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Abstract: Artificial Intelligence is an indispensable element of the modern world, constantly evolving
and contributing to the emergence of new technologies. We meet it in everyday applications, primarily
using intelligent systems that aim to improve our lives. Artificial Intelligence techniques must inspire
users’ trust because they significantly impact virtually every industry and person. For this reason,
systems using Artificial Intelligence are subject to many requirements to verify their trustworthiness
in various aspects. This review focused on users’ physical and environmental security, considering
the safety and robustness dimensions of Trustworthy Artificial Intelligence. We examined these
Trustworthy Artificial Intelligence solutions and dimensions because security is one of the most-
critical aspects of human life and can be considered in many different contexts. We examined
the trustworthiness of Artificial Intelligence techniques in systems supporting road safety and
securing computer network users. Also, we analyzed the challenges and requirements of the newly
designed solutions using Trustworthy Artificial Intelligence methods. Verifying Trustworthy Artificial
Intelligence solutions and their practical use will increase users’ physical and environmental security.

Keywords: Trustworthy Artificial Intelligence; safety and robustness; physical and environmental
security; traffic and pedestrian safety; Intrusion-Detection Systems

1. Introduction

We encounter various facilities in everyday life provided by different networks’ sys-
tems and architectures. Most of such solutions belong to Cyber–Physical Systems (CPSs) or
the Internet of Things (IoT). These systems use sensors and various Artificial Intelligence
(AI) algorithms to improve our lives [1]. Moreover, they work in different areas of our
lives [2–4]. For example, we can find such systems in medicine [5], sports [6], or security [7].
Each solution is characteristic of a specific area and problem. We find systems that use
sensors to monitor patients’ health in medicine. The implemented AI methods, combined
with sensors, can help control the vital functions of chronically ill people and signal the
need to deliver medications to the patient when necessary. People with eyesight problems
can also be helped by using AI [8,9]. In sports, we can find AI methods that enable the
analysis of the athlete’s movement and performance. Additionally, these systems can
analyze the athlete’s vital functions and react in life-threatening situations [10].

On the other hand, the security aspect affects many different planes of human life.
We can consider physical and environmental security here. Physical and environmental
security cover many issues. Physical security primarily refers to protecting people and
property against various factors (for example, fire, flood, theft, vandalism, and terrorism).
Environmental security, in turn, refers to the protection of specific infrastructure. Both
issues are reflected in various standards prepared by agencies such as NIST, ISO, COBIT,
and GDR [11]. In particular, by physical security, we mean protecting human life against
factors that may contribute to human death. For example, physical security may include
preventing car accidents. Based on other drivers’ behavior, we can predict a possible
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collision. Also, physical security is related to pedestrians at crossings and on the shoulders
of the road.

In contrast, environmental security concerns data security and computer network users’
identity. Especially characteristic are IoT systems, which consist of many communicating
wireless devices (mobile devices and sensors). IoT systems can also use Wireless Sensors
Network (WSN) technology, the task of which is to monitor and collect data from a defined
area. The characteristics of the data sent by users of devices located in IoT systems can be
varied. Regardless of the data characteristics, the data collected by these devices should be
appropriately secured against unauthorized access and attacks by rogue users [12,13].

As mentioned, CPSs or IoT systems use Artificial Intelligence algorithms. In short,
these algorithms tell the system how to learn to operate on its own. AI algorithms use
techniques like Deep or Machine Learning, Cloud Computing, or Spiking Neural Networks
(SNNs), depending on the problem to be solved. As AI algorithms’ users, we can set some
requirements for them. From the physical and environmental security point of view, these
requirements will concentrate on dimensions like safety, robustness or privacy, and data
governance. Therefore, we can set the following requirements: the ability to make informed
decisions by system users, the security of users, their privacy and data, system resistance
to attacks, traceability, the transparency of system components, and responsibility [14–16].

Artificial Intelligence algorithms must meet the requirements of being trustworthy. The
concept of TAI emerged in response to the rapid pace of technological change. Moreover, the
Trustworthy Artificial Intelligence (TAI) systems have become a priority for the European
Union. AI systems must be human-centric and serve humanity and the good of society
at large. These systems offer enormous opportunities, but also pose certain risks, which
can impact society. As a result, trust in technology has become a key goal for developers
of AI-based systems [14]. A Trustworthy Artificial Intelligence system must have three
characteristics throughout its life cycle. The first is legal compliance, which means that the
system must comply with applicable legal provisions at the international or national level.
The second feature is ethics, which requires the system to comply with ethical principles
and values that TAI must ensure. The most-important ethical principles include respect for
human autonomy, justice, damage prevention, and the possibility of explanation. Also, it is
necessary to consider specific values for specific groups of people (e.g., children and people
with disabilities). The third feature is robustness, which relates to both a technical and a
social point of view. All these features should work together to be a Trustworthy AI [14–16].
The TAI-equipped systems must be assessed against the mentioned earlier requirements
and dimensions that describe their attributes or characteristics.

Moreover, the safety and robustness dimensions of TAI are strictly connected to TAI’s
ethical and explainable aspects. They are essential for building trust in AI systems. TAI
requires ethical data processing, so internal procedures and policies to ensure compliance
with data protection laws can also help facilitate ethical data processing and, thus, comple-
ment existing legal processes. In turn, explainability is crucial to building and maintaining
user trust in AI systems. This principle means that processes must be transparent, the
capabilities and goals of AI systems openly communicated, and decisions as explainable
as possible to those directly and indirectly influenced by them. Without this information,
the decision cannot be adequately challenged. It is not always possible to explain why a
particular model produced a particular result or decision (and what combination of inputs
contributed to it).

Artificial Intelligence is an indispensable element of the modern world, and its proper
use will allow for good cooperation with humans in the future. AI is still evolving as it is
the primary driver of emerging technologies such as big data, autonomy, and robotics, and
it will continue to act as a technological innovator. Learning about AI’s characteristics and
effective use will change work and workplace dynamics forever. AI will impact virtually
every industry and every person. For this reason, we should focus on each challenge and
problem that can be solved using Artificial Intelligence methods.
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1.1. Motivations and Contributions

In the era of the development of computer technologies and increased user mobility,
the demand for intelligent systems (CPSs) that introduce amenities in our lives using
various methods and techniques of AI is also growing. Considering that these systems use
devices and sensors that process user data, it should be stated that CPSs must inspire users’
trust and adapt to their needs. A special need and, simultaneously, a requirement for CPSs
is security, which can be considered on many levels. People want to be safe on the way to
work or the shop and do not want to become victims of car accidents. On the other hand,
people expect technological security as well. As computer network users, people expect
their data to remain intact or lost as a result of data transmission security errors.

New solutions in the physical and environmental security field should contribute to
increasing their users’ safety levels. However, using AI methods may raise concerns about
the effectiveness of these solutions and possible malfunctions. For this reason, regularly
reviewing these solutions, their efficacy, and problematic issues is necessary, especially in
TAI algorithms’ safety and robustness dimensions. Thanks to this, it will be possible to
improve solutions that require it.

This review focused on TAI-based users’ physical and environmental security so-
lutions. We used these security types to describe the realizations and characteristics of
the safety and robustness of TAI dimensions. We believe that studying the safety and
robustness dimensions of TAI in users’ physical and environmental security solutions can
help readers understand the state-of-the-art theory and practice in this regard.

First, we present the levels of vehicle automation. Next, we consider the work on
detecting cars in traffic by different neural network approaches and how this affects au-
tonomous vehicles. Then, we discuss pedestrian safety and address the issue of pedestrian
detection using different methods. Next, we consider some works related to adversarial
attacks on SNNs, DVS cameras, and bioinspired solutions to enhance adversarial attack
resilience and TAI regarding Spiking Neural Networks’ opportunities and risks. Also, we
explain the safety problems and necessities in the IoT and sensor networks. We discuss
the safety levels implemented by intrusion- and attack-detection systems. We analyze the
challenges and requirements of the newly designed solutions connected with TAI methods.

