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Abstract: Denoising computed tomography (CT) medical images is crucial in preserving information
and restoring images contaminated with noise. Standard filters have extensively been used for noise
removal and fine details’ preservation. During the transmission of medical images, noise degrades
the visibility of anatomical structures and subtle abnormalities, making it difficult for radiologists
to accurately diagnose and interpret medical conditions. In recent studies, an optimum denoising
filter using the wavelet threshold and deep-CNN was used to eliminate Gaussian noise in CT images
using the image quality index (IQI) and peak signal-to-noise ratio (PSNR). Although the results were
better than those with traditional techniques, the performance resulted in a loss of clarity and fine
details’ preservation that rendered the CT images unsuitable. To address these challenges, this paper
focuses on eliminating noise in CT scan images corrupted with additive Gaussian blur noise (AGBN)
using an ensemble approach that integrates anisotropic Gaussian filter (AGF) and wavelet transform
with a deep learning denoising convolutional neural network (DnCNN). First, the noisy image is
denoised by AGF and Haar wavelet transform as preprocessing operations to eliminate AGBN. The
DnCNN is then combined with AGF and wavelet for post-processing operation to eliminate the rest
of the noises. Specifically, we used AGF due to its adaptability to edge orientation and directional
information, which prevents blurring along edges for non-uniform noise distribution. Denoised
images are evaluated using PSNR, mean squared error (MSE), and the structural similarity index
measure (SSIM). Results revealed that the average PSNR value of the proposed ensemble approach
is 28.28, and the average computational time is 0.01666 s. The implication is that the MSE between
the original and reconstructed images is very low, implying that the image is restored correctly.
Since the SSIM values are between 0 and 1.0, 1.0 perfectly matches the reconstructed image with the
original image. In addition, the SSIM values at 1.0 or near 1.0 implicitly reveal a remarkable structural
similarity between the denoised CT image and the original image. Compared to other techniques, the
proposed ensemble approach has demonstrated exceptional performance in maintaining the quality
of the image and fine details’ preservation.

Keywords: denoising CNN; image denoising; additive Gaussian blur noise; CT images; wavelet
transform; anisotropic Gaussian filter

1. Introduction

Computed tomography (CT) is a widely used medical imaging modality that precisely
identifies anatomical structures and abnormalities [1]. Medical imaging has revolutionized
the healthcare sector by assisting medical professionals in several ways, such as in disease
diagnosis, treatment, and risk prediction [2]. However, popular medical imaging modalities,
such as magnetic resonance imaging (MRI), ultrasound (US) images, positron emission
tomography (PET), and computed tomography (CT) images [2], are degraded by various
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kinds of noise, not limited to Gaussian noise, speckle noise, Poisson noise, and salt and
pepper noise, which severely affects fine details of an image, such as edges, lines, and
points [3,4]. For instance, positron emission tomography (PET) is a procedure that involves
nuclear imaging to provide information about the operation of different tissues and organs.
These images are usually degraded by a low signal-to-noise ratio and blurred edges caused
by Poisson and Gaussian noise. Similarly, CT medical images are corrupted by Gaussian
and salt and pepper noise, among others. Gaussian blur noise in CT imaging is caused by
electronic noise, image post-processing, the reconstruction process, and quantization [5].

Ultrasound is a medical imaging modality that uses high-frequency sound waves to
create real-time images of the inside of the body. It is a non-invasive and safe imaging
technique widely used for diagnostic and monitoring purposes. When ultrasound waves
propagate through a biological medium, the images are contaminated with speckle noise,
obfuscating the pertinent details and reducing the contrast of the soft tissues, thereby
degrading their overall visual quality [6]. Medical image analysis encompasses various
image types characterized by their generation and appearance, and each is affected by
distinct noise that deteriorates their image quality.

The major challenge in the process of medical imaging is to obtain an image without
loss of any meaningful information for decision-making. Noise or artifacts corrupt the
images obtained during the acquisition and further processing stages [7]. Unlike natural
images, most medical images pose signal-dependent noises; hence, it is hard to remove
them by using conventional raw image denoising techniques [8]. Noise refers to the random
variations of brightness and color that are not part of the original image, which deteriorates
the image quality and even makes them diagnostically unusable [9]. The blurry and
corrupt image quality reduces the visibility of structural details and discourages further
decision-making, leading to poor diagnosis, analysis, and treatment [10].

Gaussian noise is the type of noise that arises from sensor noise, heat propagation, or
circuit noise that affects CT scan images. Gaussian noise introduces random fluctuations in
pixel intensity levels across the image, leading to a loss of image clarity, sharpness, and fine
details’ preservation and restoration [11].

When CT scan images are acquired, factors such as photon statistics, electronic noise,
and patient motion can introduce noise into the images [12]. The noise can obscure fine
details and reduce the overall image quality, leading to information loss [13]. The main
aim of image denoising is to remove the noise while preserving the details of the image
and cover aspects such as edge preservation and robustness to any artifacts [14]. In
addition, denoising and enhancement of medical images can be helpful in image restoration,
feature extraction, and in reducing distortion of images obtained from complex imaging
modalities such as MRI, PET, and CT [15,16]. Several noise reduction approaches have
been reported to address this problem during preprocessing and post-processing stages.
These approaches include Gaussian filters (GF), mean filters (mean-F), median filters
(Median-F), bilateral filters (BF), wiener filters (WF), non-local mean filters (NLM), and
denoising convolutional neural networks (DnCNN) [17–20]. However, these conventional
spatial filtering techniques [17–21] for image denoising are still faced with the challenge of
preservation of image details, which causes the blurring effect, handling of complex noise
patterns, parameter tuning, artifacts, and computational complexity, which affect their
direct use for medical diagnostic purposes [20,21]. For instance, Vimala [22] proposed a
dual-tree DWT combined with wiener filters, used for an image affected by white Gaussian
noise, proving that DT-DWT and wiener filters effectively denoise white Gaussian noise.
However, the estimation of sub-optimal characteristics led to sub-optimal denoising results.
Zhang et al. [23] proposed a non-local (NL) means filtering scheme for Gaussian noise
removal, where the resemblance of local patches determines the pixel weights. When the
window size of the image is reduced to only a one-pixel value, the NL-means filtering
becomes the same as the bilateral filter [24].

In [25,26], median filter and wavelet transform were applied to denoise CT scan images,
and better results were achieved. However, there were challenges of blurring and detail
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preservation, high computational complexity, and edge smudging, which affect the accurate
diagnosis and distortion of critical anatomical structures. The DWT effectively reduces
noise while preserving image details. However, as the authors of [27] pointed out, selecting
an appropriate wavelet basis and thresholding strategy is crucial for balancing noise
removal and detail preservation. In [28], mean filters (Mean-F) were used for denoising
CT images. However, they blurred the edges and fine details of the image while reducing
noise [29]. In [30], Gaussian filters effectively removed random additive noise, such as
Gaussian noise, which follows a uniform Gaussian distribution [31]. They did not perform
well for large CT scan images, which suffer from unwanted smoothing artifacts that lead to
loss of fine details in the image, high computation costs, and blurring of the edges.

