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Abstract: Denoising computed tomography (CT) medical images is crucial in preserving information
and restoring images contaminated with noise. Standard filters have extensively been used for noise
removal and fine details” preservation. During the transmission of medical images, noise degrades
the visibility of anatomical structures and subtle abnormalities, making it difficult for radiologists
to accurately diagnose and interpret medical conditions. In recent studies, an optimum denoising
filter using the wavelet threshold and deep-CNN was used to eliminate Gaussian noise in CT images
using the image quality index (IQI) and peak signal-to-noise ratio (PSNR). Although the results were
better than those with traditional techniques, the performance resulted in a loss of clarity and fine
details” preservation that rendered the CT images unsuitable. To address these challenges, this paper
focuses on eliminating noise in CT scan images corrupted with additive Gaussian blur noise (AGBN)
using an ensemble approach that integrates anisotropic Gaussian filter (AGF) and wavelet transform
with a deep learning denoising convolutional neural network (DnCNN). First, the noisy image is
denoised by AGF and Haar wavelet transform as preprocessing operations to eliminate AGBN. The
DnCNN is then combined with AGF and wavelet for post-processing operation to eliminate the rest
of the noises. Specifically, we used AGF due to its adaptability to edge orientation and directional
information, which prevents blurring along edges for non-uniform noise distribution. Denoised
images are evaluated using PSNR, mean squared error (MSE), and the structural similarity index
measure (SSIM). Results revealed that the average PSNR value of the proposed ensemble approach
is 28.28, and the average computational time is 0.01666 s. The implication is that the MSE between
the original and reconstructed images is very low, implying that the image is restored correctly.
Since the SSIM values are between 0 and 1.0, 1.0 perfectly matches the reconstructed image with the
original image. In addition, the SSIM values at 1.0 or near 1.0 implicitly reveal a remarkable structural
similarity between the denoised CT image and the original image. Compared to other techniques, the
proposed ensemble approach has demonstrated exceptional performance in maintaining the quality
of the image and fine details’ preservation.

Keywords: denoising CNN; image denoising; additive Gaussian blur noise; CT images; wavelet
transform; anisotropic Gaussian filter

1. Introduction

Computed tomography (CT) is a widely used medical imaging modality that precisely
identifies anatomical structures and abnormalities [1]. Medical imaging has revolutionized
the healthcare sector by assisting medical professionals in several ways, such as in disease
diagnosis, treatment, and risk prediction [2]. However, popular medical imaging modalities,
such as magnetic resonance imaging (MRI), ultrasound (US) images, positron emission
tomography (PET), and computed tomography (CT) images [2], are degraded by various
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kinds of noise, not limited to Gaussian noise, speckle noise, Poisson noise, and salt and
pepper noise, which severely affects fine details of an image, such as edges, lines, and
points [3,4]. For instance, positron emission tomography (PET) is a procedure that involves
nuclear imaging to provide information about the operation of different tissues and organs.
These images are usually degraded by a low signal-to-noise ratio and blurred edges caused
by Poisson and Gaussian noise. Similarly, CT medical images are corrupted by Gaussian
and salt and pepper noise, among others. Gaussian blur noise in CT imaging is caused by
electronic noise, image post-processing, the reconstruction process, and quantization [5].

Ultrasound is a medical imaging modality that uses high-frequency sound waves to
create real-time images of the inside of the body. It is a non-invasive and safe imaging
technique widely used for diagnostic and monitoring purposes. When ultrasound waves
propagate through a biological medium, the images are contaminated with speckle noise,
obfuscating the pertinent details and reducing the contrast of the soft tissues, thereby
degrading their overall visual quality [6]. Medical image analysis encompasses various
image types characterized by their generation and appearance, and each is affected by
distinct noise that deteriorates their image quality.

The major challenge in the process of medical imaging is to obtain an image without
loss of any meaningful information for decision-making. Noise or artifacts corrupt the
images obtained during the acquisition and further processing stages [7]. Unlike natural
images, most medical images pose signal-dependent noises; hence, it is hard to remove
them by using conventional raw image denoising techniques [8]. Noise refers to the random
variations of brightness and color that are not part of the original image, which deteriorates
the image quality and even makes them diagnostically unusable [9]. The blurry and
corrupt image quality reduces the visibility of structural details and discourages further
decision-making, leading to poor diagnosis, analysis, and treatment [10].

