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Abstract: Vibration is challenging and significant in solving engineering problems. The issue of
vibration in loaded objects by utilizing a three-dimensional model and experiments. Typically, an
object is subjected to a random frequency, which changes the notch shape depending on the frequency
model. The investigations determined the performance difference by conducting modal analysis
with the finite element method and examining the various forms of each mode. We simulated
metal plates with V notch and multiple notch locations on both sides and one side of the notch.
The test kits included an accelerometer and a force sensor for correcting the national frequency
via Simulink Matlab® and verifying the result from the finite element methods. The V-shaped
vibration testing provided significant insights into its accuracy and potential for predicting damage
and fracture through experimentation and the finite element method. The tested specimen analyzed
the behavior of two models and found that the two V-shaped exhibited varying natural frequency
values. Specifically, the double-sided V-shaped increased natural frequency, whereas the single-sided
notched V-shaped cutting showed a significant decrease in natural frequency. Accordingly, this
investigative approach, the result of the experiment, and the finite element shows that correlation
disposition can be utilized to forecast various random frequencies for vibration analysis.

Keywords: random frequency; natural frequency; finite elements methods; Simulink Matlab®

1. Introduction

Nowadays, integrating legal matters and mechanical parts in engineering inventions
has opened up new possibilities for predicting vibrations caused by loading or moving
forces. Accurate 2D modeling and analytical methods are crucial for designing and main-
taining structures effectively, from railways to bridges and cable lines. Engineers can
achieve specific objectives efficiently with the help of 1D or 2D modeling, making these
methods essential for successful structural designs. However, due to their rigid nature,
machine parts and structures develop irregularities in their lifespan, leading to a notch
location development. Vibration is a fundamental problem in the science of resistance of
materials, and modeling the notch location is essential in studying the behavior of damaged
structures. By knowing the effect of the notch location on steel plates, they can be modeled
using either Euler−Bernoulli or Timoshenko beam theories. The beam boundary conditions
and notch location compatibility relations derive the characteristic equation relating the
natural frequency, notch depth, and location with other beam properties. Research on
structural health monitoring for crack detection deals with changes in natural frequencies
and mode shapes of the beam.

The investigation of vibration analysis considers load movement in one-dimensional
and two-dimensional models. The primary focus is to explore various methods to identify
the dynamic behavior of a moving load, in this case, a vehicle or manufacturing process,
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while carrying the load in their statures. Subsequently, the researchers use a rectangular
plate to demonstrate the circumstance for creating the situation from the case study. The
loads are modeled as groups of wheel or axle loads moving at a fixed distance on the deck’s
surface. Accordingly, the researcher can determine the dynamic response of the bridge deck
with great precision. The research article uses modal analysis [1–3], integral transformation
(ITM) [4,5], Galerkin [6,7], differential [8,9], and finite difference [10].

The finite element method (FEM) has effectively predicted and verified vibration
problems. In the quest to analyze the dynamic response of a flat plate subjected to various
moving loads, the FEM approach was employed. Plate elements were utilized to carry out
the analysis. A discrete system of isoperimetric rectangular plate elements replaced the
continuous flat plate [11,12]. Several techniques were implemented, including dynamic
stiffness [13] and frequency-domain spectral element (SEM) [14,15] methods. This numer-
ical procedure is widely used in engineering and science to solve many problems. The
FEM’s most significant advantage is its ability to handle all geometries and nonhomoge-
neous materials without altering computer-code formulations. This method breaks down
the problem into numerous planes, each with a straightforward geometry that simplifies
problem solving [16].

Additionally, the behavior of materials in terms of fractures differs significantly when
observed at a micro-scale due to various side effects. In order to gain better insights into
how materials fracture under stress and size effects, a series of tensile and compression
tests were conducted on pure copper with different microstructures and geometrical sizes.
The experiment’s findings revealed that microvoids appeared in the compressed samples,
due to the localization of the shear band, rather than macro fracture. Understanding shear
damage and its potential size effects is crucial for exploring micro-scaled damage and
fracture mechanisms. A combined constitutive model is used to characterize the size effect
on flow stress, along with an approach for applying a phenomenological shear damage
evolution law to the GTN-Thomason model by considering the size effect. This enables
the prediction of micro-scaled fractures in a comprehensive stress triaxiality range. The
proposed model is validated and verified through both simulation and experiment. The
research article of J.L. Wang et al. [17,18] details the size effect on flow stress and shear
stress. Meanwhile, extensive research has been conducted on the properties of metallic
materials when exposed to dynamic forces, including deformation, strengthening due
to strain rate, and fracture mechanisms. However, the effects of size on these dynamic
mechanical properties at the micro and mesoscale have not been thoroughly explored.
To investigate the impact of size on these properties, experiments were conducted on
oxygen-free, high-conductivity (OFHC) copper using both quasi-static compression and
split Hopkinson pressure bar (SHPB) testing with varying geometrical and grain sizes. The
effects of changing geometrical and grain sizes on dynamic forces were reported by C. Jing
et al. [19]

A valuable method for detecting cracks and notch location is through vibration-based
techniques. These methods analyze changes in dynamic properties to determine the
presence of cracks. Djidrov et al. [20] found that the natural frequencies of a cantilever
beam with a notch shift primarily when the damage is near the end. Additionally, the depth
of the damage is inversely proportional to the natural frequency. According to research
conducted by Liang et al. [21] and Li et al. [22], the presence and location of cracks can
have an impact on vibration amplitude. Liang et al. used linear finite element analysis
and the local flexibility method to determine the relationship between normalized stiffness
and notch locations. They identified crack locations by finding the intersection points of
normalized stiffness at the first two natural frequencies of the beam. Li et al. utilized
wavelet finite element methods to detect the location and depth of cracks in a free−free
beam. The frequency contour lines were used to identify the gaps with an error rate of
26.5% and 26.1% for location and depth, respectively, without Young modulus correction.
The correction reduced the error rate to 9.9% and 15.0%. Numerous studies have been
carried out to identify cracks present in beam-type structures. Barad et al. employed a
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frequency-based approach and achieved an accuracy of 4% in detecting surface cracks [23].
Meanwhile, Reddy et al. [24] utilized contour graphs of the first three normalized natural
frequencies to locate and determine the size of the damage. Rizos and Aspragathos used
the measurement of natural frequencies and solved nonlinear equations to calculate crack
locations and depths. However, their method has limited accuracy in detecting tiny cracks,
specifically those with a crack depth ratio of less than 0.1 [25]. Labib et al. [26] developed
a new method that utilizes a rotational spring model to calculate the natural frequencies
of beams with multiple cracks. Agarwalla and Parhi [24] investigated the impact of notch
location on the modal parameters of a cantilever beam subjected to vibration. Lastly,
Ostachowicz and Krawczuk [27] studied the effect of natural frequencies for two types
of single-sided and double-sided notch locations. Owolabi et al. [26] also developed a
modified approach to detect cracks’ location via notch shape in beams, which can be seen
as a significant contribution to the field.