It is demonstrated that the significant challenges faced by filters in [17–31] were edge
preservation, image restoration, computational intensity, and the blurring effect problem,
which decreases image sharpness, obstructs the view of the underlying anatomy, and
renders the CT scan images unsuitable. In recent years, several convolutional neural
network (CNN)-based methods have been proposed for natural image denoising, and the
application of a three-layer CNN for low-dose CT has shown promising results. Using
a deep-CNN improves the image processing performance because of its strong symbolic
power. However, when trained with a widely used pixel-level loss function, the CNN-
based models often suffer from vanishing gradients by introducing blurring in denoising
images [32]. Additionally, striking a balance between noise reduction and retention of
clinically relevant information remains a challenge. Therefore, a wavelet-based image
deblurring and restoration ensemble approach is proposed to enhance image quality,
preserve edge information, and improve image restoration while eliminating the entire
image noise.

The proposed ensemble approach uses the denoising capabilities of an anisotropic
Gaussian filter (AGF), wavelet transform, and denoising convolutional neural network
(DnCNN). The AGF is used as a preprocessing operation to reduce Gaussian noise in the
image by selectively smoothing the image while preserving the edges and fine details,
effectively reducing noise levels. When applied with suitable parameters, it helps reduce
blurring effects in the image and restore sharpness. The Haar transform wavelet is a
preprocessing operation known for preserving edges due to its ability to capture sharp
transitions in the image. An inverse Haar transform is performed to reconstruct the
enhanced image. The denoising CNN is trained on pairs of degraded images (blurred and
noisy) and their corresponding clean, sharp versions. The CNN learns to map the degraded
images to their clean counterparts, effectively removing the blurring effect and restoring
the image. Both AGF and Haar transform inherently contribute to edge preservation,
considering that the AGF preserves edges while selectively smoothing other regions, and
the Haar transform allows for directional analysis, which can further enhance the edge
preservation during the restoration process with the DnCNN. Anisotropic Gaussian filters
adaptively adjust their parameters based on local image features, allowing for effective
noise reduction without sacrificing important image details.

Main Contribution

This study strives to improve the results obtained in [24,32] by embodying the concept
of the anisotropic Gaussian filter (AGF) and Haar transform as preprocessing operations.
The studies in [24,32] presented a wavelet-Gaussian filter and a deep-CNN-based model to
eliminate Gaussian and speckle noise. This study adopts an augmented methodology by
implementing an anisotropic Gaussian filter, Haar wavelet transform, and DnCNN. The
study contributes to the following aspects:

1. An ensemble approach is proposed using DnCNN, the anisotropic Gaussian filter
(AGF), and Haar wavelet transform. The AGF and Haar transform are applied as
preprocessing operations. The choice of AGF was primarily due to its adaptability to
edge orientation, adaptive filtering, and directional information, effectively handling
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edges based on gradient magnitude and preventing blurring along edges commonly
encountered with standard filters.

2. The ensemble approach demonstrates better results when compared to CNN-based
methods and other standard spatial filtering techniques in reducing the blurring effect
and improving image quality and restoration.

2. Related Work

Noise in medical images refers to unwanted random variations or distortions superim-
posed on the underlying image information. It degrades the quality and clarity of images,
making it challenging to accurately interpret and analyze them [33]. Noise can arise from
various medical imaging sources, including imaging equipment, signal acquisition, patient
factors, and image processing [34]. Image denoising aims to obtain the best of an original
image from the corrupted image. Noise reduction improves the perception of images and
usually results in better performance for different image analysis and computer vision
algorithms [35]. In [36], the authors pointed out that during the transmission of medi-
cal images, noise becomes a dominant factor that deteriorates and degrades the image’s
contrast, reducing its quality and appearance and creating problems in the diagnostic
phase. Salt and pepper noise (SPN) and Gaussian noise (GN) are common types of noise
in medical images that occur in acquisition or data transmission through any network or
medium [37–39]. Usui et al. [40], in their quantitative evaluation of deep convolutional
neural network-based image denoising for low-dose computed tomography, eliminated
Gaussian noise, and maintained sharpness using DnCNN.

In [41], Gaussian noise was added with a standard deviation of 0.002 to thoracic CT
images. A fast, non-local means (FNLM) denoising algorithm removed blurring in the
images. The FNLM was more efficient than conventional denoising filters, such as Gaussian,
wiener, and median filters. Sarita et al. [42] assessed denoising filters for brain MRI-
weighted contrast-enhanced images. The PSNR, SSIM, and MSE are statistical parameters
used for analyzing the performance of the filters. The study showed that the wiener filter is
considered the most efficient for Gaussian noise. In the case of speckle noise, anisotropic
filters work better on low noise density, whereas the Gaussian filter works better for high
noise density. Wang et al. [43] used adaptive wavelet transform and CNN for image
denoising, and PSNR was calculated as high and MSE as low. In addressing Gaussian
and Rician noise issues of data loss due to compression and preservation of edge details,
Juneja et al. [44] used Bayesian shrinkage-based fused wavelet transform (BSbFWT) and
the block-based autoencoder network (BBAuto-Net) to remove noise from MRI. A novel
algorithm that combines the bilateral filter and its method of noise thresholding, using dual-
tree complex wavelet transform to remove Gaussian noise in the image, was proposed by
Majeetah et al. [45]. The experimental results show that the proposed algorithm is superior
to other existing filtering algorithms in terms of visual quality and has very good PSNR,
SSIM, and UIQI values. However, the issues around image blurring, contrast reduction,
and quantitative inaccuracies of PSNR and SSIM were not adequately addressed.

The CNN and bilateral filters were used to remove Gaussian noise from CT images
in [46], and the authors of [47] presented a novel window-based method to remove high-
density salt and pepper noise for optimal ROI (region of interest) detection of the brain
MRI images. The output was used in watermarking and extracting hidden data in this type
of image. An impulse noise removal algorithm model was proposed based on logarithmic
images before medical images [48]. Experimental results using PSNR and MSE showed
that the method was superior in terms of the effectiveness of impulse noise (salt and pepper
noise) removal for medical images, CT, or MRI [49]. In [50], they developed a fast method
based on Fuzzy Logic for Gaussian impulsive noise reduction in CT medical images. By
applying parallel computing strategies, the obtained computing times indicated that the
introduced filter reduced Gaussian–impulse-mixed noise on CT medical images in real time.
In [51], the authors discussed how Gaussian filters effectively removed random additive
noise, such as Gaussian noise that follows a uniform Gaussian distribution. However, they
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did not perform well in the presence of other types of noise, such as impulse noise, which
caused blurring around edges and introduced halo-like artifacts in the denoised image [52].
The blurring and halo artifacts can distort the fine details of objects and degrade the overall
visual quality of the image.

Gaussian noise often distorts digital images, which is an essential problem in image
processing. In [53], the impulse and Gaussian noise in the CT image were removed based
on the edge-preserving median filter algorithm. The sparse, non-local regularization
algorithm weighted coding was used to remove the impulse and Gaussian noise in the
mixed noise, and the peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) were calculated to evaluate the quality of the denoised CT image. The performance
of the median filter for Gaussian noise removal could have been more effective due to its
discrete nature, acceptable detail loss, and edge preservation. Authors in [23–27,41–53]
discussed the challenges of image denoising based on the state-of-the-art medical image
denoising techniques, such as bioinspired optimization-based filters and spatial filters using
CNN, which included the preservation of image details, trade-off between noise removal
and detail preservation, noise characteristics, computational complexity, and spatial and
temporal coherence. However, these conventional image denoising techniques do not
remove additive Gaussian noise from CT scan images because these spatial filters and
denoising techniques [23–27,41–53] may excel at reducing noise but need help to maintain
the integrity of intricate anatomical information.