Gaussian noise is the type of noise that arises from sensor noise, heat propagation, or
circuit noise that affects CT scan images. Gaussian noise introduces random fluctuations in
pixel intensity levels across the image, leading to a loss of image clarity, sharpness, and fine
details’ preservation and restoration [11].

When CT scan images are acquired, factors such as photon statistics, electronic noise,
and patient motion can introduce noise into the images [12]. The noise can obscure fine
details and reduce the overall image quality, leading to information loss [13]. The main
aim of image denoising is to remove the noise while preserving the details of the image
and cover aspects such as edge preservation and robustness to any artifacts [14]. In
addition, denoising and enhancement of medical images can be helpful in image restoration,
feature extraction, and in reducing distortion of images obtained from complex imaging
modalities such as MRI, PET, and CT [15,16]. Several noise reduction approaches have
been reported to address this problem during preprocessing and post-processing stages.
These approaches include Gaussian filters (GF), mean filters (mean-F), median filters
(Median-F), bilateral filters (BF), wiener filters (WF), non-local mean filters (NLM), and
denoising convolutional neural networks (DnCNN) [17-20]. However, these conventional
spatial filtering techniques [17-21] for image denoising are still faced with the challenge of
preservation of image details, which causes the blurring effect, handling of complex noise
patterns, parameter tuning, artifacts, and computational complexity, which affect their
direct use for medical diagnostic purposes [20,21]. For instance, Vimala [22] proposed a
dual-tree DWT combined with wiener filters, used for an image affected by white Gaussian
noise, proving that DT-DWT and wiener filters effectively denoise white Gaussian noise.
However, the estimation of sub-optimal characteristics led to sub-optimal denoising results.
Zhang et al. [23] proposed a non-local (NL) means filtering scheme for Gaussian noise
removal, where the resemblance of local patches determines the pixel weights. When the
window size of the image is reduced to only a one-pixel value, the NL-means filtering
becomes the same as the bilateral filter [24].

In [25,26], median filter and wavelet transform were applied to denoise CT scan images,
and better results were achieved. However, there were challenges of blurring and detail
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preservation, high computational complexity, and edge smudging, which affect the accurate
diagnosis and distortion of critical anatomical structures. The DWT effectively reduces
noise while preserving image details. However, as the authors of [27] pointed out, selecting
an appropriate wavelet basis and thresholding strategy is crucial for balancing noise
removal and detail preservation. In [28], mean filters (Mean-F) were used for denoising
CT images. However, they blurred the edges and fine details of the image while reducing
noise [29]. In [30], Gaussian filters effectively removed random additive noise, such as
Gaussian noise, which follows a uniform Gaussian distribution [31]. They did not perform
well for large CT scan images, which suffer from unwanted smoothing artifacts that lead to
loss of fine details in the image, high computation costs, and blurring of the edges.

It is demonstrated that the significant challenges faced by filters in [17-31] were edge
preservation, image restoration, computational intensity, and the blurring effect problem,
which decreases image sharpness, obstructs the view of the underlying anatomy, and
renders the CT scan images unsuitable. In recent years, several convolutional neural
network (CNN)-based methods have been proposed for natural image denoising, and the
application of a three-layer CNN for low-dose CT has shown promising results. Using
a deep-CNN improves the image processing performance because of its strong symbolic
power. However, when trained with a widely used pixel-level loss function, the CNN-
based models often suffer from vanishing gradients by introducing blurring in denoising
images [32]. Additionally, striking a balance between noise reduction and retention of
clinically relevant information remains a challenge. Therefore, a wavelet-based image
deblurring and restoration ensemble approach is proposed to enhance image quality,
preserve edge information, and improve image restoration while eliminating the entire
image noise.