Extensive research has been conducted in the literature regarding the free vibration
of thin-walled beams. Yaman [28] utilized a wave propagation approach to solving the
triply coupled vibrations of beams, employing a Fourier transform for the displacement
components and a Laplace transform for the time factor. Piana et al. [29] compared the
natural frequencies and buckling loads of aluminum non-symmetric thin-walled beams
under axial forces through experimental and numerical methods. Their experimental
approach involved a vibration testing apparatus, while their numerical analysis utilized a
finite element method. The development of the finite element method (FEM) to analyze
the free vibration behavior of thin-walled beams based on the Timoshenko beam theory
and including a substructuring technique for the efficient analysis of complex structures
that agree well with R. Augello et al. [30] was reported the energy method to derive
the differential motion equations of FT thin-walled beams with arbitrary cross sections,
studying the triply coupled free vibrations. Their approach involved using the principle of
virtual work to derive the equations of motion.

The study of supported beams was also conducted using a semi-analytical method
involving a power series expansion. Mohri et al. [31] investigated the vibration behavior of
pre-buckled and post-buckled thin-walled beams with open sections through a nonlinear
model considering FT coupling and warping effects. Their approach involved using a
perturbation technique to obtain the nonlinear differential equations of motion. Previ-
ous works primarily focused on the vibration problem from an analytical or numerical
perspective. Furthermore, rotational terms were examined to determine their impact on
bending, revealing that their presence can significantly affect the natural frequencies of
thin-walled beams.

This study delves into applying a hybrid technique that merges the finite element
method (FEM) to investigate the vibrational properties of complex structures exposed to
moving notch locations. Notably, the FEM utilizes a shape function insensitive to the struc-
ture’s vibration frequency. However, precise solutions require an accurate discretization of
the structure, especially in the high-frequency range. The research examined various plate
geometries representing structural components. These plates were simulated using the
finite-element method and verified with an experiment test. Various notch location classes
were considered in carbon steel, including v-notch grooves with one and both sides. The
study’s primary objective was to conduct a vibrational analysis that aimed to quantify the
natural frequency characteristics of the designed plates with the effect of notch location.

2. Materials and Methods

In this study, the test materials obtained low carbon steel. The test is divided into
vibration tests with three workpieces—Virgin, V-shaped notches, and holes. The shape
of the test work has shown the relationship between frequency and time with the force
and time by bringing the natural frequency that has been compared to the result of the
FE model to create a prediction of the obtained to predict the behavior of testing material
and the natural frequency of carbon steel and that material in the test; it was carried to
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locate the frequency from the accelerometer and the force of the force sensor via Simulink
Matlab® compared with the result of the FE model.

2.1. Material Characterization

The test material employed is carbon steel, which boasts strength and weakness. Its
properties vary depending on the amount of carbon mixed with iron, which allows for its
use in multiple applications, such as accumulating heat, conducting electricity, and resisting
corrosion. Adding carbon to the steel mixture enhances strength, toughness, and efficiency.
Conversely, low carbon steel is rigid, durable, and wear-and-tear-resistant. It is commonly
used as a raw material for building pipes, bridges, and cars and producing structural
components. The amount of carbon does not solely determine the properties of carbon steel
but also crystal type and distribution, as well as the presence of other elements, as shown
in Table 1. Subsequently, the same methodology was applied to determine differences
in results compared to random frequencies, as presented in Table 2. Subsequently, the
properties of each material were set in the FE simulation material, which is necessary for
calculating the behavior of the test material.

Table 1. Chemical composition of the investigated low carbon steel (in %).

Steel Grade C Si Mn P S Al

Low carbon 0.055 0.175 0.253 0.00114 0.0021 0.0126

Table 2. Material properties of low carbon steel.

Steel
Grade

Tensile
Strength,
Ultimate

[MPa]

Tensile
Strength,

Yield
[MPa]

Modulus
Elasticity

[GPa]

Poisson’s
Ratio

Shear
Modulus

[MPa]

Density
[g/cm3]

Low
carbon 418 321 207 0.29 82 7.533

In Table 2, the value has tested only the tension force of the examination steel, operated
by using the international ASTM E8 standard test [32]. The metal plate has been prepared
in one direction to study the behavior of anisotropic materials. Zero degrees is related to
the rolling direction (RD). The strain rate is fixed at 0.001 S−1. The properties are calculated
during the test, the longitudinal stretch was measured, and the reduced width of the gauge
length was measured with the extensor meter.

2.2. Geometry Designed and Condition

The metal sheet form used in this study is shown in Figure 1a. It is a metal sheet with
a V-shaped groove to find the effect of the sheets and the position in the metal sheet with
the same material. In this case, etching into the metal sheet makes it the lightest material
compared to different categories. The metal sheets do not have or have a hole. The cross
section has a thick material of 5 mm. However, as Figure 1a shows, the V shape is operated
with the smallest different volume. The weight between the three shapes of materials
during their respective changes is insignificant.

The design of the sheet in each shape with the same material in the millimeter unit is all
simulated for random vibrations [28,33–36]. The experiment used multiple-input-multiple-
output random vibration tests first using the time domain randomization approach. This
paper uses the time domain randomization approach to generate stress time histories of any
length. In addition, each sheet has 20 modes of image changes, but the experiment did not
show all the forms of loss. The display of complete loss is demonstrated in two ways. This
is the result achieved by modifying the shape of the V-shaped baking round. The metal
sheet design is precisely 300 × 400 mm for each sheet. To ensure the testing apparatus is
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securely held, the test area measures 300 × 300 mm and stands at a height of 100 mm. The
V shape was to study the influence of the notch marks. The second is a metal sheet with
24 holes and a diameter of 20 mm per hole; the third type is a complete metal sheet. It is a
test that can be reliable by using the research of V. Khalkar et al. [37] and the research of A.
Endo et al. [38] studied a full metal sheet for frequency. The nature of the test materials
is low carbon metal, both tested. In addition, the research of B. W. Lengana et al. [39]
tested three metal sheets using full sheets and hole drilling. The three types of research
have a common point. The overall disadvantage of each sheet of metal sheets is based
on the mode shape analysis in the finite element model of mode analysis and harmonic
response simulation.
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Figure 1. Technical drawing of models and sketch application: (a) V notch metal sheet; (b) virgin
metal sheet; (c) hole metal sheet.