Also, we looked for other reviews related to Trustworthy Artificial Intelligence meth-
ods for users’ physical and environmental security. We found reviews focused only on
physical (for example, [17–21]) or environmental security (for example, [22–26]). These
works mainly considered some subset of Artificial Intelligence methods and did not con-
sider the trustworthy dimensions of AI.

1.2. Methodology

We mainly collected the papers using various search engines, including Google Scholar
and DBLP. Moreover, we analyzed the references from the found articles and citations to
these articles. Our main goal was the most-complete and up-to-date overview of Artificial
Intelligence methods for users’ physical and environmental security. Considering these
two security areas in CPSs and IoT systems, we focused on the systems responsible for the
security of network users, traffic, and pedestrian crosses. Also, we considered cases for the
safety and robustness of more-strictly neuro-inspired AI, particularly the trustfulness of
rarely exploited Spiking Neural Networks.

1.3. Organization

The organization of the rest of this paper is as follows. Section 2 briefly presents trust-
worthy methods in Artificial Intelligence. We describe AI techniques and their applications.
We focused on techniques like Deep Learning, Fuzzy Systems, Quantum Computing, Cloud
Computing, and Edge Computing. Also, we explain how neural networks work. We briefly
explain SNNs, how they differ from traditional ANNs, what Dynamic Vision Sensor (DVS)
cameras are and what the differences are compared to traditional cameras. In Section 3, we
present physical safety in traffic. This is realized by monitoring the vehicle environment.
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We present the categories of automobile automation. Next, we show the methods of vehicle
detection. Mainly, these are methods based on neural networks. In the next step, we discuss
pedestrian safety. Also, we present accident statistics and discuss different approaches for
pedestrian detection. Then, we review some works about adversarial attacks on SNNs,
DVS cameras, and bioinspired solutions to enhance adversarial attack resilience. We also
consider TAI regarding SNNs’ opportunities and risks and introduce Dynamic Vision
Sensors as an emerging, promising technology to enhance road safety. In Section 4, we
discuss issues connected to the safety and security of computer network users. We describe
security requirements and threats. Afterwards, we provide an overview of the TAI-based
method used for intrusion and attack detection in CPSs (including specific solutions like
the IoT). Next, we summarize and conclude our analysis. In the last section, we present
an overview of the entire article, conclusions from the research, and challenges and future
directions in users’ physical and environmental security.

Figure 1 shows a visualization of the processed topics related to the rest of the
article’s structure.

Figure 1. Visualization of the processed topics.

1.4. Acronyms

Table 1 summarizes this paper’s acronyms and their explanation.
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Table 1. List of acronyms used in this paper.

Acronym Explanation Acronym Explanation

ANN Artificial Neural Network KNN K-Nearest Neighbors algorithm
BL Bayesian Learning KPCA Kernel Principal Component Analysis
BSM Basic Safety Messages LSB Least-Significant Bit
(D)CNN (Deep) Convolutional Neural Network LSTM Long Short-Term Memory
CPS Cyber–Physical System MITM Man In The Middle attack
(D)DoS (Distributed) Denial of Service attack ML Machine Learning
DL Deep Learning NB Naive Bayes
DNN Deep Neural Network PSO Particle Swarm Optimization
DRNN Dense Random Neural Network RNN Recurrent Neural Network
DSU Driving Scene Understanding R-CNN Region-based Convolutional Neural Network
DVS Dynamic Vision Sensor R-STDP Reward-modulated Spike-Timing-Dependent Plasticity
(FF)CNN (Feed-Forward) Convolutional Neural Network SNDAE Stacked Non-symmetric Deep Auto-Encoder
FL Federated Learning SNN Spiking Neural Network
FPGA Field Programmable Gate Array SOTA State-Of-The-Art
GA Genetic Algorithm SPP Spatial Pyramid Pooling
GAN Generative Adversarial Network SSD Single-Shot Detector
GNN Graph Neural Network SVM Support Vector Machine
GRU Gated Recurrent Unit (T)AI (Trustworthy) Artificial Intelligence
HOG Histogram of Oriented Gradients TA-SNN Temporalwise Attention SNN
IDS Intrusion-Detection System ToM Theory of Mind
IMU Inertial Measurement Unit UAV Unnamed Aerial Vehicle
IoT Internet of Things VANET Vehicular Ad Hoc Network
(I)RF (Improved) Random Forest WSN Wireless Sensor Network

2. Trustworthy Methods in Artificial Intelligence

In this section, we present trustworthy methods in Artificial Intelligence. We briefly
describe AI techniques like Deep Learning or Fuzzy Systems with their applications. Also,
we explain how neural networks work. Next, we mention newer AI techniques like
Quantum Computing, Cloud Computing, Edge Computing, and Spiking Neural Networks.

2.1. AI Methods and Their Applications

Artificial Intelligence is a tool that enables machines to learn from experience, adapt to
new inputs, and perform human-like tasks. In recent years, AI has reached a significant level to
ensure the practical functioning of many issues of collecting and analyzing helpful information.

When characterizing AI, first, one should start with Deep Learning (DL) [27]. DL is a
Machine Learning (ML) technique that teaches computers to do what comes naturally to
people, to learn by example. Countless developers use the latest innovative Deep Learning
technologies to take their businesses to a new level. There are many areas of AI technology,
such as autonomous vehicles, computer vision, automatic text generation, etc., where the
scope and use of deep learning are growing.

A typical example of AI is neural networks with the ability to recognize objects, such
as facial recognition [28]. These networks make it possible to recognize individual faces
using biometric mapping. Such use has led to breakthrough advances in surveillance
technologies, but has also been met with much criticism for breaching privacy. Offering
legal agencies surveillance technology to monitor entire cities through a network of CCTV
cameras and accurately assigning each citizen his/her real-time social credit score is not
something that will be acceptable to the public.

This is different in the case of the use of AI in control and automation. AI can perform
the same type of work repeatedly without fatigue. By the way, it is an ideal tool in the form
of Fuzzy Systems [29], where relying on typically real values does not allow for correct
control of machines. Automation increases productivity and results in lower overall costs
and, in some cases, a safer working environment. One should also mention the appropriate
organization of tasks. First of all, genetic and evolutionary algorithms complement the
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elements of AI, where, often in combination with neural networks, they are perfect for
optimization issues.

Neural networks work well for obtaining various data. With each passing day, the
data everyone produces grow exponentially. Rather than manually entering these data,
networks allow you to collect and analyze them based on your past experiences [30]. Data
acquisition is the transfer of knowledge from various sources to a data storage medium,
where it is often accessed, used, and analyzed by various organizations. Often, data
collection is preceded by edge processing. AI uses neural networks to analyze a large
amount of such data and helps draw logical conclusions.

An example of the intensive use of AI algorithms in the form of neural networks (recursive
and not only) for speech and text analysis can be found in Chatbot software v1 [31]. This is
software that provides communication when solving customer problems by inputting audio or
text data. Earlier bots only responded to specific commands, and the bot knew what the user
meant if the user said the wrong thing. The bot had the capabilities that were implemented
for it. The real change came when Chatbots were enhanced with AI algorithms that make it
possible to understand the language, not just the commands themselves.

Another type of AI is hybrid solutions that form the basis of Quantum Computing.
AI helps solve complex quantum physics problems with supercomputers’ accuracy using
Quantum Neural Networks [32]. This could lead to groundbreaking changes in the near
future. It is an interdisciplinary field that focuses on building quantum algorithms to improve
computational tasks within AI, including sub-domains such as Machine Learning. The entire
concept of quantum-assisted AI algorithms remains in the domain of conceptual research.

Cloud Computing is another element of AI [33]. With so much data being transferred
each day, storing the data in physical form would be a serious problem. ML functions
operating in the Cloud Computing environment increase the efficiency of data organization,
and in combination with Edge Computing, they significantly reduce the need for space for
the crucial data stored.