The proposed ensemble approach uses the denoising capabilities of an anisotropic
Gaussian filter (AGF), wavelet transform, and denoising convolutional neural network
(DnCNN). The AGF is used as a preprocessing operation to reduce Gaussian noise in the
image by selectively smoothing the image while preserving the edges and fine details,
effectively reducing noise levels. When applied with suitable parameters, it helps reduce
blurring effects in the image and restore sharpness. The Haar transform wavelet is a
preprocessing operation known for preserving edges due to its ability to capture sharp
transitions in the image. An inverse Haar transform is performed to reconstruct the
enhanced image. The denoising CNN is trained on pairs of degraded images (blurred and
noisy) and their corresponding clean, sharp versions. The CNN learns to map the degraded
images to their clean counterparts, effectively removing the blurring effect and restoring
the image. Both AGF and Haar transform inherently contribute to edge preservation,
considering that the AGF preserves edges while selectively smoothing other regions, and
the Haar transform allows for directional analysis, which can further enhance the edge
preservation during the restoration process with the DnCNN. Anisotropic Gaussian filters
adaptively adjust their parameters based on local image features, allowing for effective
noise reduction without sacrificing important image details.

Main Contribution

This study strives to improve the results obtained in [24,32] by embodying the concept
of the anisotropic Gaussian filter (AGF) and Haar transform as preprocessing operations.
The studies in [24,32] presented a wavelet-Gaussian filter and a deep-CNN-based model to
eliminate Gaussian and speckle noise. This study adopts an augmented methodology by
implementing an anisotropic Gaussian filter, Haar wavelet transform, and DnCNN. The
study contributes to the following aspects:

1.  An ensemble approach is proposed using DnCNN, the anisotropic Gaussian filter
(AGF), and Haar wavelet transform. The AGF and Haar transform are applied as
preprocessing operations. The choice of AGF was primarily due to its adaptability to
edge orientation, adaptive filtering, and directional information, effectively handling
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edges based on gradient magnitude and preventing blurring along edges commonly
encountered with standard filters.

2. The ensemble approach demonstrates better results when compared to CNN-based
methods and other standard spatial filtering techniques in reducing the blurring effect
and improving image quality and restoration.

2. Related Work

Noise in medical images refers to unwanted random variations or distortions superim-
posed on the underlying image information. It degrades the quality and clarity of images,
making it challenging to accurately interpret and analyze them [33]. Noise can arise from
various medical imaging sources, including imaging equipment, signal acquisition, patient
factors, and image processing [34]. Image denoising aims to obtain the best of an original
image from the corrupted image. Noise reduction improves the perception of images and
usually results in better performance for different image analysis and computer vision
algorithms [35]. In [36], the authors pointed out that during the transmission of medi-
cal images, noise becomes a dominant factor that deteriorates and degrades the image’s
contrast, reducing its quality and appearance and creating problems in the diagnostic
phase. Salt and pepper noise (SPN) and Gaussian noise (GN) are common types of noise
in medical images that occur in acquisition or data transmission through any network or
medium [37-39]. Usui et al. [40], in their quantitative evaluation of deep convolutional
neural network-based image denoising for low-dose computed tomography, eliminated
Gaussian noise, and maintained sharpness using DnCNN.

In [41], Gaussian noise was added with a standard deviation of 0.002 to thoracic CT
images. A fast, non-local means (FNLM) denoising algorithm removed blurring in the
images. The FNLM was more efficient than conventional denoising filters, such as Gaussian,
wiener, and median filters. Sarita et al. [42] assessed denoising filters for brain MRI-
weighted contrast-enhanced images. The PSNR, SSIM, and MSE are statistical parameters
used for analyzing the performance of the filters. The study showed that the wiener filter is
considered the most efficient for Gaussian noise. In the case of speckle noise, anisotropic
filters work better on low noise density, whereas the Gaussian filter works better for high
noise density. Wang et al. [43] used adaptive wavelet transform and CNN for image
denoising, and PSNR was calculated as high and MSE as low. In addressing Gaussian
and Rician noise issues of data loss due to compression and preservation of edge details,
Juneja et al. [44] used Bayesian shrinkage-based fused wavelet transform (BSbFWT) and
the block-based autoencoder network (BBAuto-Net) to remove noise from MRI. A novel
algorithm that combines the bilateral filter and its method of noise thresholding, using dual-
tree complex wavelet transform to remove Gaussian noise in the image, was proposed by
Majeetah et al. [45]. The experimental results show that the proposed algorithm is superior
to other existing filtering algorithms in terms of visual quality and has very good PSNR,
SSIM, and UIQI values. However, the issues around image blurring, contrast reduction,
and quantitative inaccuracies of PSNR and SSIM were not adequately addressed.