Conversely, filters that prioritize preserving details might not adequately reduce noise,
making images challenging to interpret. To this end, we propose an ensemble approach that
uses DnCNN, anisotropic Gaussian filters, and Haar wavelet transform. By leveraging the
strengths of each technique, the proposed ensemble approach achieves superior denoising
performance, preserving image details while effectively suppressing the noise.

3. Methodology

CT images often suffer from Gaussian blur noise and streak artifacts that reduce image
quality, affect image analysis, obfuscate image information, and compromise diagnostic
confidence. With that assumption, a wavelet–AGF-based image deblurring and restoration
ensemble approach is proposed. Here, a denoising DnCNN that leverages deep learning
architectures and image processing techniques that reduce the blurring effect and edge
preservation is tailored for this study [54]. This framework is trained to denoise images
corrupted with additive Gaussian blur noise (AGBN). Unlike the conventional denoising
models, the combination of the anisotropic Gaussian filter (AGF) and Haar wavelet trans-
form allows different standard deviations along different directions, making it capable
of preserving edges while simultaneously reducing blurring. The Haar wavelet trans-
form is preferred over other transform methods because it effectively preserves edges and
fine details in images. This is particularly advantageous when dealing with CT images,
which often contain essential anatomical and structural edges that must be preserved
during denoising.

Combining Haar wavelet, anisotropic Gaussian filters, and DnCNN leverages the
strength of each component: Haar wavelet for preserving structural details, anisotropic
Gaussian filters for noise reduction while maintaining edges, and DnCNN for capturing
complex noise patterns. Here, both spatial and frequency domain information
are addressed.

The additive Gaussian blur noise is evenly distributed through the imagery plane with
various density values following the normal distribution “bell-shaped curve”. which has a
shape reminiscent of a bell. Mathematically, the addition of Gaussian blur noise (GBN) can
be shown as:

m(x, y) = i(x, y) + n(x, y) (1)

where i(x, y) is the original signal, n(x, y) is the added noise, and m(x, y) is the final image,
with (x, y) determining the pixel location in the viewpoint plane. The bell-shaped curve
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follows a probability density function (PDF) representing an image’s statistical distribution
of pixel intensities. It is represented as:

F(g) =
1√

2πσ2
e−

(g−µ)2

2σ2 (2)

where g = gray level, F(g) represents the probability density function, µ = mean, and
σ = standard deviation of the noise. The noisy CT image “image1.jpg” is loaded, and the
noise level (σ) is extracted from the image, where σ = 0.15. The anisotropic Gaussian filter
is used to suppress Gaussian blur noise from the input image to enhance the quality of the
CT scan medical images. The mathematical formula for the anisotropic Gaussian filter is
given by:

G(x, y) = exp
(
− x2 + y2

2 ∗ σ2

)
(3)

where G(x, y) is the Gaussian filter kernel, (x, y) are the spatial coordinates, and σ is the
noise standard deviation from the noisy image.

Here, the AGF is applied as a preprocessing step to reduce AGBN in the image by
adaptively adjusting the filter parameters based on local image features.

Noise standard deviation: σ = 0.15 (extracted from the noisy image)
Anisotropic Gaussian filter kernel: G(x, y) = exp(−2σ2 × 2 + y2)

G(xy) = exp
(
− x2 + y2

2σ2

)
(4)

These parameters describe the noise standard deviation (2σ) and the mathemati-
cal formula for the anisotropic Gaussian filter kernel (G(x, y)). The filter kernel sup-
presses Gaussian blur noise in the input image to enhance the quality of the CT scan
medical images.

After noise reduction with the AGF, the Haar transform is used as a preprocessing step
for further noise reduction by performing a 2D discrete wavelet transform (DWT) on the
denoised image using the Haar wavelet transform. The 2D DWT Haar wavelet transform
decomposes the image into approximation (LL) and detail (LH, HL, HH) sub-bands. The
DWT coefficients are computed using the Haar wavelet, and the formula for DWT is
given by:

C(i, j) =
1
2
∗ (A(i, 2j) + A(i, 2j + 1)), for the LL sub-band

C(i, j) =
1
2
∗ (A(i, 2j + 1)− A(i, 2j)), for the LH sub-band

C(i, j) =
1
2
∗ (A(2i, j)− A(2i + 1, j)), for the HL sub-band

C(i, j) =
1
2
∗ (A(2i, 2j) + A(2i + 1, 2j)− A(2i, 2j + 1)− A(2i + 1, 2j + 1)), for the HH sub-band (5)

where A(i, j) are the pixels of the denoised image and C(i, j) are the DWT coefficients.
In inverse discrete wavelet transform (IDWT), the 2D IDWT is applied to combine the
denoised detail sub-bands with the original approximation sub-band to reconstruct the
final denoised CT scan images. Setting coefficients below a specific threshold value to
zero helps remove noise by identifying regions affected by blurring while retaining image
details. Image deblurring was applied on Haar transform coefficients for restoring lost
high-frequency details, effectively reducing the blurring effect. The architecture of the
proposed approach is shown in Figure 1.
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Figure 1. The architecture of the proposed ensemble denoising approach.

Step 1 (input original image): read authentic CT scan images.
Step 2 (perform initial noise detection): Use the anisotropic Gaussian filter (AGF) to gauge
the level of Gaussian noise in the initial test when checking for the type of noise in the
images. It smoothens images while preserving the edges and details, effectively reducing
noise levels.
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Step 3 (add Gaussian blur noise): read noisy corrupted CT scan images.
Step 4 (perform DnCNN): the general CNN process is given below:

a. Design a denoising CNN with skip connections to preserve low-level image details
during denoising.

b. Implement batch normalization and ReLU activation after each convolutional layer
to improve training stability.

c. Use residual blocks to capture and learn essential image features.
d. Implement skip connections to pass relevant information across different layers.

The CNN architecture uses convolutional layers with batch normalization and ReLU
activation functions. The skip connections are implemented using residual blocks. The
output of each residual block is obtained as follows:

R(x) = F(x) + x (6)

where R(x) is the residual block output, F(x) is the output of the convolutional layers, and x
is the input to the residual block.

Gradient-based algorithms, such as stochastic gradient descent (SGD), optimize the
DnCNN model in finding the best values for the filters used to train the weights. The
following loss function is used to minimize the error:

l(θ) =
1

2N ∑N
i=1 ‖ R(yi; θ)− (yi − xi) ‖2

F (7)

The DnCNN architecture above has three layers, each corresponding to a different function.
Layer 1: Convolutional layers with ReLU, 64 filters each of dimensions 3 × 3 × (No.

of channels), weaving their intricate patterns to produce 64 feature maps, each imbued
with the essence of rectified linear units. The gray image summons one channel, while the
color image demands three (RGB) channels.