Each metal sheet’s general failure emanates from module analysis in software simu-
lation. In addition, the response to the harmonic test is also created in the FE simulation
model to amplify the frequency of the metal sheet. By conducting an accurate simulation,
the experiment performed a harmonic response test on the metal sheet, ensuring that one
side was firmly fixed and a stable force of 200 N was attained. Figure 1 illustrates the
dimensions of the design test, while Figure 1b,c demonstrate the design’s behavior using
the same principles in a distinct format.

2.3. Identification of Natural Frequency in Experiments

The natural frequency testing force sensor attached to the hammer is utilized for
knocking. The device will change impact energy to electricity and convert it to the data
used to signal the experimental material by the exam equipment that receives signals
(accelerometer) by installing this device to the experimental material sheet when the trial
strikes the material. This device will change mechanical movement to electrical signals
into signal analysis devices, which will use the signal to analyze the signal analysis. This
experiment uses the Matlab® program as a signal analysis using the Arduino board, which
is a microcontroller. It is commonly used to analyze the signal of A. González et al. [40]
and M. H.M.Ghazali et al. [41]. Both researchers brought an Arduino microcontroller to
make a face that controls the natural frequency by examining with the board to receive
electrical signals from the force sensor and accelerometer processing and sending data to
the Matlab® program to show the values obtained from various experiments. It was found
that when the values obtained from the Arduino microcontroller were compared, they
proceeded with professional vibration technology and low-cost systems. The most relevant
low- and medium-frequency results work with 2.19% errors for testing. Therefore, it can be
concluded that these test kits are used to use the Arduino microcontroller with practical
vibration tests. This will help the project cost decrease and facilitate access to this type of
research. Therefore, the researcher designed by reading the Arduino model Due 2012 R3,
with the value consisting of the results of the term, frequency, time, and characteristics of
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various graphs and can also record various data in the form of image files. The work test
set was installed for the experiment by designing signal analysis equipment based on a
stable platform with a fastening of the EF Calmp. In summary, it is simple as Figure 2a and
the installation of equipment for testing, according to Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 29 
 

files. The work test set was installed for the experiment by designing signal analysis 
equipment based on a stable platform with a fastening of the EF Calmp. In summary, it is 
simple as Figure 2a and the installation of equipment for testing, according to Figure 2. 

 
 

(a) (b) 

Figure 2. (a) Experiment specified connection diagram and (b) Installation of experimental materi-
als. 

The calibration of signals is a crucial aspect of various experiments, and the Arduino 
Board Due 2012 R3 is an effective tool for this purpose. The U-by-mingle value indicates 
the precision achieved, which is 0.001%. These experiments provide valuable data that 
can be used to locate natural frequencies, which can then be utilized in various applica-
tions. In a recent vibration test involving four workpieces, including a U- and V-shaped 
cutting sheet and holes, the frequency and force were measured using an accelerometer 
and a force sensor via Simulink. The relationship between frequency and time was then 
analyzed, with force and time plotted accordingly, as shown in Figure 3. The steel plate 
used a review article [36] to confirm the correct experimental arrangement. This analysis 
was conducted using the fast Fourier transform theory, similar to the research report of K. 
Grabowski et al. [42]. 

In the analysis of vibration, the test used the impulse function. An impact is a brief 
but intense force, like a hammer striking a vibrating object. When plotting a graph of the 
force exerted over time, the impact force only lasts for a short time. Typically, the force 
generated during impact is quite large. Mathematically, impact force can be simulated by 
applying a constant pressure at specific intervals, with the magnitude of the energy re-
maining constant during that time. The function of impact force can be written to Equa-
tion (1). 

0
ˆ

( )
2
0

t

FF t t

t

τ ε

τ ε τ ε
ε

τ ε

≤ −

= − < < +


≥ +

  (1)

by F is impact force, t is time, τ is initiation time, and ε is difference of time. The ε has a 
small positive value. From the definition of F(t) the above x can be integrated to find the 
impulse of force as Equation (2). 

( ) ( )I F t dt
τ ω

τ ω

ε
+

−

=    (2)
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The calibration of signals is a crucial aspect of various experiments, and the Arduino
Board Due 2012 R3 is an effective tool for this purpose. The U-by-mingle value indicates
the precision achieved, which is 0.001%. These experiments provide valuable data that can
be used to locate natural frequencies, which can then be utilized in various applications.
In a recent vibration test involving four workpieces, including a U- and V-shaped cutting
sheet and holes, the frequency and force were measured using an accelerometer and a force
sensor via Simulink. The relationship between frequency and time was then analyzed, with
force and time plotted accordingly, as shown in Figure 3. The steel plate used a review
article [36] to confirm the correct experimental arrangement. This analysis was conducted
using the fast Fourier transform theory, similar to the research report of K. Grabowski
et al. [42].

In the analysis of vibration, the test used the impulse function. An impact is a brief but
intense force, like a hammer striking a vibrating object. When plotting a graph of the force
exerted over time, the impact force only lasts for a short time. Typically, the force generated
during impact is quite large. Mathematically, impact force can be simulated by applying a
constant pressure at specific intervals, with the magnitude of the energy remaining constant
during that time. The function of impact force can be written to Equation (1).

F(t) =


0 t ≤ τ − ε
F̂
2ε τ − ε < t < τ + ε

0 t ≥ τ + ε

(1)

by F is impact force, t is time, τ is initiation time, and ε is difference of time. The ε has a
small positive value. From the definition of F(t) the above x can be integrated to find the
impulse of force as Equation (2).

I(ε) =
τ+ω∫

τ−ω

F(t)dt (2)
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when F(t) impulse function will be called impulse function, or the Dirac delta function, the
symbol is transformed to δ(t) and has units of N, given by Equations (3) and (4).

δ(t− τ) = 0 ; t 6= τ (3)

and
+∞∫
−∞

δ(t− τ)dt = 1 (4)

In addition, the function integrated the impulse function into Simulink and conducted
a sensitivity test using the elimination method. This allowed us to compare the experimental
results with the expected outcomes. We customized the structure based on the test results
to meet capacity limit requirements. Furthermore, the test set determined the natural
frequencies and compared the experimental results with those from the FE model, as
shown in Figure 4. These experiments provide valuable insights into the behavior of
different workpieces, which can be applied across multiple industries to enhance product
designs and manufacturing processes.
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3. Results and Discussion
3.1. Verification for Experiment and FE Models

The FE model was created with the Abaqus® education version. Extensive testing
was done on different models to determine the best element size as shown in Table 3. The
selected element size was 2 mm with 150,000 elements for stable outcomes. The FEA result
in mode one and mode two was shown as a monotonic result when the element of the
model was close to 150,000 elements and had an element size of 2 mm. The FEA results
compared determinations with the research conducted by R. J. Melosh [43], V. Khalkar
et al. [37], and R. Ridwan et al. [41] explicitly concerning the number of nodes and element
size. The results were deemed unacceptable if the Figure 5 was too rough to show the
structural system. Natural frequency was explained by vibrating uniformly sized elements
with node distribution. FEA results were a vibrating convergence curve and could be
effectively used for vibration analysis [44,45]. This approach is consistent with studies
providing insight into optimal element size for FE models.