2.2. Spiking Neural Networks

A Spiking Neural Network (SNN) is a more-biologically plausible version of an
Artificial Neural Network (ANN). Neurons communicate through synapses using electrical
pulses (spikes, action potentials)—instead of scalar values [34]—as almost all biological
neurons do. Spikes are binary events that encode information in time and quantity (spike
train). Hence, continuous time flow is necessary to process data with SNNs. There is
no time step concept in SNNs as opposed to ANNs. However, the digital simulation of
SNNs with general-purpose accelerators requires using a time step (as a time quantum for
simulation), but this is a term coming from the numerical simulation domain.

One of the main goals of SNNs is to tremendously reduce the amount of energy
required for training and inference. The human brain requires about 20 W of power to per-
form extremely complex computations [35]. Such low magnitudes of power consumption
would not be possible when using CPU or General-Purpose GPU (GPGPU) calculations.
Hence, the specialized neuromorphic devices are the native platforms for SNNs to exe-
cute. There have been many approaches for creating neuromorphic hardware, for example
SpiNNaker, BrainScaleS, IBM TrueNorth, Intel Loihi, and Intel Loihi 2 [36,37].

Nevertheless, as mentioned earlier, SNNs can be simulated using general-purpose
accelerators, which are not as energy efficient as specialized neuromorphic hardware, yet
allow for inexpensive and elastic research on SNNs. There are a few frameworks and tools
to perform such simulations—Intel LAVA [38], Nengo [39], Sandia Fugu [40], snnTorch [41],
SpykeTorch [42], NEURON [43], NEST [44], BRIAN [45], CARLsim [46], and others [47].

Here, we reference some papers about SNN fundamentals, as furthermore, we focused
mainly on TAI: [34,35,48–50].
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3. Physical and Mixed Safety

This section considers the safety TAI dimension on a physical and mixed safety basis.
Firstly, we focus on traffic and pedestrian safety and consider TAI-assessed systems for
drivers. Next, we evaluate AI systems’ robustness considering hardware robustness and
software stability. Also, we examine adversarial attacks on AI methods.

3.1. Traffic Safety

Traffic safety is an increasingly important aspect of our lives. The number of automo-
biles in 2015 was 1.1-billion, resulting in heavy traffic. Vehicles travel at high speeds, which,
combined with heavy traffic, results in more accidents, which result in injury and even
death. New cars are installing systems that assist drivers and, sometimes, even replace
them (full autonomy). We distinguish between five levels of autonomy in vehicles [51].
Level 0 means no auto automation. Such vehicles are still the largest number on the world’s
roads. With Level 1 driver assistance, the system can assist the driver. The vehicle can
perform steering and acceleration in the Level 2 advanced driver-assistance system. Up to
this level, it is considered that a human is responsible for monitoring the environment. In
subsequent levels, the system monitors the vehicle’s surroundings. The vehicle can perform
most of the driver’s tasks in Level 3 conditional automation. Level 4, high automation,
the vehicle can perform all the driver’s tasks under specific circumstances. Level 5 is full
automation. The vehicle can perform all of the driver’s tasks under any conditions. The
installed and designed systems are based on multiple sensors to improve safety on the
road. AI also plays a role here [52,53].

Traffic safety systems based on AI primarily rely on images and vehicle detection [54].
There are a number of preprocessing methods that increase the effectiveness of such
detection. Vehicle detection can fall into the previously mentioned Level 1, and such a
system can inform the driver about his/her surroundings in a limited way. For example,
systems operating in difficult conditions related to visibility are a significant advantage
here, serving to detect people or animals at night or in fog.

When vehicle detection is at a high level, we can extend the safety system to determine
the trajectories of vehicles in the environment. If the system has such knowledge, it can
determine potential collisions [55] with other traffic participants [56,57]. With such a system
in place, we are already higher in the previously discussed automation model. A system
that recognizes and analyzes the vehicle’s surroundings can be assigned to Level 4, as it can
monitor and analyze the environment. It can also determine the real danger to the vehicle
being driven.

Systems that detect people at pedestrian crossings or intersections are also essential
in vehicles.

3.2. Pedestrian Safety

Pedestrians are the least-protected road users. They do not have any safety measures
in the case of a possible accident. Because of this, any traffic incident involving them is very
dangerous. Therefore, this is a very important topic for road safety research. According
to data from the World Health Organization (2021), there have been about 20–50-million
fatalities and injuries in road accidents worldwide. As many as 19% involve fatal accidents
involving pedestrians [58]. In Poland, 28,660 people were injured in 2021. Pedestrians
accounted for 16.9% of all those injured. Based on the data [59], only 24.8% of all accidents
involving pedestrians were their fault. This means that systems that detect people and
their potential behavior can help prevent as many as 72.7% of accidents. If we look at the
statistics for the location of accidents, it turns out that most, 71.9%, involve intersections
and pedestrian crossings. This confirms the validity of the research and ANNs’ continued
improvements in detecting people. However, in this case, we have stricter requirements.
They mainly rely on accuracy and real-time performance, as this directly impacts the field
of autonomous vehicles and smart cities. The constant pursuit of the perfect detection of
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pedestrians and other objects has resulted in the development of different approaches to
this topic [60].

The Convolutional Neural Network (CNN) approach will be discussed first. CNNs
use image recognition and classification to detect objects, recognize faces, etc. The proposed
improvement involves [61] automatically optimizing the feature representation to the
detection task and regularizing the neural network. The accuracy of the Support Vector
Machine (SVM) classifier using the features learned by the CNN is equivalent to the
accuracy of the CNN, confirming the importance of automatically optimized features.
However, the computational demand of the CNN classifier is more than an order of
magnitude lower than that of the SVM, irrespective of the type of features used.

The next group discussed is the R-CNN, Fast R-CNN, and Faster R-CNN. The Region-
based Convolutional Neural Network is based on the proposal of regions that are used
to locate objects within the input image. Ross Girshick et al. [62,63] proposed extracting
2000 region proposals from images and processing them. The problem with such a solution
is the long processing time of 2000 region proposals. It is impossible to work in real-time
because processing a single image takes a few to tens of seconds. In addition, the selective
search algorithm is a fixed algorithm. Therefore, we cannot improve the quality of the
candidate region proposals. Based on this knowledge, the proposal to improve [64] the
R-CNN was to modify this algorithm. The new approach of the region proposal method
was based on the algorithm in [65]. Such a modification makes it possible to significantly
improve the operation of the entire method. The next step for the R-CNN method was for
the author to build a faster object-detection algorithm, and the new method was named
Fast R-CNN. Here, we do not determine 2000 region proposals. Instead, the operation feeds
the input image to the CNN to generate a convolutional feature map. Based on such a map,
proposal regions are determined and are wrapped into squares. After transforming them to
a fixed size, we feed them to the fully connected layer. We can successfully use this model to
detect pedestrians [66]. One modification that improves the method’s pedestrian-detection
capability is using the EdgeBoxes algorithm to generate effective region proposals from the
image [67]. The quality of these regions significantly affects detection performance. Also
added is a batch normalization layer between the convolutional layer and the activation
function layer. Due to the wide variety of features in pedestrian detection in natural scenes,
it was noted that a divide-and-conquer philosophy could mitigate them.

Based on this, the Scale-Aware Fast R-CNN (SAF R-CNN) method was proposed [68].
The model introduces multiple built-in subnetworks, which detect pedestrians with scales from
disjoint ranges. Outputs from all of the subnetworks are then adaptively combined to generate
the final detection results, which are robust to the large variance in instance scales via a gate
function defined over the sizes of object proposals. The latest improvement to the R-CNN
and Fast R-CNN algorithms eliminates the selective search algorithm for region proposals.
Shaoqing Ren et al. developed an object-detection algorithm called Faster R-CNN [69], allowing
the network to learn region proposals. The Faster R-CNN algorithm takes the entire image as
the input to the convolutional network, exactly like the Fast R-CNN. Still, a separate network
was implemented to predict region proposals instead of a selective algorithm.

An analysis of the Faster R-CNN algorithm for pedestrian detection was performed
in the article [70]. The study showed the validity of using the Region Proposal Network.
Another proposal to improve [71] Faster R-CNN was about improving the quality of the
network and using K-means cluster analysis. The faster R-CNN method can detect people
with a drone [72]. Based on this algorithm, a new FCF R-CNN model was developed [73].
It is based on feature fusion and context analysis. The proposed method has better results
for pedestrians that are small in size and obscured, and it is also robust to difficult scenes.