Layer 2: Convolutional layers, with ReLU batch normalization (BN), added between
each convolutional and ReLU layer. The 64 additional filters intertwine, taking the form of
3 × 3 × 64 dimensions.

Layer 3: The final convolutional layer stands as the key to unlocking the realm of
image reconstruction. The 64 elusive filters, each with a size of 3 × 3 × 64, collaborate to
peer into the depths and bring forth reimagined images.

Step 5 (perform denoising):

a. Apply the designed CNN to each detail sub-band obtained from the wavelet decom-
position (LH, HL, HH).

b. Set the denoising threshold for each sub-band based on the noise level (σ) obtained
in the preprocessing step. For example, set the point as 0.1. The threshold value is a
determinant of the image used for the experiments, and in this study, a value of 0.05
was used. The value was chosen to demonstrate the concept of thresholding and its
impact on image denoising. Factors such as noise characteristics and specific image
content should be empirically determined in an experiment.

c. Perform soft thresholding on the CNN output for each sub-band to reduce noise and
preserve critical features.

d. Denoising uses soft thresholding on the CNN output for each detail sub-band. The
soft thresholding formula for denoising a sub-band is given by:

e. C_denoised (i, j) = sign (C(i, j)) ∗max(|C(i, j)| − λ, 0)
f. Where C_denoised (i, j) are the denoised DWT coefficients, C(i, j) are the original

DWT coefficients, and λ is the wavelet threshold.

The relationship between the denoising threshold and the noise level (σ) for each
sub-band in the denoising process can be summarized as follows:
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i. Denoising threshold: the denoising threshold (λ) is a parameter that determines the
level at which noisy coefficients in each sub-band will be attenuated or suppressed
during the denoising process.

ii. Noise level (σ): The noise level (σ) represents the standard deviation of the noise
present in the image. It characterizes the amount of noise contamination in the
image, such as Gaussian blur noise.

iii. Relationship: The denoising threshold (λ) is typically set based on each sub-band’s
estimated noise level (σ). The choice of the denoising threshold is critical be-
cause it determines which coefficients are considered noise and should be reduced
or eliminated.

• If λ is set too high, it may remove essential image details, leading to over-
smoothing and loss of image information.

• If λ is too low, it may not effectively suppress the noise, resulting in noisy
artifacts in the denoised image.

Therefore, to strike a balance, the denoising threshold is often determined empirically
or based on the statistical properties of the noise in each sub-band. It should be chosen to
reduce noise while preserving essential image features and fine details. The relationship
between the denoising threshold (λ) and the noise level (σ) is that λ is a parameter adjusted
based on the estimated noise level in each sub-band to achieve effective noise reduction
without excessive loss of image quality. The specific threshold value may vary depending
on the noise characteristics and the desired level of denoising.

Step 6 (Haar wavelet transform)

A wavelet-based Haar transform is used for further noise reduction, where the additive
noise is decomposed into one low-frequency sub-band image (LL2) and six high-frequency
sub-band images (LH1, HL1, HH1 LH2, HL2, and HH2) while using a two-level Haar
transform. In the wavelet domain, horizontal (HL1, HL2) and vertical (LH1, LH2) sub-band
images have the same energy. Horizontal and vertical sub-band images were applied to soft
thresholds to remove additive Gaussian blur noise. Removing noise and lower-frequency
components while retaining high-frequency information related to the edge helps enhance
edge details and reduce blurring. The soft thresholding in additive Gaussian blur noise is
applied to suppress noise in an image by shrinking a small-magnitude coefficient, leaving
more significant magnitude coefficients unchanged. A threshold value is applied and
sets all coefficients below this threshold to zero, effectively reducing the noise level while
preserving important signal information.

Step 7 (inverse wavelet transform):

a. Combine the denoised detail sub-bands with the original approximation sub-band.
b. Perform the 2D inverse discrete wavelet transform (IDWT) to reconstruct the final

denoised CT image.
c. The 2D IDWT combines the denoised detail sub-bands with the original approxima-

tion sub-band to reconstruct the final denoised CT image.

Further, the DnCNN is combined with AGF and wavelet Haar transform for post-
processing. The CNN uses convolutional layers that slide across the image, analyzing
small local patches simultaneously, allowing the network to capture local context and
spatial information for preservation. Since DnCNN learns to represent images in a way
that separates noise from the actual content, the network differentiates between gen-
uine features in the image and noise patterns caused by Gaussian blur. The DnCNN’s
data-driven approach allows it to learn intricate noise patterns, which involves filter-
ing and smoothing the output of the CNN to refine the denoised image further. By
eliminating the noise from the image, DnCNN effectively reduces blurring caused by
noise-related artifacts.
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4. Experimental Results and Analysis
4.1. Dataset

We used the IQ-OTHNCCD Lung Cancer Dataset, collected for three months in
the fall of 2019, to evaluate our image denoising hybrid model. It was presented by
Alyasriy et al. [55] and can be downloaded from: https://www.kaggle.com/code/aditya
mahimkar/lung-cancer-prediction-on-image-data, accessed on 17 December 2022. We
used 1294 grayscale images of the IQ-OTHNCCD dataset, classified into normal, benign,
and malignant. Each image was resized to 512 pixels wide × 512 pixels high for training
and validation of our model. A total of 1035 images were used for training, and 259 images
were used for testing. Among these images, 1096 were found to be affected by Gaussian
blur noise, while 198 contained salt and pepper noise. In this work, the focus was primarily
to address the dominant noise type, Gaussian blur noise.

A systematic approach was adopted to comprehensively assess the denoising perfor-
mance and account for potential variations. The Gaussian blur noise was added to the
images at different levels, ranging from 5% to 60% noise intensity levels. This range of
noise intensity allowed for testing the denoising method’s effectiveness under various
noise levels. The addition of noise symmetrically from 5% through to 60% serves several
purposes, including assessing the error margin even when noise levels deviate from the
baseline and realism in real-world image conditions where noise levels vary. This approach
ensures noise levels are tested against noise levels that represent a broad spectrum at
optimal noise levels. The Gaussian blur noise was added by setting the standard deviation
of the Gaussian noise distribution to 0.15. For training purposes, each image was converted
into patch sizes of 45 × 45, resulting in 2200 patches per image.

The choice of dataset was made considering clinical realism and relevance reflecting
typical CT image characteristics encountered in a real-world setting. The fact that the
dataset was collected from various specialist hospitals over three months in the fall of 2019
relates to the current challenges faced by CT images. Furthermore, the dataset includes
CT scans of patients diagnosed with lung cancer in different stages and healthy subjects,
providing a real-world view.

4.2. Hyperparameters

Each instance of our image denoising approach requires an average of 0.0166667 s of
computational time to complete the training phase. This duration reflects the computational
resources invested in training a single model. Longer training times offer the potential for
refined weight optimization and improved model performance, albeit at a higher resource
cost. The proposed model used a learning rate of 0.00238. The learning rate governs the
step size taken by the optimization algorithm during parameter updates. This updated
value aims to strike a balance between convergence speed and stability. A higher learning
rate can expedite convergence, but a careful balance is necessary to prevent overshooting
and instability during optimization. We trained the model for a fixed 47 epochs. An epoch
denotes a complete iteration through our training dataset. The number of epochs directly
affects the frequency of weight updates using the complete dataset. An optimal number
of epochs is crucial to mitigate underfitting and overfitting risks. Finally, we employed
846 steps per epoch to ensure comprehensive model training. A step involves updating
the model parameters based on a data batch. This parameter, coupled with the batch size,
determines the frequency of parameter updates. Higher steps enhance convergence, but
computational requirements increase accordingly.