Table 3. The national frequency in modes 1 and 2 of virgin steel for C3D8 type.

Number of
Element

Mode 1 Mode 2

FEM Exp.
Research
Article
[36,42]

FEM Exp.
Research
Article
[36,42]

16 5.1988

53.63 52.506

32.908

129.5 125.2

21 5.2578 32.973
907 5.2848 33.106

6045 5.286 34.415
23,022 12.163 36.146
28,523 12.457 36.868

198,367 49.176 120.78
267,062 50.1 121.26



Appl. Sci. 2023, 13, 12073 10 of 29Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 29 
 

 
Figure 5. The convergence test on the finite element model for cubic element types: C3D8. 

The tetrahedral elements with mid-side nodes (C3D10M) were used to predict vi-
bration elements in the modeling design. This design contained ten nodes per element 
and produced a consistent number of 16–267,062 elements compared to the previous case 
study. Research conducted by H. Zsoltet al. [46] and G.M. Owolabi et al. [29] found that 
the modeling design was comparable when using 23,022 elements with a 4 mm size ele-
ment. The study results showed a 2.69% difference in mode 1 and mode 2, compared to 
the natural frequency value generated from the FE model. The virgin steel plate test re-
sults aligned with other research results in Table 4. 

The test results with the virgin steel workpiece and the frequency value from the FE 
model were similar when the number of elements was equal to 23,022. Figure 6 shows 
that the discourse value decreased with increased elements when adding the number of 
nodes, indicating a tracking behavior. To accurately predict the test piece’s behavior, this 
research study employed tetrahedral elements with mid-side nodes (C3D10M) consisting 
of 198,367 elements. 

Table 4. The national frequency in modes 1 and 2 of virgin steel for C3D10M type. 

Number of 
Element 

Mode 1 Mode 2 

FEM Exp. Research  
Article [36,42] 

FEM Exp. Research  
Article [36,42] 

16 54.107 

53.63 52.506 

138.69 

129.5 125.2 

21 53.227 142.91 
907 52.573 130.16 

6045 52.298 128.48 
23,022 52.163 128.04 
28,523 52.156 128.02 

198,367 52.149 127.98 
267,062 52.144 127.95 

Figure 5. The convergence test on the finite element model for cubic element types: C3D8.

The tetrahedral elements with mid-side nodes (C3D10M) were used to predict vi-
bration elements in the modeling design. This design contained ten nodes per element
and produced a consistent number of 16–267,062 elements compared to the previous case
study. Research conducted by H. Zsoltet al. [46] and G.M. Owolabi et al. [29] found that the
modeling design was comparable when using 23,022 elements with a 4 mm size element.
The study results showed a 2.69% difference in mode 1 and mode 2, compared to the
natural frequency value generated from the FE model. The virgin steel plate test results
aligned with other research results in Table 4.

Table 4. The national frequency in modes 1 and 2 of virgin steel for C3D10M type.

Number of
Element

Mode 1 Mode 2

FEM Exp.
Research
Article
[36,42]

FEM Exp.
Research
Article
[36,42]

16 54.107

53.63 52.506

138.69

129.5 125.2

21 53.227 142.91
907 52.573 130.16

6045 52.298 128.48
23,022 52.163 128.04
28,523 52.156 128.02

198,367 52.149 127.98
267,062 52.144 127.95

The test results with the virgin steel workpiece and the frequency value from the FE
model were similar when the number of elements was equal to 23,022. Figure 6 shows
that the discourse value decreased with increased elements when adding the number of
nodes, indicating a tracking behavior. To accurately predict the test piece’s behavior, this
research study employed tetrahedral elements with mid-side nodes (C3D10M) consisting
of 198,367 elements.
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Figure 6. The convergence test on the finite element model for tetrahedral elements with mid-side
nodes: C3D10M of virgin steel.

The model used tetrahedral elements with mid-side nodes (C3D10M) for complex
illustrations. They have ten nodes per element and are ideal for testing tracks. A recent
study was found in H. Zsolt et al. [46], and M. Behzad et al. [47]. Moreover, the study of
G.M. Owolabi et al. [29] works well for designs of various sizes when the number of nodes
is 23,022 and the element size is 4 mm as shown in Table 5.

Table 5. The national frequency in modes 1 and 2 of hole steel for C3D10M type.

The Number
of Elements

Mode 1 Mode 2

FEM Exp.
Research
Article
[36,42]

FEM Exp.
Research
Article
[36,42]

16 18.882

50.3 51.63

58.098

125.2 121.95

21 50.901 128.23
907 50.578 126.53

6045 50.372 124.88
23,022 50.184 123.98
28,523 50.131 123.71

198,367 50.111 123.59
267,062 50.154 123.99

The test results showed a slight 0.85% deviation from natural frequencies in modes 1
and 2, which aligned with other studies(in Figure 7). With 23,022 elements, the FE model
frequency matched the test results for virgin steel. Insights gained can aid future designs.
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Figure 7. The convergence test on the finite element model for tetrahedral elements with mid-side
nodes: C3D10M of hole steel.

From the testing and convergence of natural results, the results can be precise about
natural frequencies using sufficient components and more detailed mesh in the nearby
area. The models used the tetrahedral elements with mid-side nodes (C3D10M) format [46].
The frequency analysis is performed for examples that do not have different processes and
different notches. All three are shown in Figure 8a–c.
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Figure 8. Meshing the geometry (a) virgin sheet metal, (b) hole notch, and (c) V notch.

