyze the stability of the MIARO algorithm in
complex combustion field reconstruction applications [31,32].

3.2. Reconstruction Error Comparison Principle

In this paper, the average relative error (ARE) and average root-mean-square
error (ARMSE) are used to evaluate the quality of the temperature and concentra-
tion field reconstruction. The specific mathematical formulae are expressed using
Equations (13) and (14) [33,34].

ARE =
1
n∑n

r=1 (
1
N ∑N

j=1

∣∣∣∣∣ xrec,j − xsim,j

xsim,j

∣∣∣∣∣) (13)

ARMSE =
1
n∑n

r=1 (
√

∑N
i=1 (xrec,j − xsim,j)

2/
√

∑N
i=1 (xsim,j)

2) (14)

where n is the number of simulations conducted per group, and N is the number of
reconstruction parameters to be solved. xrec,i and xsim,i denote the reconstruction value and
the true value (temperature or concentration), respectively. In the simulation, n was 100.

3.3. Discussion and Analysis of Reconstruction Simulation Results

The proposed MIARO algorithm was validated using both the axisymmetric and non-
axisymmetric numerical models via simulation. In order to verify its superiority, MIARO
was compared with ART, Landweber and MAART, three classical iterative reconstruction
algorithms in terms of accuracy and robustness.

3.3.1. Axisymmetric Simulation Distribution

Using the above-mentioned four algorithms, simulations were conducted to recon-
struct axisymmetrically distributed temperature and vapor concentration fields. Figure 4
shows the reconstruction results. It can be seen that there are no notable differences between
ART, Landweber and MAART. In fact, the Landweber algorithm presents the largest error
at the edge. In contrast, the reconstruction error and the fluctuation at the edge achieved
using the MIARO algorithm are significantly reduced, which clearly demonstrates the
superiority of MIARO.

Figure 4. Temperature and concentration field reconstruction results and errors for axisymmetric dis-
tribution with different algorithms (a,b) ART iterative algorithm, (c,d) Landweber iterative algorithm,
(e,f) MAART iterative algorithm, (g,h) MIARO iterative algorithm.
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Further analyses were conducted on the reconstruction results at the symmetric peak
centers over various cross-sections. The reconstruction results over a typical cross-section
are presented in Figure 5. It can be found that the reconstruction errors at the peak with
the MIARO algorithm for both temperature and concentration are much smaller. The
maximum error of temperature with MIARO is within 5%, and that of concentration is
below 4%. The fluctuations at the edges of the cross-section are much milder, which further
demonstrates the advantages of MIARO.

Figure 5. Comparison of reconstruction results of axisymmetric peak center section: (a) temperature
reconstruction; (b) concentration reconstruction.

To evaluate the performance of the reconstruction algorithm in noisy environments,
uniform noise signals of 2%, 4%, 6% and 8% were added to the LOS measurement
A database for simulations. Figures 6 and 7 show the temperature and concentration
reconstruction results with the different levels of added noise. As can be seen in Figure 6,
the characteristic peaks can be clearly identified in the temperature reconstruction results
with 4% noise for all algorithms. The contour lines in the figure reveal that with the MI-
ARO algorithm, the high-temperature region is better presented, while for the other tested
algorithms, the reconstructed fields become flattened around this region to some extent. At
the 8% noise level, the reconstruction results with MIARO still show obvious characteristic
peaks, and the edge fluctuation is smaller. From the concentration reconstruction results,
similar conclusions can be drawn. The fluctuations in the reconstructed distribution are
more severe with increased noise levels, especially at the edge of the targeted region. Using
the ART, Landweber and MAART algorithms, artifacts at the edges under the influence of
noise are much more significant. The MIARO algorithm can still be used to achieve better
reconstruction results even with a lower signal-to-noise ratio, showing its robustness.