4.3. Qualitative Analysis

The qualitative analysis visually compared the denoised image with an original noisy
image. Noise reduction and preservation of image details were observed, whereby the
denoised image appeared smoother and cleaner than the noisy image, with reduced visual
artifacts caused by noise. Additionally, the denoised image exhibited a similar structure
and pattern as the original image, indicating effective denoising. The intensity profiles were

https://www.kaggle.com/code/adityamahimkar/lung-cancer-prediction-on-image-data
https://www.kaggle.com/code/adityamahimkar/lung-cancer-prediction-on-image-data
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analyzed to assess the preservation of fine details. Intensity profiles are one-dimensional
plots of pixel intensity values along a specific line or region of interest in the image. By
comparing the intensity profiles of the denoised image with the original image, it verified
whether important features and edges were well preserved in the denoised result. The
qualitative analysis for denoising CT images is demonstrated in Figure 2.
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Figure 2. (a) Original image [55], (b) noisy image (30%), and (c) denoised image.

In Figure 2, the original image in (a) was applied with a grayscale filter in combination
with an AGBN with a 30% noise level. The image was degraded after adding Gaussian blur
noise, as shown in (b). The denoised image in (c) was generated by applying an anisotropic
Gaussian filter, which suppressed the Gaussian noise while preserving edges by using
more smoothing in the regions with little variations and less smoothing in the areas with
solid intensity gradients. Anisotropic Gaussian filters enhanced the sharpness and overall
image structure. Haar transform was then applied to decompose the noisy CT scan images
into different frequency bands, including approximation and detail coefficients. Mainly, it
analyzed and detected abrupt changes in intensity, such as edges in an image. Removing
noise and lower-frequency components while retaining high-frequency information related
to the edge helps enhance edge details and reduce blurring. Finally, the DnCNN was
trained on a noisy and corresponding clean images dataset to learn the noise patterns and
underlying structures. It took a noisy image as input during inference and used its learned
knowledge to estimate and remove the noise. By eliminating the noise from the image, the
DnCNN effectively reduced blurring caused by noise-related artifacts.

In Figure 3, the CT scan image was corrupted by adding a 5–30% Gaussian blur noise
level. The addition of noise was necessary to obtain the measure of error margins when
noise levels deviated. The focus was on reducing the AGBN, which had 1096 images,
translating to 85% noisy images contaminated with AGBN. Figure 3 shows the original
greyscale CT scan image and the denoised image using the proposed approach. Images R1
to R6 had Gaussian blur noise added at different noise intensities to allow for testing the
denoising method’s effectiveness under various noise levels, as shown in Figure 3.

The noisy images were denoised using wiener, mean, median, DWT, Gaussian, non-
local means (NLM) filter, and DnCNN for selected CT scan images at various additive
Gaussian blur noise (GBN) intensities (5–30% noise intensity) as shown in Figure 3a–f. As
more noise is added to the image, blurring and visual quality increases. Image denoising
techniques aim to improve the visual quality and interpretability of images by reducing
the impact of noise which can otherwise degrade image quality and hinder the ability to
extract meaningful information from the image. It was demonstrated that the proposed
approach of wavelet–anisotropic Gaussian filter-based denoising CNN remarkably reduced
the additive GBN, and at the same time, minimized the blurring effect and improved visual
quality, achieving better image and fine details’ preservation compared to other schemes
used in the experiment.



Appl. Sci. 2023, 13, 12069 12 of 23Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 23 
 

  
Greyscale original image Denoised image using proposed approach 

   

(a) Noisy image R1 at 5% AGBN intensity (b) Noisy image R2 at 10% 
AGBN intensity 

(c) Noisy image R3 at 15% AGBN intensity 

   

(d) Noisy image R4 at 20% AGBN intensity (e) Noisy image R5 at 25% 
AGBN intensity 

(f) Noisy image R6 at 30% AGBN intensity 

Figure 3. CT scan images with added Gaussian blur noise at 5% to 30% noise intensities in figure 
(a–f). 

The noisy images were denoised using wiener, mean, median, DWT, Gaussian, non-
local means (NLM) filter, and DnCNN for selected CT scan images at various additive 
Gaussian blur noise (GBN) intensities (5–30% noise intensity) as shown in Figure 3a–f. As 
more noise is added to the image, blurring and visual quality increases. Image denoising 
techniques aim to improve the visual quality and interpretability of images by reducing 
the impact of noise which can otherwise degrade image quality and hinder the ability to 
extract meaningful information from the image. It was demonstrated that the proposed 
approach of wavelet–anisotropic Gaussian filter-based denoising CNN remarkably re-
duced the additive GBN, and at the same time, minimized the blurring effect and im-
proved visual quality, achieving better image and fine details’ preservation compared to 
other schemes used in the experiment. 

4.4. Quantitative Analysis 
The proposed approach was verified using a subjective analysis approach. The per-

formance evaluators, such as peak signal-to-noise ratio (PSNR), structural similarity index 
measure (SSIM), signal-to-noise ratio (SNR), and mean squared error (MSE), were consid-
ered to quantify the result. The proposed wavelet-based image deblurring and restoration 
approach was evaluated together with other state-of-the-art denoising techniques using 
PSNR, SSIM, and MSE as representative quantitative measurements, as shown below. 

PSNR is the ratio between the maximum possible power of a signal and the power of 
corrupting noise. The PSNR measures the peak signal-to-noise ratio between two images, 
used as the quality measurement between two images. The higher the value of PSNR, the 

Figure 3. CT scan images with added Gaussian blur noise at 5% to 30% noise intensities in figure (a–f).

4.4. Quantitative Analysis

The proposed approach was verified using a subjective analysis approach. The perfor-
mance evaluators, such as peak signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM), signal-to-noise ratio (SNR), and mean squared error (MSE), were consid-
ered to quantify the result. The proposed wavelet-based image deblurring and restoration
approach was evaluated together with other state-of-the-art denoising techniques using
PSNR, SSIM, and MSE as representative quantitative measurements, as shown below.

PSNR is the ratio between the maximum possible power of a signal and the power of
corrupting noise. The PSNR measures the peak signal-to-noise ratio between two images,
used as the quality measurement between two images. The higher the value of PSNR,
the better the quality of the compact image. PSNR is usually expressed in terms of the
logarithmic decibel scale.