The CNN and bilateral filters were used to remove Gaussian noise from CT images
in [46], and the authors of [47] presented a novel window-based method to remove high-
density salt and pepper noise for optimal ROI (region of interest) detection of the brain
MRI images. The output was used in watermarking and extracting hidden data in this type
of image. An impulse noise removal algorithm model was proposed based on logarithmic
images before medical images [48]. Experimental results using PSNR and MSE showed
that the method was superior in terms of the effectiveness of impulse noise (salt and pepper
noise) removal for medical images, CT, or MRI [49]. In [50], they developed a fast method
based on Fuzzy Logic for Gaussian impulsive noise reduction in CT medical images. By
applying parallel computing strategies, the obtained computing times indicated that the
introduced filter reduced Gaussian-impulse-mixed noise on CT medical images in real time.
In [51], the authors discussed how Gaussian filters effectively removed random additive
noise, such as Gaussian noise that follows a uniform Gaussian distribution. However, they
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did not perform well in the presence of other types of noise, such as impulse noise, which
caused blurring around edges and introduced halo-like artifacts in the denoised image [52].
The blurring and halo artifacts can distort the fine details of objects and degrade the overall
visual quality of the image.

Gaussian noise often distorts digital images, which is an essential problem in image
processing. In [53], the impulse and Gaussian noise in the CT image were removed based
on the edge-preserving median filter algorithm. The sparse, non-local regularization
algorithm weighted coding was used to remove the impulse and Gaussian noise in the
mixed noise, and the peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) were calculated to evaluate the quality of the denoised CT image. The performance
of the median filter for Gaussian noise removal could have been more effective due to its
discrete nature, acceptable detail loss, and edge preservation. Authors in [23-27,41-53]
discussed the challenges of image denoising based on the state-of-the-art medical image
denoising techniques, such as bioinspired optimization-based filters and spatial filters using
CNN, which included the preservation of image details, trade-off between noise removal
and detail preservation, noise characteristics, computational complexity, and spatial and
temporal coherence. However, these conventional image denoising techniques do not
remove additive Gaussian noise from CT scan images because these spatial filters and
denoising techniques [23-27,41-53] may excel at reducing noise but need help to maintain
the integrity of intricate anatomical information.

Conversely, filters that prioritize preserving details might not adequately reduce noise,
making images challenging to interpret. To this end, we propose an ensemble approach that
uses DNnCNN, anisotropic Gaussian filters, and Haar wavelet transform. By leveraging the
strengths of each technique, the proposed ensemble approach achieves superior denoising
performance, preserving image details while effectively suppressing the noise.

3. Methodology

CT images often suffer from Gaussian blur noise and streak artifacts that reduce image
quality, affect image analysis, obfuscate image information, and compromise diagnostic
confidence. With that assumption, a wavelet-AGF-based image deblurring and restoration
ensemble approach is proposed. Here, a denoising DnCNN that leverages deep learning
architectures and image processing techniques that reduce the blurring effect and edge
preservation is tailored for this study [54]. This framework is trained to denoise images
corrupted with additive Gaussian blur noise (AGBN). Unlike the conventional denoising
models, the combination of the anisotropic Gaussian filter (AGF) and Haar wavelet trans-
form allows different standard deviations along different directions, making it capable
of preserving edges while simultaneously reducing blurring. The Haar wavelet trans-
form is preferred over other transform methods because it effectively preserves edges and
fine details in images. This is particularly advantageous when dealing with CT images,
which often contain essential anatomical and structural edges that must be preserved
during denoising.

Combining Haar wavelet, anisotropic Gaussian filters, and DnCNN leverages the
strength of each component: Haar wavelet for preserving structural details, anisotropic
Gaussian filters for noise reduction while maintaining edges, and DnCNN for capturing
complex noise patterns. Here, both spatial and frequency domain information
are addressed.