In order to achieve the quantitative validation of the MIARO algorithm, two criteria,
ARE and ARMSE, were used to compare the aforementioned four algorithms with added
noise at different intensities. The results are shown in Figures 8 and 9, where 100 repeated
measurements were taken for each algorithm at a given noise level. In Figures 8 and 9, it
can be seen that with 2%, 4%, 6% and 8% random noise levels for all four algorithms, both
the average error and standard deviation rise with the increase in noise. The overall trend
of ARE is the same as that of ARMSE, although the ARMSE values are generally higher
than ARE.

However, the error proportional factor between ARE and ARMSE using different
reconstruction algorithms in some cases is slightly different, which reflects the inconsistency
when two criteria are used. Yet, the reconstruction errors are lower in general when the
MIARO algorithm is used. In fact, it can be seen in Figure 6 that, even if the integral
projection value contains 8% random noise, the temperature reconstruction ARE is less
than 0.05, and for ARMSE, it is lower than 0.06 over the temperature range of 600~1400 K.
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For the concentration range of 0.02~0.05 mol/mol, the concentration reconstruction ARE is
lower than 0.04, and ARMSE is below 0.06.

The temperature reconstruction using the ART, Landweber and MAART algorithms
with different noise levels can be seen in Figure 6. There is no stable error pattern identified,
but in the concentration reconstruction process, the error increases significantly when the
MAART algorithm is applied. The main reason is that MAART is sensitive to the initial
values, and taking different initial values has a greater impact on its reconstruction process,
whereas although MIARO was developed based on MAART, its initial values are obtained
through the Landweber algorithm with the optimized regularization process. Compared
with MAART, the errors in the temperature and concentration reconstructions with the
application of the MIARO algorithm are reduced by 0.011 and 0.034, respectively; in terms
of the standard deviation, the error reductions for temperature and concentration are 36.1%
and 42.1%.

Figure 6. Temperature reconstruction results for axisymmetric distribution of different noise levels.

Figure 7. Concentration reconstruction results for different noise levels with axisymmetric distribution.
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Figure 8. Effect of noise in axisymmetric distribution on various algorithms. (a) ARE and standard
deviation of temperature reconstruction results; (b) ARE and standard deviation of concentration
reconstruction results.

Figure 9. Effect of noise in axisymmetric distribution on various algorithms. (a) ARMSE and standard
deviation of temperature reconstruction results; (b) ARMSE and standard deviation of concentration
reconstruction results.

3.3.2. Non-Axisymmetric Simulation Distribution

In this section, the effect of different noise levels on the reconstruction of non-axisymmetric
temperature and concentration distributions is analyzed to assess the robustness of the
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algorithms under such conditions. In industries, non-axisymmetric distributions do occur.
Figure 10 depicts the reconstruction results of the temperature and concentration fields
with non-axisymmetric distributions using the four algorithms. Similar to the conclusion
drawn with the axisymmetric distributions, the MIARO algorithm achieved the best results
with the smallest error and the mildest fluctuations at the edges of the field.

Figure 10. Temperature and concentration field reconstruction results and errors for different algo-
rithms non-axisymmetric model: (a,b) ART iterative algorithm, (c,d) Landweber iterative algorithm,
(e,f) MAART iterative algorithm, (g,h) MIARO iterative algorithm.

Taking a cross-section at y = 14 cm, where temperature peaks appear when using the
axisymmetrical settings, the reconstruction results over this plane are shown in Figure 11.
Comparing the different algorithms, it can be found that the temperature and concentration
reconstruction errors with the MIARO algorithm are much smaller than those obtained
with the other algorithms. In fact, the maximum error of temperature is within 8%, the error
for concentration is within 6%, and the fluctuations at the edges of the cross-section are
lower than those obtained with the other algorithms, which further proves the superiority
of MIARO.

Figure 11. Comparison of cross-section center reconstruction results: (a) temperature reconstruction
values; (b) concentration reconstruction values.

To further assess the noise immunity of the reconstruction algorithm for complex
distributions, random noises at levels of 2%, 4%, 6% and 8% were applied to the LOS
measurement A database again. Figures 12 and 13 show the reconstructed temperature and
concentration at 4% and 8% noise levels. The characteristic peaks are clearly visible in the
temperature reconstruction results for all four algorithms at the 4% noise level, but only
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with the MIARO algorithm are the characteristic peaks in the concentration reconstruction
distinguishable. At the 8% noise level, only MIARO provides recognizable characteristic
peaks in the reconstructed results, showing the robustness of this algorithm over the
other three.