PSNR is calculated as:

PSNRdB = 10log10

(
MAX2

MSE

)
(8)

= 20log10(MAX)− 10 log10(MSE)

where:
MAX = maximum possible pixel value of the image,
MSE = mean square error.
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The mean square error (MSE) is the cumulative error between the compressed and
original images. The lower the MSE, the better the quality of the impermeable image. It is
calculated as:

MSE =
1
pq ∑p−1

a=0 ∑q−1
b=0[I(a, b)− K(a, b)]2 (9)

where p q: dimensions of the image,
I(a, b): intensity of pixels (a, b) in the original image,
K(a, b): intensity of pixels (a, b) in denoised images.
The SSIM yields an objective assessment of the quality of the images. The SSIM

depends on luminance, contrast, and structural terms. The product of these parameters is
the SSIM of the image. The parameter L(x1, x2) is the luminance assessment function that
determines the quality of having only a tiny margin between two images in terms of mean
luminance (µx1 and µx2).

The parameter C(x1, x2) is the contrast assessment function that computes the quality
of having only a tiny margin between two images in terms of standard deviations (σx1
and σx2). The parameter S(x1, x2) is the structure assessment function determining the
correlation coefficient between two images regarding covariance (σx1x2).

SSIM(x1, x2) = bL(x1, x2)ca1 × bC(x1, x2)cb1 × bS(x1, x2)cc1 (10)

where:
L(x1, x2) =

2µx1 µx2 + U1

µ2
x1
+ µ2

x2
+ U1

C(x1, x2) =
2σx1 σx2 + U2

σ2
x1
+ σ2

x2
+ U2

S(x1, x2) =
σx1x2 + U3

σx1 σx2 + U3

where µx1 and µx2 are the local means, σx1 and σx2 are the standard deviations, and (σx1x2)
is the image’s cross-covariance of x1, x2. Assume a1 = b1 = c1 = 1, U1 = (R× S1)

2 and
U2 = (R× S2)

2, where R is the size of the image (256 for 8-bit grayscale images), U1 is a
small constant value at S1 << 1, U2 is the positive constant value at S2 << 1, and U3 = U2/2.

The simplified version of SSIM is as follows:

SSIM(x1, x2) =
(2µx1 µx2 + U1)(2σx1x2 + U2)(

µ2
x1
+ µ2

x2
+ U1

)(
σ2

x1
+ σ2

x2
+ U2

) (11)

4.5. Quantitative Results

The efficiency and performance of the proposed approach were validated and quan-
tified by comparing the greyscale CT images with other well-known standard denoising
filters, such as mean, median, Gaussian, wiener, non-local means (NLMs), and discrete
wavelet transform (DWT) for additive Gaussian blur noise (AGBN) reduction using PSNR,
SSIM, and MSE. The CT images R1, R2, R3, R4, R5, and R6 were used to compare the
proposed approach with the standard filters for 5% to 60% noise intensity. Tables 1–5 in
this section shows comparison of the proposed ensemble approach with other standard
techniques and their performance in terms of PSNR, SNR and SSIM at various additive
GBN noise intensities. Similarly Figures 4–9 reflect the performance of standard techniques
and proposed ensemble approach for denoising additive Gaussian blur noise (AGBN).
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Table 1. (a) PSNR comparison for the proposed approach with wiener, mean, median, DWT, Gaussian,
non-local means (NLM) filter, and DnCNN for selected CT scan images at various additive Gaussian
blur noise (GBN) intensities (5–30% noise intensity). (b) PSNR comparison for the proposed approach
with wiener, mean, median, Gaussian, DWT, NLM filter, and DnCNN for selected CT scan images at
various AGBN intensities (35–60% noise intensity).

PSNR

Denoising
Scheme

Gaussian Blur Noise at Different Intensities (%)

5% 10% 15% 20% 25% 30%

Non-Local Means [23] 29.6242 27.8872 26.1304 23.0332 19.9996 24.2514

Gaussian [24] 29.6897 28.7325 24.8656 21.7141 18.6318 22.9032

Median [25] 31.8468 28.9768 27.1306 22.0174 18.9910 13.2377

DWT [27] 30.9422 29.7876 27.1765 23.1353 19.9853 23.2240

Mean [28] 27.9920 27.9896 27.1805 19.0253 18.9953 21.6240

Wiener [42] 30.7984 27.8902 26.1477 20.9636 17.9785 22.1923

DnCNN [56] 31.9468 30.7896 28.5469 24.8696 20.9874 25.6457

Proposed Approach 34.7585 31.6760 29.2267 25.9174 21.4910 27.6377

PSNR

Denoising
Scheme

Gaussian Blur Noise at Different Intensities (%)

35% 40% 45% 50% 55% 60%

Non-Local Means [23] 22.0180 17.2751 18.3521 17.6835 17.1384 16.8923

Gaussian [24] 19.6064 15.6782 16.7898 16.2560 14.6484 15.1261

Median [25] 20.9886 16.0105 17.2122 16.5345 15.7932 15.5779

DWT [27] 23.1256 18.4231 18.4621 18.1563 17.5347 17.3223

Mean [28] 20.9682 16.0453 17.2301 16.5658 15.8584 15.3735

Wiener [42] 20.3963 15.0143 16.1786 15.4320 14.9675 14.8439

DnCNN [56] 25.9546 22.7896 22.6458 20.8976 20.9874 19.4865

Proposed
Approach 27.0435 25.8896 24.9789 23.9453 22.5734 21.9547

Table 2. (a) SNR for different denoising schemes at various SPN noise intensities (5–30% noise
intensity). (b) SNR for different denoising schemes at various SPN noise intensities (35% to 60%).

SNR Values

Denoising Scheme
Gaussian Blur Noise at Different Intensities (%)

5% 10% 15% 20% 25% 30%

Non-Local Means [23] 22.7497 19.8691 18.0366 12.8525 9.8674 8.0812

Gaussian [24] 24.7053 23.7319 20.8656 14.7141 11.6318 9.9032

Median [25] 25.8455 21.9760 20.1306 15.0174 11.8910 10.2377

DWT [27] 22.4563 19.6455 17.8646 12.6789 9.4673 7.8956

Mean [28] 26.9982 22.9896 20.1805 18.0253 13.9653 10.2240

Wiener [42] 24.8508 21.8702 19.1477 15.9636 10.9785 9.1923

DnCNN [56] 20.0456 17.8654 16.9213 11.0486 7.9564 6.2893

Proposed
Approach 18.6893 15.4563 15.0895 9.7987 6.8956 5.1124
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Table 2. Cont.

SNR Values

Denoising Scheme
Gaussian Blur Noise at Different Intensities (%)

35% 40% 45% 50% 55% 60%

Non-Local Means [23] 6.8752 6.9932 5.0735 4.4100 3.8214 3.3328

Gaussian [24] 9.6175 7.6793 6.7695 6.2262 5.6484 5.1261

Median [25] 9.6986 8.1305 7.2202 6.5345 5.9930 5.4779

DWT [27] 6.5986 6.5467 5.0032 4.1264 3.4574 3.0042

Mean [28] 9.9898 8.1453 7.2461 6.5730 5.9483 5.4735

Wiener [42] 7.8863 7.0043 6.1846 5.4212 4.9325 4.4439

DnCNN [56] 5.6845 5.8697 4.7589 3.6895 2.8964 2.6874

Proposed
Approach 4.6978 4.5535 2.8975 2.4967 2.1895 1.4984

Table 3. Comparison of MSE values of different filtering schemes, including wiener, mean, median,
DWT, Gaussian, NLM filter, and DnCNN with the proposed approach for selected CT images R1, R2,
R3, R4, R5, and R6.