The FE model can predict better test results, so the experiment confirms the perfor-
mance of the natural frequency value. There is a tight seizing of the test of low carbon
steel sheet. As depicted in Figure 2b, the experiment setup was monitored using the ac-
celerometer signal from the Arduino Board, Due 2012 R3. The oscilloscope from Keysight
Technologies 3000 T was used to test the signal in the workpiece. Both devices could
read the signal value, as shown in Figure 9. The results of the Arduino model Due 2012
R3 and the oscilloscope were similar, with an expectation of just a 0.001% difference in
calculations. In addition, the force sensor calibration uses the testing machine with the
universal testing machine by testing the force between 0 and 122 Newtons testing five times,
using a significance of 0.95, which is in line with the research of A. González et al. [40], and
M. H. M. Ghazali et al. [41] reported the Arduino 2012 R3 that is equivalent to a device that
is high priced. The results of the body’s movement test and the electric train’s movement
found that the Arduino model Due 2012 R3 stands the actual test [48]. In the same way, the
value that has been analyzed is regression using the R-squared value. When calculated, it is
equal to 0.997 when calibrating the accelerometer and force from the force sensor test when
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connecting and working simultaneously. The signal can be captured as shown in Figure 10.
The result is in line with the results of the dynamic test of the structure. The research report
using the Arduino 2012 R3 shows that Arduino is lower than other systems that are used
in comparison and has better accuracy in low frequencies for the amplitude of low-speed
acceleration than the final result of the fast Fourier transform (FFT) assessment that shows
a better observation resolution for Arduino than the control system as performed in the
research of S. Komarizadehasl et al. [49] and S. Kumar et al. [50].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 29 
 

shown in Figure 10. The result is in line with the results of the dynamic test of the struc-
ture. The research report using the Arduino 2012 R3 shows that Arduino is lower than 
other systems that are used in comparison and has better accuracy in low frequencies for 
the amplitude of low-speed acceleration than the final result of the fast Fourier transform 
(FFT) assessment that shows a better observation resolution for Arduino than the control 
system as performed in the research of S. Komarizadehasl et al. [49] and S. Kumar et al. 
[50]. 

 
Figure 9. The signal of the accelerometer was evaluated from DUE 2012 R3 and the oscilloscope. 

 
Figure 10. The accelerometer and force sensor signal evaluated from DUE 2012 R3 3.2 simulation 
result. 

Figure 9. The signal of the accelerometer was evaluated from DUE 2012 R3 and the oscilloscope.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 29 
 

shown in Figure 10. The result is in line with the results of the dynamic test of the struc-
ture. The research report using the Arduino 2012 R3 shows that Arduino is lower than 
other systems that are used in comparison and has better accuracy in low frequencies for 
the amplitude of low-speed acceleration than the final result of the fast Fourier transform 
(FFT) assessment that shows a better observation resolution for Arduino than the control 
system as performed in the research of S. Komarizadehasl et al. [49] and S. Kumar et al. 
[50]. 

 
Figure 9. The signal of the accelerometer was evaluated from DUE 2012 R3 and the oscilloscope. 

 
Figure 10. The accelerometer and force sensor signal evaluated from DUE 2012 R3 3.2 simulation 
result. Figure 10. The accelerometer and force sensor signal evaluated from DUE 2012 R3 3.2 simula-

tion result.



Appl. Sci. 2023, 13, 12073 15 of 29

3.2. Discussion

The results of the finite element method in the vibration test experiment determine the
natural frequency with three types of specimens. The specimens have a 5 mm thickness and
a clamping distance of 100 mm. These are the same for all three types: full square sheets,
hole sheets, and V-notch sheets. The natural frequencies obtained from the experiment
were compared with the finite element method model results and used to create behavioral
predictions and predict the onset of internal damage and fracture in low carbon steel. The
motion region was set the same as the test result, as shown in Figure 11. The natural
frequency of each sheet metal design was collected from the FE model analysis; the natural
frequency is shown in Table 6 and Figure 11, which is a graph and the natural frequency
in Hz. The values in Table 3 show that the natural frequency of each sheet metal design
is different. The value representing the natural frequency is the natural frequency in
modes 1 to 20 for carbon steel sheet metal; when using such values to plot the relationship
between mode and natural frequency, the values differ for each shape. Figure 11 shows
that in mode 1 to mode 3, the natural frequency values are similar; with similar values, the
difference is 5 ± 0.45%, and when considering mode 4 to mode 12, it shows that the V- and
U-shaped notch patterns have natural frequencies higher than in the notched form and
perforated, respectively The resulting difference was 25 ± 7.32%. Subsequently, in mode 13
to mode 20, the V- and U-shaped notch patterns showed a marked increase in the natural
frequency difference. Moreover, there are also higher values in the unnotched form and
perforated, respectively; the resulting difference is 40 ± 12.47%. The naturalness of the
virgin steel and hole workpieces being displayed consistently has led to the research of
H. Yoon et al. [51], Huszar Zsolt [46], and B. W. Lenggana et al. [39], who lead research in
structural engineering on the problem of vibration under a loaded object. An example to
simulate is sheet metal with three models: a pure sheet metal without holes plate, with
designated holes, and a solid metal plate on one side. The model was simulated with
modal analysis. Therefore, 20 natural frequencies were recorded. The sample also used
low carbon steel material. Several random frequency models prove the deformation of
various objects. Many types of sheet metal designs, such as pure sheet metal, used side
hole punches, and the work of A.R. Prabowo et al. [49], who have studied and reported the
results of this work, analyzed a series of container ship collisions in the maritime realm
to examine the structural phenomena that occur. The finite element method is chosen
to resolve the designed collision case. Discussions will be directed toward the selected
protection criteria. By testing and comparing the FE model by using an entire rectangular
piece to calibrate the actual test results with a calculated value, the FE model methodology
from the research report shows that with the result of the calculation with the FE model
methodology, the test results can be significantly predicted.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 29 
 