Figure 12. Temperature reconstruction results for non-axisymmetric distribution with different
noise levels.

Figure 13. Concentration reconstruction results for non-axisymmetric distribution with different
noise levels.

In the non-axisymmetric distribution setup, two types of errors (ARE and ARMSE)
were also calculated for the four algorithms, which are shown in Figures 14 and 15. Clearly,
both ARE and ARMSE become greater with the increased noise level. The overall trends
of ARE and ARMSE are the same, though ARMSE is higher. The ratio ARE/ARMSE of
different reconstruction algorithms is slightly different in some noise conditions, which
reflects the different natures of these two error criteria. The temperature reconstruction
ARE is below 0.05, and ARMSE is better than 0.06 at 8% random noise; the concentration
reconstruction ARE is no larger than 0.04, and ARMSE is under 0.06. The figure shows that
the temperature reconstruction errors in terms of ART do not have specific patterns with
noise levels for the Landweber and MAART algorithms.
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Figure 14. Effect of noise properties for non-axisymmetric distribution on various algorithms. (a) ARE
and standard deviation of temperature reconstruction results; (b) ARE and standard deviation of
concentration reconstruction results.

Figure 15. Effect of noise properties of non-axisymmetric models on various algorithms. (a) ARMSE
and standard deviation of temperature reconstruction results; (b) ARMSE and standard deviation of
concentration reconstruction results.

However, in the concentration reconstruction, the MAART algorithm produces signifi-
cant errors. The cause is its high sensitivity to the initial value, which is the same as for
the axisymmetric distribution cases. As explained, the MIARO algorithm has advantages
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over the MAART algorithm and the Landweber in this regard. From the simulation results,
the conclusion is that the average relative errors of MIARO were reduced by 0.010 and
0.038; the standard deviations were brought down by 60.5% and 51.0% for temperature
and concentration reconstructions, respectively. Using the proposed new algorithm, clear
dynamic-flow-field boundaries can be obtained, and artifacts are eliminated, so improved
measurement accuracy and robustness can be achieved. Its applicability in harsh envi-
ronments will be conducive to the optimal design and combustion system monitoring
and control.

4. Experimental Results and Error Analysis
4.1. Experimental Setup

In order to validate the proposed method, an image of the temperature distribution
of a combustion field was reconstructed. The temperature distribution was generated by
a butane burner. As shown in Figure 16, the test system consists of a laser source, a butane
burner, a K-type thermocouple (HH-K-24-SLE), a light switch (customized), a sensor and
a host computer.

Figure 16. Butane burner experimental test system.

The laser beam was generated by two distributed feedback (DFB) diodes. Two central wave
frequencies of 7185.60 cm−1 (NTT, NLK1E5GAAA) and 7444.36 cm−1 (NTT, NLK1B5EAAA)
were used, which are in the vicinity of the central spectral absorption line of H2O molecules.
The temperature–current drive of the lasers was realized by external input voltage signals
to two laser drivers (Stanford DC-501) [35–37]. In order to realize the laser wavelength
modulation, the voltage signal input to the two laser drivers was generated by a data
acquisition device (DAQ, NI, PCI-6115). This voltage signal is a 1 kHz sinusoidal sweep
signal superimposed on a 100 kHz sinusoidal modulation signal. The two laser beams
were split into two beams by a 2 × 2 single-mode fiber coupler. One laser beam is passed
through a standard lens with a free spectral range (FSR) of 0.01 cm−1 for wavelength
monitoring, while the other laser beam is guided to an optical multiplexer for scanning
control. For one input, the optical multiplexer has 100 output channels, and the scanning
interval is 10ms/per channel. The switching loss is only 0.2 dB per channel. A detailed
description of the experiment is given in the literature [38–40]. The experimental test area
was 200 mm × 200 mm, with a total grid division number of 120 × 120, with each grid
having a size of 1.67 mm × 1.67 mm.
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The 3D model and partial view of the butane torch burner experimental platform
are shown in Figure 17a,b, and Figure 17c,d provide photographs of the experimental
combustion flame and its focused view. Nine K-type thermocouples were spaced evenly
(20 mm in between) over the same cross-section location. The measurements taken from
the thermocouples were used as the temperature distribution references to evaluate the
reconstruction accuracy of the proposed method. The field optical path arrangement is
given in Figure 17e. The laser beam was arranged according to the optimal layout of
the optical path for the field measurement. The overall test system can accommodate
a multi-angle arrangement for 100 laser beams.