In 2015, Redmon et al. proposed the first single-stage detector YOLO [74]. The first
version had reduced detection accuracy relative to the two-stage detector, but significantly
increased the detection speed. High speed and precision are crucial for pedestrians and
unusual situations on the road. Subsequent versions of the YOLO network were prepared
to improve detection quality. Variations containing specific improvements were also in-
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troduced for newer versions. The first of these concerns the YOLOv2 network [75,76].
The improvement of this network began with a modification of the DataNet53 model,
in which feature creation was strengthened. In addition, three inception depth convolu-
tion modules were added and integrated at different levels. All these changes lead to a
more-comprehensive characterization of the object in the image. The next version of the
YOLOv3 network [77,78] uses the HOG method, which was implemented as preprocessing.
This method makes it possible to highlight pedestrian contour features, especially small pedes-
trian target features, and reduce the interference caused by background information on the
detection results. Another attempt to improve the YOLOv4 [79,80] network was based on
implementing a modified detection model. The proposed model combines a new type of
Spatial Pyramid Pooling (SPP) network and K-means clustering algorithm with the YOLOv4
model for easier feature extraction. In addition, the Mish activation function is applied to
the neck of the detection model, replacing the Leaky ReLU activation function to improve
detection performance.

Another improved pedestrian detection performance solution is an updated version
of MobileNet [81] combined with the Single-Shot Detector (SSD) [82,83]. This method’s
four components are important for pedestrian detection, feature extraction, deformation,
occlusion handling, and classification. The solution proposed in the paper allows the
coordination of the components to increase their strength with a reduced number of
parameters. The model achieved better results when tested on low-end edge devices than
different versions of the YOLO network.

3.3. Trustworthy and Explainable SNNs

We decided to temporarily divide AI system robustness into three categories—from the
low level to the highest: hardware robustness, software stability, and inference reliability.
Often, AI robustness is investigated only for the last category—inference reliability. The
general-purpose hardware robustness and software stability are tested and assured earlier in
the software stack, by much broader use cases, with low-level tests performed not only for
the AI domain. Hence, traditional AI, which uses general-purpose hardware and primarily
general-purpose software, can be investigated mainly for inference robustness. However,
SNNs are targeted to utilize custom, specialized hardware—neuromorphic devices. Therefore,
hardware robustness and software stability can be considered in the context of TAI as a whole,
together with inference reliability. As adversarial attacks on classic ANNs/CNNs are the often
addressed issue, we discuss them separately in Section 3.4.

El-Sayed et al. [84] designed the Fault Simulation Framework for testing faulty be-
haviors of spiking Integrate-and-Fire (I&F) neuron analog model implementation. They
considered standard transistor defect models, including stuck-on and stuck-off behaviors.
For the passive elements (resistors and capacitors), the defect model includes variations of
the parameters up to 50%. In summary, their defect model for a single analogue neuron
took 46 different defects into account. They identified many defective behaviors, rang-
ing from catastrophic states (non-functional neurons) to parametric defects (variations in
spike timing compared to the nominal response). They defined a taxonomy for different
neuron defects. Finally, the authors stated that these hardware-level errors can be readily
reproduced on the network’s behavioral level by direct changes to the model parameters.

Spyrou et al. [85] investigated neuron defects identified in El-Sayed et al.’s [84] experi-
ments. They designed two SNNs for the classification task. The first was designed to classify
digits from the N-MNIST [86] dataset, and the second was for gesture classification from
IBM’s DVS128 gesture dataset [87]. The first network performed with 98.08% classification
accuracy and the second with 82.2% classification accuracy (with shortened samples). After
the experiments, consisting of fault injection and implementing a fault repair mechanism, they
proposed a neuron fault-tolerant strategy for SNNs and a fault-tolerant SNN architecture. The
proposed techniques improved the overall classification accuracies. Their strategy consisted
of a few mechanisms, including passive fault tolerance using dropout, active fault tolerance
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in hidden layers (offline self-test, an online self-test, a recovery mechanism), and active fault
tolerance in the output layer.

In the next research, Spyrou et al. [88], instead of simulating an SNN, implemented it
utilizing an FPGA as a neuromorphic device. Their SNN performs poker card symbol recog-
nition tasks. The baseline for the recognition task (without fault injection) was 85 ± 2.5%.
The fault injection engine flips the bits of different memory segments (splitter parameters,
router parameters, neuron parameters, kernel parameters, kernel weights). After that, the
accuracy results were compared to the baseline performance. Based on the comparison
results, the authors pointed out the list of memory segments that should be especially
protected against memory faults. These are splitter parameters, router parameters, and
kernel parameters. Other parameters indicate some degree of fault tolerance for bit flips in
Least-Significant Bits (LSBs). However, we suppose that these parameters’ LSBs’ resilience
indicates that some variables could be represented with fewer bits.

Han and Han [89] in 2014 focused on a robust human detection system in all weather
conditions. They proposed their neuromorphic vision solution, an alternative to already
existing algorithms. Although they did not use the Dynamic Vision Sensor (DVS) (an
explanation is given further in this subsection), their system was inspired by the primary
visual cortex (V1), and its neurons respond specifically to differently oriented lines. The
system provides robustness for detecting humans mostly occluded with clothing, people
wearing helmets, where the rest of the body is not visible, and human detection in rainy
weather or in low-light conditions. They also proposed a solution for neuromorphic
stereovision processing. Finally, they proved their system performance by achieving a 95%
pedestrian detection rate and showing robustness in detecting bike riders against dark and
wet conditions. The next year, in 2015, Han and Han [90] proposed a system with a 99%
successful detection rate for its new use case.

Zooming our considerations out from a particular vehicle or agent, Prez et al. [91]
utilized the SVM and SNN as two alternatives for predicting crowd movement trajectory,
which is critical for many physical safety applications. They simulated crowd movement at
the microscopic level (interaction between individual agents). After comparing the two
alternatives, it became clear that the SNN performed better than the SVM in predicting
crowd behavior. Although the authors assumed that using methodologies developed from
SVM could provide better results than the currently obtained, they also stated that it should
still be possible to achieve better performance with SNNs in future work.

To a certain extent, crowd movement is related to Driving Scene Understanding (DSU),
as people’s movements can be a crucial part of DSU. DSU aims to understand ongoing
on-road driving scenarios [92]. Gaurav, in his thesis [93], focused on DSU, using an SNN
(by learning the ANN and converting it to the SNN). To train his 3D-CNN network, he
used visual data only from the Honda Research Institute Driving Dataset (HDD) [92]. The
best mean result for the goal-oriented action layer was achieved by the SNN using the
“True Max U” method as a counterpart for the MaxPooling layer. The converted network
was deployed on the GPU SNN simulator. The best mean result for the cause-oriented
layer—which heads up towards explainable AI—was achieved by using a nonspiking
ReLU ANN. He also proposed two new methods for performing a neuromorphic-friendly
implementation of the MaxPooling layer. He proved their efficacies on the Intel Loihi
neuromorphic chip using the Nengo, NengoDL, and NengoLoihi libraries.

Zhao et al. [94] remarked that AI systems often interact with multiple agents, which
leads to safety risks (physical safety in that context) arising from such interactions. They
proposed a solution for AI agents interfacing with others, a use case for the Theory-of-Mind-
based SNN (ToM-SNN). Their ToM-SNN was trained using Reward-modulated Spike-
Timing-Dependent Plasticity (R-STDP) [95,96]. Their SNN aims to recognize other agents’
risky mental states and help them when necessary. In a series of experiments performed in
a simple grid world, their agent helped others avoid safety risks (rescue behavior chosen).
It recognizes others’ behavior policies and behaves differently for different agents. Hence,
the mentioned paper can be crucial for DSU systems and AI development towards TAI.
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However, the authors stated that much work is needed to scale their ToM-SNN model.
They targeted creating a model inspired by the mirror neuron system, the model that
understands others’ actions and beyond that.