3.2. Discussion 
The results of the finite element method in the vibration test experiment determine 

the natural frequency with three types of specimens. The specimens have a 5 mm thick-
ness and a clamping distance of 100 mm. These are the same for all three types: full 
square sheets, hole sheets, and V-notch sheets. The natural frequencies obtained from the 
experiment were compared with the finite element method model results and used to 
create behavioral predictions and predict the onset of internal damage and fracture in 
low carbon steel. The motion region was set the same as the test result, as shown in Fig-
ure 11. The natural frequency of each sheet metal design was collected from the FE model 
analysis; the natural frequency is shown in Table 6 and Figure 11, which is a graph and 
the natural frequency in Hz. The values in Table 3 show that the natural frequency of 
each sheet metal design is different. The value representing the natural frequency is the 
natural frequency in modes 1 to 20 for carbon steel sheet metal; when using such values 
to plot the relationship between mode and natural frequency, the values differ for each 
shape. Figure 11 shows that in mode 1 to mode 3, the natural frequency values are simi-
lar; with similar values, the difference is 5 ± 0.45%, and when considering mode 4 to 
mode 12, it shows that the V- and U-shaped notch patterns have natural frequencies 
higher than in the notched form and perforated, respectively The resulting difference was 
25 ± 7.32%. Subsequently, in mode 13 to mode 20, the V- and U-shaped notch patterns 
showed a marked increase in the natural frequency difference. Moreover, there are also 
higher values in the unnotched form and perforated, respectively; the resulting difference 
is 40 ± 12.47%. The naturalness of the virgin steel and hole workpieces being displayed 
consistently has led to the research of H. Yoon et al. [51], Huszar Zsolt [46], and B. W. 
Lenggana et al. [39], who lead research in structural engineering on the problem of vi-
bration under a loaded object. An example to simulate is sheet metal with three models: a 
pure sheet metal without holes plate, with designated holes, and a solid metal plate on 
one side. The model was simulated with modal analysis. Therefore, 20 natural frequen-
cies were recorded. The sample also used low carbon steel material. Several random 
frequency models prove the deformation of various objects. Many types of sheet metal 
designs, such as pure sheet metal, used side hole punches, and the work of A.R. Prabowo 
et al. [49], who have studied and reported the results of this work, analyzed a series of 
container ship collisions in the maritime realm to examine the structural phenomena that 
occur. The finite element method is chosen to resolve the designed collision case. Discus-
sions will be directed toward the selected protection criteria. By testing and comparing 
the FE model by using an entire rectangular piece to calibrate the actual test results with a 
calculated value, the FE model methodology from the research report shows that with the 
result of the calculation with the FE model methodology, the test results can be signifi-
cantly predicted. 

 
Figure 11. Cont.



Appl. Sci. 2023, 13, 12073 16 of 29
Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 29 
 

 
Figure 11. Contours of total deformation from mode 1 (a) sheet metal, (b) hole notch, and (c) V 
notch. 

Table 6. Natural frequencies of low carbon steel. 

Mode Shape 
Natural Frequency (Hz) 

Virgin  Hole V-Notch 
1 11.290 10.791 11.103 
2 30.998 29.893 31.598 
3 69.777 66.958 66.780 
4 109.030 105.290 135.950 
5 113.250 105.290 137.140 
6 196.580 187.710 179.880 
7 207.780 197.530 237.470 
8 235.790 228.010 273.760 
9 283.370 262.370 326.380 

10 349.350 334.550 340.700 
11 372.390 351.560 372.360 
12 388.460 370.180 394.620 
13 427.970 412.120 467.720 
14 460.690 425.960 543.900 
15 527.640 500.530 575.640 
16 534.370 502.340 631.090 
17 550.890 525.430 643.730 
18 623.230 586.710 694.660 
19 643.370 612.000 807.460 
20 677.860 653.520 831.250 

To measure different types of deformation in a given mode, one must first determine 
the distance that the workpiece has deformed. Specifically, mode 5 is operated for analy-
sis with random frequencies. Upon examination of Figure 12, it becomes apparent that 
the deformation is relatively uniform across the workpiece. However, it is worth noting 
that the pure sheet metal model, without any notches at the corners, experiences the most 
severe deformation elongation. Furthermore, the center of the workpiece displays a var-
iation in mean value. 

On the other hand, the perforated sheet metal model, as shown in Figure 12, dis-
plays the worst deformation out of all the models. It has the four worst deformation 
points. This is because deformation intensity is present in almost all parts of this model 
due to the holes. The passage between the two holes has relatively poor deformation in-
tensity. Figure 12 clearly and concisely illustrates how the sheet metal model with a 
V-shaped notch is less affected than the first two models. Specifically, the worst defor-
mation only occurs on a small amount on both sides of the model’s corners. According to 
the sheet metal model, the center and whole of the model have better deformation due to 
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Table 6. Natural frequencies of low carbon steel.

Mode Shape
Natural Frequency (Hz)

Virgin Hole V-Notch

1 11.290 10.791 11.103
2 30.998 29.893 31.598
3 69.777 66.958 66.780
4 109.030 105.290 135.950
5 113.250 105.290 137.140
6 196.580 187.710 179.880
7 207.780 197.530 237.470
8 235.790 228.010 273.760
9 283.370 262.370 326.380
10 349.350 334.550 340.700
11 372.390 351.560 372.360
12 388.460 370.180 394.620
13 427.970 412.120 467.720
14 460.690 425.960 543.900
15 527.640 500.530 575.640
16 534.370 502.340 631.090
17 550.890 525.430 643.730
18 623.230 586.710 694.660
19 643.370 612.000 807.460
20 677.860 653.520 831.250

To measure different types of deformation in a given mode, one must first determine
the distance that the workpiece has deformed. Specifically, mode 5 is operated for analysis
with random frequencies. Upon examination of Figure 12, it becomes apparent that the
deformation is relatively uniform across the workpiece. However, it is worth noting that
the pure sheet metal model, without any notches at the corners, experiences the most severe
deformation elongation. Furthermore, the center of the workpiece displays a variation in
mean value.

On the other hand, the perforated sheet metal model, as shown in Figure 12, displays
the worst deformation out of all the models. It has the four worst deformation points. This
is because deformation intensity is present in almost all parts of this model due to the holes.
The passage between the two holes has relatively poor deformation intensity. Figure 12
clearly and concisely illustrates how the sheet metal model with a V-shaped notch is less
affected than the first two models. Specifically, the worst deformation only occurs on a
small amount on both sides of the model’s corners. According to the sheet metal model,
the center and whole of the model have better deformation due to the force distribution
from the notches from two sides. The results indicate that the sheet metal model with a
V-shaped notch is the most effective, as shown in Figure 13.
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In this section, we will delve into the findings of an experimental prototype kit that
boasts the remarkable ability to read natural frequencies. For our study, we selected
three different specimens, namely the full rectangular plate, the V-shaped plate, and
the perforated plate, and conducted thorough vibration tests on each. By employing
an accelerometer and force sensor through Simulink as shown in Figure 14, we could
accurately plot the relationship between frequency and time and force and time. To further
analyze our results, we compared the natural frequencies obtained from the FE model
and utilized them to make behavioral predictions [52]. By doing so, we could anticipate
initiating internal damage and fracture of carbon steel during the behavioral analysis. We
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utilized a frequency testing machine equipped with an accelerometer and force sensor
through Simulink to test carbon steel vibrations on the above three workpieces.
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During the test, we set the force range to 20–25 Newtons and carefully collected the
frequency when the vibration was stationary. These results have been instrumental in
enhancing our understanding of the behavior of carbon steel under varying conditions and
will undoubtedly serve as a valuable resource in future studies. The unilaterally reinforced
perimeter conditions of P. Dumond et al. [53] and K. Luo et al. [54] have consistent results
with both studies, as shown in Table 7.

Table 7. Natural frequencies of low carbon steel experiment.