IMAGE Median
[25] Mean [28] Wiener

[42]
Gaussian

[24]
NLM
[23] DWT [27] DnCNN

[56]
Proposed
Approach

Image R1 29.7189 29.7290 24.5629 24.5736 39.3783 29.3783 29.2486 26.4634

Image R2 69.3731 69.9344 227.4001 218.8388 97.0323 85.0321 80.9547 70.9867

Image R3 236.6997 487.1047 575.0933 815.4983 137.1280 127.1280 111.8759 101.3453

Image R4 276.3539 526.7589 614.7475 855.1525 166.7822 156.7822 158.0136 135.6523

Image R5 325.3523 630.4532 640.8953 916.2461 186.0234 176.0234 165.8954 156.8953

Image R6 386.2341 689.2313 705.7646 947.9875 255.2488 245.3478 230.8694 206.9078

Table 4. SSIM values for images R1, R2, R3, R4, R5, and R6 at various noise intensities.

Noise
Density

Image R1 Image R2 Image R3 Image R4 Image R5 Image R6

SSIM Values

5% 0.945185 0.943385 0.942513 0.937519 0.936408 0.934789

10% 0.926260 0.925201 0.924620 0.920162 0.919456 0.917345

15% 0.910734 0.910573 0.910914 0.905187 0.904893 0.904291

20% 0.901130 0.900996 0.898911 0.893868 0.893466 0.892968

25% 0.883405 0.883405 0.880901 0.876379 0.875789 0.874897

30% 0.865680 0.865809 0.863623 0.859061 0.858735 0.857798

35% 0.847955 0.847882 0.845612 0.840414 0.846746 0.846345

40% 0.830230 0.830382 0.828658 0.825006 0.825534 0.824784

45% 0.812505 0.812528 0.811728 0.810150 0.811231 0.810543
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Table 5. Comparison of SSIM values of images R1, R2, R3, R4, R5, and R6 using the proposed approach
and standard filtering schemes (wiener, mean, median, DWT, Gaussian, NLM, and DnCNN).

SSIM Values

CT Images Median
[25] Mean [28] Wiener

[42]
Gaussian

[24] NLM [23] DWT [27] DnCNN
[56]

Proposed
Approach

Image R1 0.9796 0.9775 0.9863 0.9774 0.9834 0.9952 0.9987 1.000

Image R2 0.9570 0.9647 0.9589 0.9408 0.9694 0.9876 0.9899 1.000

Image R3 0.9418 0.9291 0.9335 0.9071 0.9712 0.9854 0.9887 1.0000

Image R4 0.9051 0.8934 0.9045 0.8703 0.9391 0.9591 0.9786 0.9967

Image R5 0.9042 0.8963 0.9123 0.9278 0.9545 0.9589 0.9785 0.9796

Image R6 0.8964 0.9121 0.9345 0.9221 0.9486 0.9675 0.9897 0.9986
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Figure 4. (a) PSNR for different denoising schemes at various AGBN intensities for images R1, R2, R3,
R4, R5, and R6 (5–30% noise intensity). (b) PSNR for different denoising schemes at various AGBN
intensities for images R1, R2, R3, R4, R5, and R6 (35–60% noise intensity).
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Figure 5. (a) SNR for different denoising schemes at various SPN noise intensities (5–30% noise
intensity. (b) SNR for different denoising schemes at various SPN noise intensities (35% to 60%).
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5. Discussion

The performance of the proposed ensemble approach was evaluated using the PSNR,
SSIM, and MSE metrics. PSNR quantifies the denoised image quality relative to the
original noisy image. It measures the ratio between the maximum signal power of the
original image and the noise power affecting the denoised image. A higher PSNR score
signifies greater image fidelity. The SSIM values ranging between 0 and 1 mean that
1 ideally matches the reconstructed image with the original image. The ensemble approach
effectively denoised within a computational time of 0.01666 s, optimizing the trade-off
between model performance and resource consumption. The updated learning rate of
0.00238 struck an improved balance between convergence speed and optimization stability,
enhancing the overall training efficiency. The training for 47 epochs ensured compre-
hensive weight optimization and reduced the risks of underfitting or overfitting. Using
846 steps per epoch and a batch size of 45 × 45 facilitated faster convergence while man-
aging the computational demands. The PSNR metric validated the high quality of our
denoised images, as evidenced by elevated PSNR scores indicating substantial image
fidelity. The proposed approach performed better than previous experiments in [24,56],
whereby our proposed approach achieved PSNR values of 34.7585, 31.6760, 29.2267, 21.4910,
and 27.6377, respectively.

6. Conclusions

Computed tomography (CT) is a commonly used imaging modality that provides
diagnostic information for medical images. In this study, 1294 CT medical images were
used, whereby 1096 were affected by Gaussian blur noise, while 198 were affected by salt
and pepper noise. Gaussian blur noise (GBN) in the images degrades the visual quality
and restoration of the image. This research primarily focused on Gaussian blur noise,
which dominated 85% of the images. To thoroughly evaluate the denoising capabilities
and accommodate possible fluctuations, a systematic methodology was implemented.
Gaussian blur noise was added to the images at varying levels, ranging from 5% to 60%
in noise intensity. This diverse spectrum of noise intensities facilitated the assessment of
the denoising techniques’ efficacy across a range of noise levels. This study proposed a
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wavelet-based anisotropic Gaussian filter (AGF) and denoising CNN to remove noise in CT
scan medical images. The Haar wavelet transform and AGF were used as preprocessing
operations. The process started by adding Gaussian blur noise to the medical images,
and the generated noisy images were then denoised using AGF. Haar transform further
decomposed the denoised CT scan image into different frequency bands.

The DnCNN was combined with AGF and wavelet Haar transform for post-processing.
This study employed six CT scan images: R1, R2, R3, R4, R5, and R6 (grayscale images),
for experimental analysis. The standard denoising filters, such as median, mean, wiener,
Gaussian, NLM, DWT, and DnCNN, were applied to denoise the images affected by addi-
tive Gaussian blur noise, whose performance was compared with the proposed approach,
whereby measurements were performed in Python, and the PSNR, SSIM, and MSE values
were measured. The results from Table 1 and Figure 4, revealed that the proposed ensem-
ble approach yielded the best results for PSNR at different additive Gaussian blur noise
intensities from 5% to 60%. In Table 1, the PSNR values for the proposed approach were
higher than other standard denoising filter schemes at 34.7585, 31.6760, 29.2267, 24.9174,
21.4910, and 27.6377 in a range of 5% to 30% noise intensities, respectively. This was closely
followed by DnCNN results at 31.9468, 30.7896, 28.5469, 20.9874, and 25.6457, respectively.
When the PSNR was high, the MSE between the original and reconstructed images was
very low. Therefore, this implies that the image was adequately restored, and the restored
image quality was finer.

The resultant SSIM index is a decimal value between −1 and 1, where 1 indicates
perfect similarity, 0 indicates no similarity, and −1 indicates perfect anti-correlation.