The additive Gaussian blur noise is evenly distributed through the imagery plane with
various density values following the normal distribution “bell-shaped curve”. which has a
shape reminiscent of a bell. Mathematically, the addition of Gaussian blur noise (GBN) can
be shown as:

m(x,y) = i(x,y) +n(x,y) @

where i(x, y) is the original signal, n(x, y) is the added noise, and m(x, y) is the final image,
with (x, y) determining the pixel location in the viewpoint plane. The bell-shaped curve
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follows a probability density function (PDF) representing an image’s statistical distribution
of pixel intensities. It is represented as:

FQ) = 75— €

where g = gray level, F(g) represents the probability density function, 4 = mean, and
o = standard deviation of the noise. The noisy CT image “imagel.jpg” is loaded, and the
noise level (0) is extracted from the image, where ¢ = 0.15. The anisotropic Gaussian filter

is used to suppress Gaussian blur noise from the input image to enhance the quality of the
CT scan medical images. The mathematical formula for the anisotropic Gaussian filter is

given by:
X2 412
G(x,y) =e><p( Z*O.yz ) 3)

where G(x, y) is the Gaussian filter kernel, (x, y) are the spatial coordinates, and ¢ is the
noise standard deviation from the noisy image.

Here, the AGF is applied as a preprocessing step to reduce AGBN in the image by
adaptively adjusting the filter parameters based on local image features.

Noise standard deviation: o = 0.15 (extracted from the noisy image)

Anisotropic Gaussian filter kernel: G(x, y) = exp(—202 x 2 + y?)

2 2
G(xy) = exp (— - z;y ) 4)

These parameters describe the noise standard deviation (2¢) and the mathemati-
cal formula for the anisotropic Gaussian filter kernel (G(x, y)). The filter kernel sup-
presses Gaussian blur noise in the input image to enhance the quality of the CT scan
medical images.

After noise reduction with the AGEF, the Haar transform is used as a preprocessing step
for further noise reduction by performing a 2D discrete wavelet transform (DWT) on the
denoised image using the Haar wavelet transform. The 2D DWT Haar wavelet transform
decomposes the image into approximation (LL) and detail (LH, HL, HH) sub-bands. The
DWT coefficients are computed using the Haar wavelet, and the formula for DWT is
given by:

C(i,j) = = * (A(i,2j) + A(i,2j + 1)), for the LL sub-band

- N —

C(i,j) = = * (A(i,2j + 1) — A(i,2f)), for the LH sub-band

N

C(i,j) = % * (A(2i,j) — A(2i+1,j)), for the HL sub-band

C(i,j) = % « (A(2i,2]) + A(2i +1,2j) — A(2i,2j + 1) — A(2i +1,2j + 1)), for the HH sub-band ®)

where A(i, j) are the pixels of the denoised image and C(i, j) are the DWT coefficients.
In inverse discrete wavelet transform (IDWT), the 2D IDWT is applied to combine the
denoised detail sub-bands with the original approximation sub-band to reconstruct the
final denoised CT scan images. Setting coefficients below a specific threshold value to
zero helps remove noise by identifying regions affected by blurring while retaining image
details. Image deblurring was applied on Haar transform coefficients for restoring lost
high-frequency details, effectively reducing the blurring effect. The architecture of the
proposed approach is shown in Figure 1.
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Figure 1. The architecture of the proposed ensemble denoising approach.

Step 1 (input original image): read authentic CT scan images.

Step 2 (perform initial noise detection): Use the anisotropic Gaussian filter (AGF) to gauge
the level of Gaussian noise in the initial test when checking for the type of noise in the
images. It smoothens images while preserving the edges and details, effectively reducing
noise levels.



Appl. Sci. 2023, 13, 12069 8 of 23

Step 3 (add Gaussian blur noise): read noisy corrupted CT scan images.

Step 4 (perform DnCNN): the general CNN process is given below:

a.  Design a denoising CNN with skip connections to preserve low-level image details
during denoising.

b.  Implement batch normalization and ReLU activation after each convolutional layer
to improve training stability.

c. Use residual blocks to capture and learn essential image features.

d.  Implement skip connections to pass relevant information across different layers.

The CNN architecture uses convolutional layers with batch normalization and ReLU
activation functions. The skip connections are implemented using residual blocks. The
output of each residual block is obtained as follows:

R(x) = F(x) + x (6)

where R(x) is the residual block output, F(x) is the output of the convolutional layers, and x
is the input to the residual block.

Gradient-based algorithms, such as stochastic gradient descent (SGD), optimize the
DnCNN model in finding the best values for the filters used to train the weights. The
following loss function is used to minimize the error:

1
10) = 53 Lt | R(vi6) = (i = i) |7 )

The DnCNN architecture above has three layers, each corresponding to a different function.