Guarav’s and Zhao’s solutions, mentioned above, could be beneficial also for enhanc-
ing environmental safety at mass events, e.g., as the agents enhancing the functionality of
mass event security systems. After scaling up the mentioned solutions, they could predict
massive crowd movements at events and detect riskily behaving individuals. Hence, our
main concerns about implementing the solutions in such applications are the low availabil-
ity of neuromorphic processors, which are necessary for the low energy demand of such
systems, and the need for scaling up the proposed solutions, which are quite promising.

We found few papers focusing on the explainable SNN field, which signalizes that it
is still a poorly developed area in the SNNs domain. Nguyen, in her Master’s thesis [97],
proposed the Temporal Spike Attribution (TSA) method, which allows for a better under-
standing of the SNN’s outcome. Next, Kim and Panda [98] basically proposed a tool that
produces a heatmap of the input shape, showing an attention map for the input data, named
Spike Activation Map (SAM). The authors claimed that this is the beginning (in 2021) of
the “explainable neuromorphic computing” area that is leading to increased trust in SNNs’
outcomes. Finally, Seras et al. (2022) [99] focused on detecting abnormal input data by
applying the Out-of-Distribution (OoD) data detector. The OoD input is the input data that
the model was never trained with. Hence, it can produce untrustworthy outcomes. Their
detector helps to expose the OoD input by observing hidden layers of the SNN. Moreover,
the detector is able to indicate which part of the input is the most-atypical, yielding the
map of the input abnormality. The authors compared their work to other OoD detection
schemes, claiming that their method is competitive with them.

Further, we explored DVS safety and robustness solutions. A DVS is a device that
detects scene illumination changes. A DVS is also called a silicon retina or event camera.
Each pixel of a device’s matrix reacts to changes in its field of view. The sensor produces
a stream of asynchronous events: it elicits an event at the moment of brightness change
detection. A particular event encodes a few pieces of information, i.e., time, pixel location,
and the sign of the brightness change.

In contrast to traditional cameras, DVSs have some attractive properties—instantaneous
reaction for the changes in the scene (temporal resolution in the order of µs instead of the
order of many ms in traditional cameras), high dynamic ranges (up to 140 dB instead of
∼60 dB), and low energy consumption. More details on DVSs were given in the survey by
Gallego et al. [100]. Event sensors are a kind of native source of information for SNNs, due
to their event asynchronous nature, similar to neuronal spikes.

Zhang et al. [101] explored three aspects of processing events from the DVS cameras
with SNNs. First was a conversion of a large-scale CNN to the SNN without losing too
much precision. The solutions they proposed for conversion between network types can be
generalized to convert other DNNs into SNNs. Secondly, they transformed the Cityscapes
dataset [102] into two different representations: event-processing mode and contrast-
detection mode. Lastly, they constructed a 3D-structured-light-acquisition system and
3D-image-recognition algorithm, using a DVS camera from Prophesee, Model PSEE300EVK.
The authors stated that their algorithm achieved good generalization results.

Yao et al. [103] proposed the Temporalwise Attention SNN (TA-SNN) to classify event
streams coming from DVS cameras with higher accuracy. The authors observed that event
streams include many redundant events in the temporal dimension. Hence, their TA
module estimates how much attention the SNN should pay to the current, temporarily
created time frame. The time frame was constructed from events belonging to a particular
time window. In the inference mode, the attention value must surpass a certain threshold
for further event processing (utilizing the SNN). Otherwise, the processing is skipped. In
the training mode, the attention mechanism weights inflowing time frames. The authors
tested their TA-SNN with three different tasks, i.e., gesture recognition (using the DVS128
Gesture dataset [87], achieving 98.61% accuracy), image classification (using the CIFAR10-
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DVS dataset [104], achieving 72.00% accuracy), and spoken digit recognition (using the
Spiking Heidelberg Digits dataset [105], achieving 91.08% accuracy). The authors stated
that their attention mechanism did not impact accuracy significantly, but the reduction in
the number of events significantly reduced the amount of computation.

Liu et al. [106] remarked that most current (in 2021) SNNs for processing event streams
focus on object-recognition tasks. The authors proposed a hierarchical SNN to recognize
actions using motion information. Their SNN was equipped with a motion-perception
layer and a motion-pooling layer, consisting of motion-sensitive neurons. Neurons from the
motion-pooling layer have a larger receptive field than neurons from the motion-perception
layer. However, both layers were characterized by the same neural dynamics. The SNN
consisted of five spiking layers, including the input and classifier layers. The solution
was evaluated with three datasets, i.e., the DailyAction-DVS dataset [106], the DVS128
Gesture dataset [87], and the Action Recognition dataset [107]. For the DailyAction-DVS
dataset—which could help recognize human action for safety applications—the proposed
solution achieved 90.3% accuracy. For the DVS128 Gesture and Action Recognition datasets,
the achieved accuracies were 92.7% and 78.1%, respectively. The accuracies achieved for
the datasets were better than the accuracies from other papers quoted by the authors.

Instead of detecting or classifying objects or actions, Salah et al. [108] focused on a
robust relative localization system, utilizing a DVS camera, Inertial Measurement Unit
(IMU) sensor, and stationary flickering LEDs as landmarks. However, they did not utilize
SNNs in this work. The authors tested and evaluated their system by mounting it to a
small Unnamed Aerial Vehicle (UAV) and comparing the localization results with the
Optitrack Prime 13 motion-capture system, a ground truth for localization. They achieved
a maximum positioning error equal to 0.0137 m, a mean positioning error of 0.0052 m,
a maximum orientation error of 2.16°, a mean orientation error of 0.567°, and a relative
positioning error of 0.074% at a 7 m range. The test was performed indoors. The authors
stated that the proposed system outperformed SOTA methods in terms of localization
accuracy and execution time.

Table 2 summarizes all datasets mentioned in this section related to SNNs and DVS
processing. The first column references the dataset; the second column contains the dataset
name; the third column points to papers described in this subsection and utilizing the
dataset; the fourth column briefly describes the dataset; the fifth column references the
dataset download page.

Table 2. Summary of the datasets related to SNNs and spike processing.

Ref. Name Papers
Utilizing

Description Total
Samples

Download

[86] N-MNIST [85,109] The spiking version of the MNIST dataset. It consists of
handwritten digits. The dataset is generated with a DVS
camera and consists of 70,000 samples.

70 k https://www.
garrickorchard.
com/datasets/n-
mnist (accessed
on 16 July 2023)

[87] DVS128
Gesture

[85,103,
106,109]

A spiking dataset was recorded with a DVS camera, com-
prising 11 hand gesture categories, under 3 different illumi-
nation conditions, with 29 subjects. The camera resolution
is 128 × 128 spiking pixels. The recordings are 6 s long on
average [103]. There are 1342 recordings in total.

1342 https://research.
ibm.com/
interactive/
dvsgesture/ (ac-
cessed on 17 July
2023)

[92] Honda
Research
Institute
Driving
Dataset
(HDD)

[93] The dataset was created for the Driving Scene Understand-
ing task realization. Consists of 104 h of driving data, com-
prising three video cameras (1920 × 1200 px, 30 fps), Velo-
dyne HDL-64E S2 3D LiDAR, GeneSys Elektronik GmbH
Automotive Dynamic Motion Analyzer, and the vehicle’s
CAN data (throttle angle, brake pressure, steering angle,
yaw rate, and speed).

104 h https://usa.
honda-ri.com/
HDD (accessed
on 18 July 2023)

https://www.garrickorchard.com/datasets/n-mnist
https://www.garrickorchard.com/datasets/n-mnist
https://www.garrickorchard.com/datasets/n-mnist
https://www.garrickorchard.com/datasets/n-mnist
https://research.ibm.com/interactive/dvsgesture/
https://research.ibm.com/interactive/dvsgesture/
https://research.ibm.com/interactive/dvsgesture/
https://research.ibm.com/interactive/dvsgesture/
https://usa.honda-ri.com/HDD
https://usa.honda-ri.com/HDD
https://usa.honda-ri.com/HDD
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Table 2. Cont.