Consequently, if the PSNR value is low, the quality of the restored image could be
better. The proposed approach aims to reduce all types of Gaussian noise, and the central
feature is that the noise-free pixels are left unchanged. The proposed approach performed
better than previous experiments, demonstrating its efficiency and suitability for denoising
CT scan medical images. The SSIM index is a decimal value that range between −1 and 1.
A value of 1 indicates that the two images are very similar or the same, while a value of
0 demonstrates that the two images are very different and no similarity and -1 indicates
perfect anti-correlation. These values are often adjusted to the range of [0, 1], where the
extremes hold the same meaning. The SSIM values in Table 5 for the proposed approach
were 1.000, 1.000, 1.0000, 0.9967, 0.9796, and 0.9986, respectively. Since the SSIM values
range between 0 and 1, 1 perfectly matches the reconstructed image with the original image.
It is observed that the proposed approach had higher SSIM values in comparison to other
denoising methods used in this study. The values were at or near 1.0, implying a more
exceptional structural similarity between the denoised and original CT images. It was
observed that, in all the scenarios considered, increasing the density of Gaussian blur noise
led to decreasing the SSIM values; however, even increasing the noise density, where noise
density d ∈ {5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%}, the SSIM values
for the proposed approach were still higher in comparison to other techniques tested. When
comparing the general performance of the proposed approach to other standard filtering
techniques and CNN-based methods, it was observed that our approach outperformed
the others when applied to the IQ-OTHNCCD dataset. The results highlight the denoising
technique’s effectiveness and efficiency for CT scan images.

Author Contributions: Conceptualization, T.K.A.; methodology, T.K.A. and R.M.R.; experimentation,
T.K.A., R.M.R., and G.O.O.; original draft preparation, T.K.A. and R.M.R.; review and editing, T.K.A.
and G.O.O.; funding acquisition, T.K.A. and G.O.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.



Appl. Sci. 2023, 13, 12069 21 of 23

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alanazi, T.M.; Berriri, K.; Albekairi, M.; Ben Atitallah, A.; Sahbani, A.; Kaaniche, K. New Real-Time High-Density Impulsive

Noise Removal Method Applied to Medical Images. Diagnostics 2023, 13, 1709. [CrossRef]
2. Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C.W. Deep learning on image denoising: An overview. Neural Netw. 2020, 131,

251–275. [CrossRef] [PubMed]
3. Kadhim, M.A. Restoration Medical Images from Speckle Noise Using Multifilters. In Proceedings of the 2021 7th International

Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 19–20 March 2021; Volume 1,
pp. 1958–1963.

4. Satra, H.; Gupta, A. Lung Nodule Detection using Segmentation Approach for Computed Tomography Scan Images. Int. J.
Forresearch Appl. Sci. Eng. Technol. 2021, 9, 1778–1790. [CrossRef]

5. Das, K.P.; Chandra, J. A Review on Preprocessing Techniques for Noise Reduction in PET-CT Images for Lung Cancer. In Congress
on Intelligent Systems: Proceedings of CIS 2021; Springer Nature: Singapore, 2022; Volume 2, pp. 455–475.

6. Choi, H.; Jeong, J. Despeckling algorithm for removing speckle noise from ultrasound images. Symmetry 2020, 12, 938. [CrossRef]
7. Bharati, S.; Khan, T.Z.; Podder, P.; Hung, N.Q. A comparative analysis of image denoising problem: Noise models, denoising filters

and applications. In Cognitive Internet of Medical Things for Smart Healthcare: Services and Applications; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 49–66.

8. Rausch, I.; Mannheim, J.G.; Kupferschläger, J.; la Fougère, C.; Schmidt, F.P. Image quality assessment along the one-metre axial
field-of-view of the total-body Biograph Vision Quadra PET/CT system for 18F-FDG. Ejnmmi Phys. 2022, 9, 87. [CrossRef]

9. Goyal, B.; Agrawal, S.; Sohi, B.S. Noise issues prevail in various types of medical images. Biomed. J. 2018, 11, 1227.
10. Florez-Aroni, S.M.; Hancco-Condori, M.A.; Torres-Cruz, F. Noise Reduction in Medical Images. arXiv 2023, arXiv:2301.01437.
11. Bhonsle, D.; Bagga, J.; Mishra, S.; Sahu, C.; Sahu, V.; Mishra, A. Reduction of Gaussian noise from Computed Tomography

Images using Optimized Bilateral Filter by Enhanced Grasshopper Algorithm. In Proceedings of the 2022 Second International
Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 21–22
April 2022; pp. 1–9.

12. Hermena, S.; Young, M. CT-scan image production procedures. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL,
USA, 2022.

13. Nakamura, Y.; Higaki, T.; Tatsugami, F.; Honda, Y.; Narita, K.; Akagi, M.; Awai, K. Possibility of deep learning in medical imaging
focusing on improvement of computed tomography image quality. J. Comput. Assist. Tomogr. 2020, 44, 161–167. [CrossRef]

14. Kaur, A.; Dong, G. A Complete Review on Image Denoising Techniques for Medical Images. Neural Process Lett. 2023, 55,
7807–7850. [CrossRef]

15. Mehta, D.; Padalia, D.; Vora, K.; Mehendale, N. MRI image denoising using U-Net and Image Processing Techniques. In
Proceedings of the 2022 5th International Conference on Advances in Science and Technology (ICAST), Mumbai, India, 2–3
December 2022; pp. 306–313.

16. Xu, J.; Gong, E.; Ouyang, J.; Pauly, J.; Zaharchuk, G. Ultra-low-dose 18F-FDG, brain PET/MR denoising, using deep learning
and multi-contrast information. In Medical Imaging 2020: Image Processing; SPIE: Bellingham, WA, USA, 2020; Volume 11313,
pp. 420–432.

17. Kim, B.; Han, M.; Shim, H.; Baek, J. Performance comparison of convolutional neural network-based image denoising methods:
The effect of loss functions on low-dose CT images. Med. Phys. 2019, 46, 3906–3928. [CrossRef]

18. Sagheer, S.V.M.; George, S.N. A review on medical image denoising algorithms. Biomed. Signal Process. Control 2020, 61, 102036.
19. Kaur, J.; Goyal, B.; Dogra, A. An Analysis of Different Noise Removal Techniques in Medical Images. In Advances in Signal

Processing, Embedded Systems, and IoT: Proceedings of Seventh ICMEET-2022; Springer Nature: Singapore, 2023; pp. 579–590.
20. Thakur, R.S.; Chatterjee, S.; Yadav, R.N.; Gupta, L. Medical image denoising using convolutional neural networks. In Digital

Image Enhancement and Reconstruction; Academic Press: Cambridge, MA, USA, 2023; pp. 115–138.
21. Abdelhamed, A.; Timofte, R.; Brown, M.S. Ntire 2019 challenge on actual image denoising: Methods and results. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019;
pp. 1–14.

22. Vimala, C.; Aruna Priya, P.; Subramani, C. Wavelet transform approach for image processing–A research motivation for
engineering graduates. Int. J. Electr. Eng. 2021, 58, 373–384. [CrossRef]

23. Zhang, X. A modified non-local means using bilateral thresholding for image denoising. Multimed. Tools Appl. 2023, 1–22.
[CrossRef]

24. Mayasari, R.; Heryana, N. Reduce Noise in Computed Tomography Images using Adaptive Gaussian Filter. arXiv 2019,
arXiv:1902.05985.
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