Figure 17. Experimental platform of the butane torch burner. (a) Three-dimensional model of the
experimental platform; (b) local view of the model; (c) experimental platform photo; (d) photo of
local flame view; (e) field optical path arrangement.

4.2. Experimental Validation and Analysis

Figure 18 shows the reconstruction results using the four different reconstruction
algorithms for the temperature field generated with the butane burner. The upper part of
the figure shows the 3D distribution of the reconstruction results, and the lower part of
the figure shows the corresponding isothermal contour maps. In these figures, the peak
value of the reconstructed flame distribution using the ART and Landweber algorithms is
obviously low, and the fluctuations at the edge are more severe, whilst with MARRT and
MIARO, the reconstructed images effectively represent the true temperature distribution
in the high-temperature region. However, the MIARO algorithm performs better than
MARRT in the flame’s center section.

Figure 18. Reconstruction results of different reconstruction algorithms for butane torch.
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The temperature values obtained using different algorithms for the corresponding
cross-section in Figure 18 are shown in Figure 19. The broken lines in Figure 19 repre-
sent the measurement results using the thermocouples. With the ART and Landweber
algorithms, the constructed results become flattened in both high- and low-temperature
zones over this cross-section, which does not truly reflect the flame distribution, whilst the
reconstructed temperatures based on the MAART and MIARO algorithms are much closer
to the thermocouple measurements. In fact, in general, the temperature reconstruction
using MIARO has smaller deviations from the reference thermocouple measurements.

Figure 19. Temperature measurements using different reconstruction algorithms at the flame center
cross-section.

5. Conclusions

In this paper, a multi-iterative adaptive regularization optimization reconstruction
algorithm (MIARO) for laser absorption spectroscopy tomography is proposed, which
eliminates the cause of the problem related to a high reconstruction sensitivity to the initial
value encountered by MAART. The reconstruction parameters are also introduced into
the regularization, which ensures both the quality of the reconstruction target and the
convergence of regularization. The effectiveness of the reconstruction with the MIARO
algorithm was verified through simulation by setting axisymmetric and non-axisymmetric
temperature and vapor distributions. The simulation results show that MIARO outper-
formed the other three algorithms using both numerical settings. To validate the noise
resistance of the proposed algorithm, noise at four different levels was superposed on the
signals, and MIARO exhibited the best quality compared to the other algorithms. In fact,
with the MIARO algorithm applied in the non-axisymmetric simulation model, the temper-
ature and concentration reconstruction errors were reduced by 0.010 and 0.038 compared
with the MAART reconstruction algorithm; the standard deviation of the temperature
reconstruction was reduced by 60.5%, and that of the concentration reconstruction was
brought down by 51.0% for non-axisymmetric settings. The simulation results also confirm
that the proposed new algorithm can achieve a clear boundary of the dynamic flow field,
eliminate artifacts, and improve the measurement accuracy and robustness. Experiments
using a butane-burner-generated flame were conducted. With the results obtained by
thermocouples used as references, MIARO clearly demonstrated its advantages over the
ART and Landweber algorithms. Even compared with the MAART algorithm, MIARO
performed better for most of the measurement points. Actually, the average relative error
of the MIARO reconstruction algorithm was 1.82%, and that of the MAART reconstruction
algorithm was 2.44% in the experiments. The reconstruction algorithm is currently only
used for relatively stable combustion flames in the laboratory, and further validation is
required for extremely harsh combustion flames.
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