Ref. Name Papers
Utilizing

Description Total
Samples

Download

[102] Cityscapes [101] The dataset consists of 25,000 annotated (segmentation)
frames coming from driving scenes. There are 5000 frames
annotated on the pixel level, and 20,000 are weakly an-
notated (with polygons). The frames are annotated with
30 classes, recorded in different months in 50 cities (mainly
Germany). Each annotated frame is preceded and followed
by non-annotated frames, supplied with stereo frames,
global coordinates, data from odometry, and an outside
thermometer.

25 k https://www.
cityscapes-dataset.
com/downloads/
(accessed on 20
July 2023)

[104] CIFAR10-
DVS

[103] The dataset is the CIFAR10 dataset converted by the DVS
camera (at a resolution 128 × 128 spiking px) to event
representation. There are 10 classes (animals and vehicles),
1000 recordings per class, and 10,000 recordings overall.
The images were upscaled, displayed on the LCD monitor
with a circular movement, and recorded with the DVS.

10 k https://figshare.
com/articles/
dataset/CIFAR10-
DVS_New/472467
1/2 (accessed on
21 July 2023)

[105] Spiking
Heidelberg
Digits (SHDs)

[103] An audio spiking dataset. It consists of ∼10,000 high-
quality audio recordings. The words are pronounced by
12 distinct speakers and converted to spiking representa-
tion to 700 spiking channels. There are 20 classes—digits
from 0 to 9 spoken in English and German.

∼10 k https://zenkelab.
org/resources/
spiking-heidelberg-
datasets-shd/ (ac-
cessed on 22 July
2023)

[106] DailyAction-
DVS

[106] The dataset comprises 1440 DVS recordings of 12 different
activities (12 classes). There are 2 illuminations, 15 actors,
and 128 × 128 spiking px, and each recording is about
6 s long.

1440 https://github.
com/qianhuiliu/
SNN-action-
recognition (ac-
cessed on 23 July
2023)

[107] Action
Recognition

[106] The dataset consists of 450 DVS recordings of 10 different hu-
man actions, acted by 15 subjects with an average recording
length of 5 s. Recorded at different positions and distances
from the subjects. The sensor resolution is 346 × 260 spik-
ing px.

450 https://
github.com/
CrystalMiaoshu/
PAFBenchmark
(accessed on 25
July 2023)

3.4. Adversarial Attacks on CNNs, SNNs, and Neuro-Inspired Solutions Against Them

The adversarial attack occurs when the attacker corrupts the samples on which the ML
algorithm is trained or corrupts the inferred samples. The first type—corrupting training
samples—is called the causative or poisoning attack. It targets perturbing the original
data distribution. The second type—corrupting inferred samples—is called the evasive or
exploratory attack. Usually, this kind of attack targets the misclassification (often with a
high confidence level) or exploration of the model properties and behaviors [110].

Dapello et al. [111] remarked that current (2020) SOTA CNNs are loosely inspired
by the primate visual system. With the adversarial attack, these CNNs can be fooled
by adding a low noise to the image or sample, more generally. The perturbations are
modest—imperceptible or almost imperceptible for the naked human eye—but cause
misclassifications in the CNNs. As a solution for that problem, the authors proposed a new
class of models—VOneNet—a hybrid CNN vision model. Each VOneNet model consists of
two blocks, i.e., VOneBlock, and a classic adapted CNN. The VOneBlock is heavily inspired
by the primate visual cortex and serves as an input of VOneNet. It is a hardwired set of
Gabor filters, then a non-linear layer and a stochastic layer. No learning occurs in that
block. After the VOneBlock, there is a standard adapted and trainable CNN. The authors
created a VOneResNet50 model (a specific model of the VOneNet class) and tested it against
the classic ResNet50 CNN to test the performance of their solution. The VOneResNet50

https://www.cityscapes-dataset.com/downloads/
https://www.cityscapes-dataset.com/downloads/
https://www.cityscapes-dataset.com/downloads/
https://figshare.com/articles/dataset/CIFAR10-DVS_New/4724671/2
https://figshare.com/articles/dataset/CIFAR10-DVS_New/4724671/2
https://figshare.com/articles/dataset/CIFAR10-DVS_New/4724671/2
https://figshare.com/articles/dataset/CIFAR10-DVS_New/4724671/2
https://figshare.com/articles/dataset/CIFAR10-DVS_New/4724671/2
https://zenkelab.org/resources/spiking-heidelberg- datasets-shd/
https://zenkelab.org/resources/spiking-heidelberg- datasets-shd/
https://zenkelab.org/resources/spiking-heidelberg- datasets-shd/
https://zenkelab.org/resources/spiking-heidelberg- datasets-shd/
https://github.com/qianhuiliu/SNN-action-recognition
https://github.com/qianhuiliu/SNN-action-recognition
https://github.com/qianhuiliu/SNN-action-recognition
https://github.com/qianhuiliu/SNN-action-recognition
https://github.com/CrystalMiaoshu/PAFBenchmark
https://github.com/CrystalMiaoshu/PAFBenchmark
https://github.com/CrystalMiaoshu/PAFBenchmark
https://github.com/CrystalMiaoshu/PAFBenchmark
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achieved better overall results than the standard ResNet50 in classifying perturbed images
(∼54.3% for VOneResNet50 against ∼43.6%). The results of the clean images were slightly
worse than what ResNet50 achieved (∼71.7% for VOneResNet50 against ∼75.6%).

Branytskyi et al. [112], inspired by VOneNet (Dapello et al. [111]), proposed a VOne-
GAN. Similarly, as in the VOneNet, the architecture of the VOneGAN consists of the
bioinspired input block and standard trainable model. The input block, as VOneNet’s, also
comprises Gabor filters, a non-linear and stochastic layer. The authors stated that the pro-
posed solution improved the training stability and quality of the produced visual content.

Shi et al. [113] proposed a different solution than VOneNet for resilience to adversarial
attacks. The authors propose the Visual Attention from Recurrent Sparse reconstruction (VARS).
The solution is inspired by the human visual system and its attention mechanism, which
groups the areas of the field of view into objects, neglects nonsignificant objects (or noises),
and selects the most-significant objects. In addition, VARS improves its attention maps during
recurrent updates. VARS can be plugged into neural networks as an attention mechanism. The
researchers tested VARS against five robustness benchmarks. In each benchmark, VARS (when
based on the RVT [114] network design) performed better or similar to previous methods. The
authors released their code at https://github.com/bfshi/VARS (accessed on 10 June 2023).

Heading up toward SNNs and DVS cameras, some works propose solutions for
resilience to adversarial attacks. Marchisio et al. [109] focused on designing adversarial
attacks for the DVS cameras. They proposed five types of attack, i.e., sparse, frame,
corner, dash, and MF-Aware dash attacks, and successfully performed the attacks, causing
accuracy drops in the classification task performed by the SNN on two datasets, i.e.,
DVS128 Gesture [87] and N-MNIST [86]. They proposed applying the activity filter and
the mask filter on the outcoming event stream. The authors remarked that the applied
filters cannot completely defend against proposed adversarial attacks, especially against
the MF-Aware dash attack. Despite the applied filters, the attack caused at least a 20%
accuracy drop for the DVS128 Gesture spiking classifier and at least a 65% drop for the
N-MNIST spiking classifier.

Krithivasan et al. [115] revealed the adversarial Native SpikeAttack and Proxy SpikeAt-
tack on SNNs. The attacks target bumping up the energy consumption and increasing the
latency instead of fooling the SNN. Using the proposed attack methods, which increased
the overall spike number to 2.5×, the authors bumped the energy consumption up to 2.3×
and increased the latency to 2.2×. Eventually, the authors proposed three defense strategies,
i.e., input quantization (lowering the precision of chosen states and parameters), spike
dropout (dropping random spikes), and threshold and leak modulation (raising the spike
threshold and membrane leaking rate, which leads to potentially improved sparsity). They
allowed only for less than a 0.5% accuracy drop while evaluating the effectiveness of the
defense methods, achieving promising results. For almost each tested case, the best was
the spike dropout strategy, which often significantly reduced the excessive spike activity.