Mode Shape
Natural Frequency (Hz)

Virgin Hole V-Notch

1 10 11 11
2 39 33 49
3 65 46 59
4 98 95 107
5 121 109 137
6 189 195 202
7 225 213 278

Determining the modal constraint frequency of a workpiece is a complex process that
involves various factors. These factors include the positional characteristics of grooving
and the workpiece’s geometric parameters and material properties. In Table 8, experimental
data are compared with the FE model to obtain accurate results, allowing for a compari-
son of natural frequencies. The research findings indicate that the experimental natural
frequency and FE modeling were similar across modes 1–4, with an average tolerance of
1.47%. Moreover, the vibration values of workpiece distortion in various modes were also
found to be comparable. Although modes 5–7 had higher workpiece values, the difference
of 5.538% between the experimental natural frequency and FE modeling was considered
acceptable, as it did not significantly affect the overall accuracy of the results. The results
are consistent with the research of E. Ahmed et al. [55]. Moreover, E. Ahmed et al. [56]
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reported the tolerance of the work from the experimental results. Moreover, the results
from the model will be in the range of 5–25% and can be shown visually. The generated FE
model can predict the behavior of the natural frequency in a higher mode.

Table 8. Natural frequencies of low carbon steel from experiment and simulation.

Mode
Shape

Natural Frequency (Hz)

Virgin Hole V-Notch

Experiment Simulation Experiment Simulation Experiment Simulation

1 10 11.290 11 10.791 11 11.103
2 39 30.998 33 29.893 49 31.598
3 65 69.777 66 66.958 59 66.780
4 98 109.030 95 105.290 107 135.950
5 121 113.250 109 105.290 137 137.140
6 189 196.580 195 187.710 202 179.880
7 225 207.780 213 197.530 278 237.470

4. Influence of Notch Location on the Vibration Characteristics

The natural frequency analysis results make it difficult to use experimental methods.
The current research uses the generated FE model to predict natural frequency behavior in
different modes. The direct method of testing the specimen is the only actual measurement
method, and measuring the natural frequency in all ranges would be difficult. As shown
in the reports of P. Cawley et al. [57] and P. Gudmunson [36], it was shown that the FE
model was used to analyze specimens when the results that could be contained in all seven
modes were analyzed. The natural frequency effect from the experimentally measured
natural FE model was compared with the calculated value from the finite element method
model. The items in shape modes 1–7 are close to the experimentally measured values
when observing the calculated results from the model. The values shift as the shape mode
progresses from the seventh shape mode. The calculated values obtained from the finite
element method model are higher than the experimentally obtained values. The Figure
shows that the calculated values from the FE model and the experimental values tend
in the same direction. In the section, take the V-shaped workpiece plate, and change the
position of the notch. There are straight and oblique types, each divided into two notched
plates. This is shown in Figure 15 for an oblique traverse in which the notch moves in the
reverse direction and Figure 16 for a straight traverse in which the notch moves in the same
direction. The shape modification will determine the proportion by taking the distance
between the notch: L and from the notch to the workpiece edge: H by the dimensionless
proportion, as shown in Table 9.

Table 9. Dimensionlessness of full V notch modified.

Direction Specimen Label L/H

Direct

V_D_1 0.22
V_D_2 0.45
V_D_3 0.67
V_D_4 0.90
V_D_5 1.12

Slide

V_S_1 0.20
V_S_2 0.43
V_S_3 0.66
V_S_4 0.86
V_S_5 1.12
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The natural frequency is found in the mode range, the maximum value in straight-
tuned workpieces in dimensionless proportions is 1.12, and the tendency of the natural
frequency tends from small to large values, starting from 0.22, 0.45, 0.67, 0.90, and 1.12
accordingly. In addition, it was found that the smallest natural frequency values in modes
9–14 were at 0.67 and 0.45, respectively, and would return in the same order as in the first
set at mode 15. The results are shown in Figure 17. When brought, test the workpiece
by a method with a good test set calibrated. Taking the set of values from the natural
frequency in mode 1 (Figure 18), the dimensionless proportions tested were 0.22, 0.67,
and 1.12, respectively. The natural frequencies were 9, 9.26, and 11.00 Hz, respectively.
The nature obtained from the FE model was 8.44, 8.70, and 10.10 Hz, respectively; when
the trend line was diversified, it could be seen that the obtained higher value A indicates
the distance from the notch to the edge of the workpiece H; the smaller the shift, the
higher the natural frequency. According to the works of Khoa Viet Nguyen et al. [58], C.
S. Kumar et al. [27], and W. P. P. Aye et al. [59], the relationship between the location and
size of cracks in beams was first studied. The finite element method calculated the natural
frequencies of strong and fractured cantilevers and validated them by experimental testing.
Although the position of the notch is closer to the edge of the workpiece, the value of the
natural frequency is significantly higher; all three studies were tested, and the finite element
method was used to confirm the test results consistent with this research’s test results.

When observing (in Figure 17) the natural frequency, it was found that the maximum
value of the mode range in the obliquely adjusted workpiece in the dimensionless propor-
tion was 1.12, and the tendency of the natural frequency tended from the smallest to the
most significant value, starting from 0.22, 0.45, 0.67, 0.90, and 1.12, respectively. In addition,
it was found that the most miniature natural frequency in modes 9–11 was at 0.89 and 0.60,
respectively, and would return in the same order as in the first force set at mode 12. as
shown in Figure 19. When testing the workpiece by a method with a good test set calibrated
by taking the values from the natural frequency in mode 1, the dimensionless proportions
tested were 0.22, 0.67, and 1.12, respectively. The natural frequencies were 9.00, 9.14, and
11.00 Hz, respectively. The natural frequencies obtained from the model FE were 8.94,
9.02, and 10.65 Hz, respectively, and when the trendline was multiplied, it showed that the
potential had a higher steepness indicating the distance from the notch to the edge of the
piece. The shift H shifts result in higher natural frequencies, as shown in Figure 20, which
relates to the report of Khoa Viet Nguyen et al. [58], C. S. Kumar et al. [60], and W. P. P. Aye
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et al. [59] who studied the relationship between the location and size of cracks in cantilever
beams. First, the finite element method calculated the natural frequencies of strong and
cracked cantilevers and validated them by experimental testing. Although the position
of the notch is closer to the edge of the workpiece, the value of the natural frequency is
higher. Significantly all three studies were tested, and the finite element method was used
to confirm the test results, which were consistent with the test results of this research.
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Subsequently, the workpiece was V-shaped on one side, changing the position of the
notch. There are two types, straight and oblique, similar to the previous work. Each type is
divided into two notch plates, as shown in Figure 21 for the oblique traverse, where the
notch moves alternately, and in Figure 22 for the straight traverse, where the notch moves
upward in the same direction. Modifying the shape determines the proportion by taking
the distance from the notch to the vertical axis of the workpiece: L and the distance from
the notch to the workpiece edge: H by the dimensionless proportions shown in Table 9.
When determining the natural frequency, it was found that the mode range was the highest
value in the workpiece. The 1-sided v-notch straightened in dimensionless proportions
was 0.12, and the tendency of natural frequency tended from small to large values starting
from 0.12, 0.24, 0.36, 0.48, and 0.60, respectively.
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Figure 22. One-sided V notch modified with explicit directions.