Layer 1: Convolutional layers with ReLU, 64 filters each of dimensions 3 x 3 x (No.
of channels), weaving their intricate patterns to produce 64 feature maps, each imbued
with the essence of rectified linear units. The gray image summons one channel, while the
color image demands three (RGB) channels.

Layer 2: Convolutional layers, with ReLU batch normalization (BN), added between
each convolutional and ReLU layer. The 64 additional filters intertwine, taking the form of
3 X 3 x 64 dimensions.

Layer 3: The final convolutional layer stands as the key to unlocking the realm of
image reconstruction. The 64 elusive filters, each with a size of 3 x 3 x 64, collaborate to
peer into the depths and bring forth reimagined images.

Step 5 (perform denoising):

a.  Apply the designed CNN to each detail sub-band obtained from the wavelet decom-
position (LH, HL, HH).

b. Set the denoising threshold for each sub-band based on the noise level (¢) obtained
in the preprocessing step. For example, set the point as 0.1. The threshold value is a
determinant of the image used for the experiments, and in this study, a value of 0.05
was used. The value was chosen to demonstrate the concept of thresholding and its
impact on image denoising. Factors such as noise characteristics and specific image
content should be empirically determined in an experiment.

C. Perform soft thresholding on the CNN output for each sub-band to reduce noise and
preserve critical features.

d.  Denoising uses soft thresholding on the CNN output for each detail sub-band. The
soft thresholding formula for denoising a sub-band is given by:

e. C_denoised (i, j) = sign (C(i, j)) * max(1C(, /)| — A, 0)

f. Where C_denoised (i, j) are the denoised DWT coefficients, C(i, j) are the original
DWT coefficients, and A is the wavelet threshold.

The relationship between the denoising threshold and the noise level () for each
sub-band in the denoising process can be summarized as follows:
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i Denoising threshold: the denoising threshold (A) is a parameter that determines the
level at which noisy coefficients in each sub-band will be attenuated or suppressed
during the denoising process.

ii. Noise level (0): The noise level (0) represents the standard deviation of the noise
present in the image. It characterizes the amount of noise contamination in the
image, such as Gaussian blur noise.

iii. Relationship: The denoising threshold (A) is typically set based on each sub-band’s
estimated noise level (¢). The choice of the denoising threshold is critical be-
cause it determines which coefficients are considered noise and should be reduced
or eliminated.

e If Ais set too high, it may remove essential image details, leading to over-
smoothing and loss of image information.

e If Ais too low, it may not effectively suppress the noise, resulting in noisy
artifacts in the denoised image.

Therefore, to strike a balance, the denoising threshold is often determined empirically
or based on the statistical properties of the noise in each sub-band. It should be chosen to
reduce noise while preserving essential image features and fine details. The relationship
between the denoising threshold (1) and the noise level (¢) is that A is a parameter adjusted
based on the estimated noise level in each sub-band to achieve effective noise reduction
without excessive loss of image quality. The specific threshold value may vary depending
on the noise characteristics and the desired level of denoising.

Step 6 (Haar wavelet transform)

A wavelet-based Haar transform is used for further noise reduction, where the additive
noise is decomposed into one low-frequency sub-band image (LL2) and six high-frequency
sub-band images (LH1, HL1, HH1 LH2, HL2, and HH?2) while using a two-level Haar
transform. In the wavelet domain, horizontal (HL1, HL2) and vertical (LH1, LH2) sub-band
images have the same energy. Horizontal and vertical sub-band images were applied to soft
thresholds to remove additive Gaussian blur noise. Removing noise and lower-frequency
components while retaining high-frequency information related to the edge helps enhance
edge details and reduce blurring. The soft thresholding in additive Gaussian blur noise is
applied to suppress noise in an image by shrinking a small-magnitude coefficient, leaving
more significant magnitude coefficients unchanged. A threshold value is applied and
sets all coefficients below this threshold to zero, effectively reducing the noise level while
preserving important signal information.

Step 7 (inverse wavelet transform):

a.  Combine the denoised detail sub-bands with the original approximation sub-band.

b. Perform the 2D inverse discrete wavelet transform (IDWT) to reconstruct the final
denoised CT image.

c. The 2D IDWT combines the denoised detail sub-bands with the original approxima-
tion sub-band to reconstruct the final denoised CT image.

Further, the DnCNN is combined with AGF and wavelet Haar transform for post-
processing. The CNN uses convolutional layers that slide ac