EL-Allami et al. [116] considered the impact of the structural parameters of spiking
neurons on the resilience against white-box adversarial attacks. They proposed a method-
ology for testing the robustness of an SNN and remarked that security studies show that
SNNs can be robust in their design by properly tuning the neurons’ structural parameters.
Finally, they designed trustworthy SNNs by scanning the space of the chosen parameters
and finding sweet spots for achieving the best robustness. The baseline accuracy for a
properly tuned SNN was around 95–98% for a broad space of structural parameter values
for the MNIST dataset. After performing the attacks, the performance drastically dropped
in a wide space of SNN parameters. However, the authors found a parametric sweet spot,
where the accuracy dropped only from 98% to 84% after the attack. This is a splendid
result compared to the rest of the parameter space, where the achieved accuracies were
predominantly miserable, reaching even as low as ∼0.0%. The authors published their
research source code at https://github.com/rda-ela/SNN-Adversarial-Attacks (accessed
on 10 June 2023).

https://github.com/bfshi/VARS
https://github.com/rda-ela/SNN-Adversarial-Attacks
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Nomura et al. [117] considered Time-To-First-Spike (TTFS) encoding as a resilience
method to adversarial attacks on SNNs. They trained their SNN using backpropagation
and explored its resistance to adversarial attack. They tested different temporal penalty
values to achieve the best result. Then, the results were compared to the standard ANN
adversarial attack resistance. The achieved accuracy was significantly higher for the
properly tweaked SNN than for the classic ANN. The authors observed that the achieved
accuracies for clean samples (non-attacking ones) were slightly better for the ANN than the
SNN. The authors concluded that the results suggest that SNNs mirror some aspects of
human vision/recognition.

Kim et al. [118] analyzed different SNN encodings to defend against adversarial
attacks. They compared rate coding and direct coding, paying attention to the accuracy,
the adversarial attacks’ robustness, and energy efficiency. They evaluated three different
network architectures on three datasets, using backpropagation to train the networks.
Using two different types of adversarial attacks, they remarked that rate coding had up to
20% higher resilience to adversarial attacks than direct coding. In terms of accuracy, the
directly coded SNNs achieved better results. However, the accuracy gap between the two
varied, depending on a few parameters, i.e., the complexity of the SNN and the number
of training time steps. The authors used the 16 bit Eyeriss platform to estimate the energy
efficiency for both encodings. Overall, the rate coding was less energy intensive on the
used platform than direct coding (roughly 50% less energy). Finally, the authors suggested
choosing a coding method according to a specific application.

4. Security of Computer Network Users

The security of IoT users is a comprehensive and constant issue. Users of such
networks can use banking or training platforms, Internet messengers (Messenger, Signal,
WhatsApp), social networks (Facebook, Twitter), intelligent devices, or networks of vehicles.
Additionally, during communication, users use various devices, and each communication
involves transferring information between the nodes that make up the network. Messages
may contain sensitive user data. Hence, there is a need to secure these data using crypto-
graphic techniques such as encryption, hashing, security protocols, or authentication and
key management algorithms [119–121].

While implementing security measures in the IoT systems, the so-called Cybersecurity
triad (CIA triad) allows for managing the security policy in a computer network. The
CIA triad oscillates around three aspects essential to securing communications. The first
aspect is confidentiality, which ensures that there will be no unauthorized attempts to
access confidential information. Integrity is the second aspect, providing data consistency,
accuracy, and reliability. The last aspect is availability, which guarantees consistency and
easy access to the data for authorized parties [122].

Thus, we should secure data transmission between devices using encryption protocols
such as SSL/TLS to prepare an appropriately secured IoT network. Also, we should require
strong authentication mechanisms for all devices to prevent unauthorized access, which
means that only authorized devices will have access to the network. Next, we should use
the principle of the least-privilege management model to mitigate potential risks. Thanks
to this, we ensure that users have the appropriate permissions to access individual devices
and data in the IoT network [123,124].

IoT systems and WSNs are vulnerable to cyber attacks inside and outside the network.
There are many classifications (e.g., routing-based, characteristic-based, based on the action
layer of the communication protocol) and types of cyber attacks. A cyber attack may result
in data loss, interception, or modification. The most-common attacks in these solutions are
the Man In The Middle attack (MITM), stolen or guessing attacks, capture or impersonation
attacks [125], zero-day attacks, malware [25], or (Distributed) Denial of Service attacks [126].

During the Man In The Middle attack, the aggressor tries to disrupt communication
between two end systems by injecting a malicious node between legitimate nodes or
attacking communication protocols in IoT systems. The duplicated packets can be sent
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multiple times to the recipient [125,127]. In stolen or guessing attacks, the aggressor can
guess the password when the smart card, device, or other verifier is lost or stolen from the
server. After that, the aggressor uses the so-called offline password guessing technique
due to the fixed verifier output value for the same input [125]. A capture attack refers to
a sensor node or device. The aggressor hijacks such an element to take over the network.
Next, he/she removes it from the network. During the last step of the capture attack, the
aggressor redeploys the sensor node or device as a malicious node [125,128]. Impersonation
attacks refer to situations when the aggressor uses the identity of a different user, device, or
another network element during communication. Also, the aggressor can install the client’s
certificate on such a device and next impersonate them [129]. The Denial of Service attack
(DoS) consists of overloading the application serving specific data or handling customer
data, i.e., exhausting its resources. If the aggressor uses computers in many places (called
botnets [130]) during such an attack, he/she performs a Distributed Denial of Service attack
(DDoS) [126,131]. In zero-day attacks, the aggressor tries to use the vulnerability before
software developers can find and fix it [132].

One of the security elements of IoT or WSN solutions is systems that detect intruders
and their intrusions into the network. Intrusion-Detection Systems (IDSs) are designed to
scan the network and the devices that make it up. Then, these systems analyze and evaluate
the collected information about the network activity. On this basis, they generate alarms
and react if they encounter suspicious activity. IDSs can be both hardware and software
systems. IDSs can be implemented using a variety of techniques. The effectiveness of such
systems depends on the implemented decision engine. To make the system more versatile
and effective, it applies DL and ML algorithms, which can adapt to the constantly evolving
types of network attacks and methods of carrying them out [133–136]. Figure 2 shows the
typical architecture of a CPS with an AI-based Intrusion-Detection System. The border
router forwards network traffic to an Intrusion-Detection System. This system analyzes
received data using an implemented AI model.

Figure 2. Typical architecture of a CPS with an AI-based Intrusion-Detection System.

4.1. TAI-Based Securing Against Intrusion Attacks

In this subsection, we present an overview of research connected with Trustworthy
Artificial Intelligence methods for the security of computer network users. We considered
AI-based Intrusion-Detection Systems and AI-based methods for specific attack detection.
Also, we discuss these methods and conclude our insights about the mentioned research.
The security of network users is connected with the safety dimension of TAI.

In [137], Kumar et al. proposed a deep blockchain-based trustworthy privacy-preserving
secured framework for a cyber–physical system network called DBTP2SF. The proposed system
was designed to meet the requirements of security, privacy, centralization, trust, and integrity
in interconnected device environments. DBTP2SF has a modular structure. The first module
is responsible for credibility and trust management, where observational sensor data are
assessed to generate a reputation score of a given network node. The privacy-protection
module maintains data integrity and transforms and generates data models. In turn, the
anomaly-detection module uses Deep Neural Networks (DNNs) consisting of a inputlayer,
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output layer, and hidden layer. The implemented network processes the data collected by
the sensors and analyzed by the first two modules. The DNN network then evaluates the
behavior of the data and divides them into two categories, regular activities and attacks. When
an attack is detected, data are sent to the system administrator for him/her to take appropriate
action. The authors used publicly available datasets to validate the proposed system. The
data contained events related to various attacks that may occur in WSNs (for example, MITM
and guessing attacks). The authors measured the performance of the implemented DNN
and anomaly-detection system using the following metrics: accuracy, precision, detection
rate (recall), and F1-score [134,138]. While analyzing the efficiency of the intrusion-detection
process, the authors obtained an accuracy of 98.97% and a detection rate of 93.87%. Kumar et al.
concluded that intrusion detection using the proposed DNN ensures the security of network
users because it protects them against intrusion into the network.