Concurrent with the test result of the specimen, there is an alternating orientation. It
can be seen when the notch approaches the top edge of the changed the notch’s position.
When the notch approaches the workpiece, the chevron in the resulting position will reduce
the value of naturalness, consistent with the test results in this research. In addition, it was
found that in modes 9–11, the minor natural frequency was at 0.60 and 0.48, respectively,
and would return in the same order as in the first set of mode 12. The results are shown in
Figure 23.
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Afterward, when testing the workpiece by a method with a good test set calibration by
taking the set of values from the natural frequency in mode 1, the dimensionless proportions
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tested were 0.12, 0.36, and 0.60, respectively, as shown in Table 10. The natural frequencies
were 9.00, 8.00, and 8.00 Hz, respectively. The nature obtained from the FE model was
8.81, 8.23, and 8.09 Hz, respectively, and when trendlines were diversified, it was shown
that the potential values obtained had a decrease in slope. As shown in Figure 23, the
distance from the notch to the workpiece edge: the smaller the change in value, the lower
the natural frequency shown in Figure 24, according to the research of C.S. Huang et al. [61]
and Y. Yang et al. [62], who studied the relationship for determining the location and size
of cracks in beams. The first known independent vibrations were studied for sheet metal
with V notches. The V-shaped notch has the singular moment bent at an acute angle due to
the transverse oscillating motion. Theoretical analysis was performed using the accepted
displacement function. The finite element method calculated the natural frequency of
the sheet metal that is strong and has a V-shaped notch and validated by experimental
testing. When the position of the notch is closer to the edge of the workpiece, the value
of the natural frequency is significantly higher. All three studies were tested, and the
finite element method was used to confirm the test results consistent with this research’s
test results.

Table 10. Dimensions of one-sided V notch modified.

Direction Specimen Label L/H

Direct

V_DH_1 0.12
V_DH_2 0.24
V_DH_3 0.36
V_DH_4 0.48
V_DH_5 0.60

Slide

V_SH_1 0.12
V_SH_2 0.24
V_SH_3 0.36
V_SH_4 0.48
V_SH_5 0.60
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Thereon, the natural frequency found the maximum value of the mode range in the
obliquely adjusted workpiece. In a V-shaped notch on one side, the natural frequency
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was obtained. It was found that the maximum value of the mode range in the straight
workpiece in the dimensionless value was 0.12, and the tendency of the natural frequency
tended from the smallest value to the most considerable value starting from 0.12, 0.24, 0.36,
0.48, and 0.60, respectively, compared with the test results of the workpiece. There is an
alternating orientation. It can be seen that when the notch approaches the top edge of the
workpiece in Figure 25, (follow the white arrow) according to the test results of A. W. Leissa
et al. [63,64], the notch’s position changed when the notch approached the workpieces; the
notch in the resulting position will decrease the value of guilelessness consistent with the
test results in this research. In addition, it was found that in modes 9, 14–15, and 18–19, the
minor natural frequencies were at 0.12, 0.24, 0.36, 0.48, and 0.60, respectively, and would
return in the same order as in the first-period mode 12; the effect is shown in Figure 25.
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Subsequently, the workpiece experienced a particular examination using a meticu-
lously calibrated test set. The examination revealed dimensionless proportions of 0.12, 0.36,
and 0.60, respectively, based on the natural frequency in mode 1. Notably, the frequencies
recorded were 10.00, 9.00, and 8.94 Hz, respectively. In contrast, the finite element (FE)
model predicted natural frequencies of 9.83, 8.98, and 8.83 Hz, respectively, with a notice-
able decrease in slope observed when multiplying the trendlines. Further analysis revealed
that the distance (H) from the notch to the workpiece edge was critical in shaping the
natural frequency (Figure 26). C.S. Huang et al. [61] explored this relationship in detail and
Y. Yang et al. [62] in their studies on the location and size of cracks in beams. Specifically,
the first independent vibrations were studied for sheet metal with V notches, which have a
singular moment bent at an acute angle due to a transverse oscillating motion. Theoretical
analysis was performed using the accepted displacement function. The natural frequencies
of intense and cracked beams were calculated using the finite element method, which was
then validated by experimental testing. The results indicated that the position of the notch
closer to the edge of the workpiece resulted in a higher natural frequency. These findings
were further confirmed in both studies, thus underscoring the reliability and validity of
this research approach.
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5. Conclusions

In conclusion, the analysis of vibration testing in this section has provided valuable
insights into its accuracy and potential for predicting damage and fracture. The behavior
of two specimens was studied through experimentation and the finite element method,
and their accuracy was evaluated. The results were analyzed using Simulink, providing
a deeper understanding of the relationship between frequency and time and force and
time. The natural frequencies obtained from the FE model were utilized to predict the onset
of internal damage and carbon steel fracture. This study’s findings have the potential to
inspire further research and development in the field of V-shaped plate vibration testing.
The study found that the two V-shaped plates exhibit varying natural frequency values.
Specifically, the double-sided V-shaped plate demonstrated an increase in natural frequency,
while the single-sided notched V-shaped plate showed a significant decrease in natural
frequency. These observations were consistent across both oblique and straight position
adjustments, indicating the reliability of the results. In addition, the experimental natural
frequencies were compared to those calculated using the finite element method model. The
comparative analysis revealed that the calculated frequencies from the model presented in
Figures 18, 20, 24 and 26 are remarkably similar to the experimental measurements.

Furthermore, the calculated results from the model demonstrate high consistency.
However, the experiment is essential to take note of the significant changes in value once
the shape reaches its seventh mode. Recent observations have shown that the calculated
value generated by the finite element method model surpasses the actual experimental
value, raising concerns regarding the model’s reliability and accuracy in predicting values
beyond the seventh mode shape. To establish more dependable and accurate models that
can predict values at higher shape modes, further research is necessary to identify the
underlying factors leading to this deviation. Acknowledging that finite element modeling
is a precise and valuable tool for determining natural frequencies is essential.
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