Gu et al. in [139] noticed that data quality also influences the effectiveness of IDS
intrusion-detection methods. High-quality training data will increase detection perfor-
mance and reduce training complexity and response time. They proposed classifying
intrusions and regular instances in their solution, which uses the SVM and Naive Bayes
(NB) feature embedding. The authors used the NB algorithm to transform the original
features into new data to obtain high-quality data. Then, the obtained data trained the SVM
classification model. The authors used publicly available datasets for intrusion detection
to research and evaluate the proposed model. The authors achieved an accuracy that
oscillated between 93.75% and 99.35% for different datasets. Gu et al. summarized that
such features characterize their proposed method as having high precision, a high detection
rate, a low false alarm rate, and a rapid training speed.

Ravi et al. in [140] proposed a comprehensive model of network attack detection
and classification of network attacks. The authors developed a system containing several
modules based on DL. To extract the features of a Recursive Deep Learning model, the
authors used Recurrent Neural Networks, Long Short-Term Memory (LSTM) networks,
and the Gated Recurrent Unit (GRU) to extract the optimal functions necessary to detect
and classify attacks. The authors used Kernel Principal Component Analysis (KPCA) to
reduce dimensionality without data loss. The authors then passed the combined features to
the collective meta-classifier, which used the Random Forest (RF) and the SVM model for
prediction. The last stage of the system’s operation was detecting and classifying network
attacks, which were performed using logistic regression. The authors tested the proposed
method using publicly available test datasets, and better results were obtained during
the tests than existing solutions for the same test data. The authors concluded that the
proposed solution could be used to monitor network traffic effectively and warn about
possible attacks in real-time.

Wang et al. in [141] adapted the LightGBM [142] algorithm to an intruder detection
system called AI@NTDS. The LightGBM uses the following characteristics: a histogram
algorithm, Gradient-based One-Side Sampling, Exclusive Feature Bundling, and Leafwise
Tree Growth. Gradient-based One-Side Sampling uses low-gradient random sampling and
introduces a constant low-gradient weight. Such an assumption allows for an increase in
the efficiency and scalability of the operation of the entire algorithm. The authors compared
the proposed method with similar solutions, obtaining better results and demonstrating the
effectiveness of the LightGBM algorithm in detecting and classifying attacks by intruders.
They concluded that the proposed system effectively detects threats related to remote
network connections. Also, Leevy et al. in [143,144] considered the LightGBM algorithm in
their intruder detection system.

Latif et al. in [145] proposed a lightweight, Dense Random Neural Network (DRNN)
for intrusion detection dedicated to IoT solutions. The network model consists of dense
clusters that can communicate and perform interactions similar to the interactions between
brain cells. The model assumes one input layer, four hidden cluster layers, and one output
layer. The communication between hidden layers is based on a Multi-Layer Feed-Forward
architecture. The proposed network was tested for effectiveness and efficiency. The results
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showed that the proposed model correctly classified nine typical IoT attacks with high
detection accuracy.

Cai et al. in [146] proposed a Hybrid Parallel Deep Learning model for intrusion
detection based on Metric Learning. The proposed system consists of several elements. The
first is the feature-extraction module, which extracts network traffic features and reduces
redundant features. The system then creates two parallel CNN architectures to combine
their spatial features further. In the next step, two parallel LSTM architectures analyze the
temporal information of the combined features. In the last stage of the system operation,
the CosMargin classifier classifies the distinguished space–time features. The authors
compared their model with similar solutions and achieved high classification accuracy.

In [147], Balyan et al. proposed a hybrid-network-based IDS model that uses an
enhanced Genetic Algorithm (GA), Particle Swarm Optimization, and Improved Random
Forest methods (IRF). In the proposed model, the Particle Swarm Optimization method
improves the decision vectors, while the GA is used to reconfigure them using evolutionary
operators. In addition, the algorithm selects the best features, thereby minimizing the
number of dimensions, increasing the true positive rate and lowering the false positive rate.
In turn, the IRF eliminates fewer essential attributes, activates the list of decision trees in
each iteration process, and oversees the operation of the RF classifier. The authors achieved
high performance of the proposed system by testing its operation using a well-known
dataset for IDSs.

Alsarhan et al. in [148] considered ensuring safe travel with intelligent vehicles and
roads that create the so-called Vehicular Ad Hoc Networks (VANETs). These networks are
exposed to attacks in which intercepted nodes modify or reject security messages. The de-
tection of this type of intrusion is important in VANETs because the lack of such protection
may affect people’s health and lives. The authors divided the intrusion-detection scheme
into four stages. The first is the security-risk filter based on rules, which is responsible for
determining whether the observed event of the node deviates from the normal profile. The
authors used Density-based Spatial Clustering of Applications with Noise in this stage. In
the second step, an adder used the rules of Dempster–Shafer theory [149]. The adder com-
putes an overall belief value by fusing all sources of evidence for each activity. Each activity
is recorded in the node’s event history database, which considers both the node’s good and
destructive activities. Saving to the database is the fourth stage of the proposed system. The
final step is related to the use of Bayesian Learning. The authors used Bayesian Learning
(BL) to update the probability of a belief with new activities. Alsarhan et al. determined
the suspicion level of all incoming data based on the degree to which they deviated from
the data reported from trustworthy nodes. The authors simulated the system using the
Markov Modulated Poisson Process and two Gaussian distribution functions. The results
showed that the proposed solution was characterized by high precision and accuracy in
detecting intrusion into the VANET. Thus, implementing such a system will protect the
network and the devices that compose it against attacks, thus protecting human life.

The problem of detecting attacks in vehicle networks was also dealt with by Ul-
lah et al. [150,151]. The authors observed that any attack on intelligent vehicle networks
could seriously disrupt vehicle communication and become dangerous to human life. Ullah
et al. proposed a hybrid model of an intruder-detection system based on DL to improve
the security of such systems. This model combines LSTM and the GRU. The LSTM pro-
cesses the input data. Between the LSTM and GRU, a DENSE layer ensures quick system
responses. The GRU, on the other hand, generates an exit probability. The results of the
tests of the proposed model showed its better performance, including a shorter response
time than other models. The authors confirmed that the model could detect different types
of cyber attacks.

Also, Driss et al. focused on attacks occurring in vehicle networks. In [152], a Feder-
ated Learning-based (FL) technique was proposed to detect cyber attacks in the mentioned
networks. The model uses the GRU to observe network traffic, considering the temporal re-
lationship between traffic samples, regulating the learning process, and detecting unknown
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attack patterns. Learning happens asynchronously. Each network node independently
performs the training algorithm with its copy of the dataset and shares the weights of
the locally learned model with the aggregating instance. The authors tested the proposed
system with publicly available test data and obtained promising results.

Hu et al. in [153] considered the security and intrusion-detection problems in au-
tonomous vehicle communication using a vehicle-mounted network. The authors proposed
a new CNN model based on two-dimensional Mosaic pattern coding to detect intrusion
in these networks. The method proposed by Hu et al. consists of two processes. The first
is coding based on 2D Mosaic patterns. During this process, one-dimensional data are
converted to two-dimensional form and then packed to be joined into a Mosaic pattern.
The second process is related to the operation of the CNN, which consists of the input,
convolutional, pooling, fully connected, and output layers. The lower layers process the
network traffic. However, the output layer contains only two neurons connected to the
neurons of the previous layer. This layer classifies incoming network data into normal
and attacking network traffic. The authors simulated their method and showed that the
proposed method effectively distinguishes attacking traffic from ordinary information
flowing in the network of vehicles. Additionally, the technique enables real-time intrusion
detection and improves the reliability of system differentiation.

Roy et al. in [154,155] proposed a B-Stacking Intrusion-Detection System for IoT
networks. Their method used the K-Nearest Neighbors (KNN), RF, and XGBoost algorithms
to detect intrusions and anomalies in the network. The authors tested their system using
publicly available datasets. Thanks to the obtained results, the authors confirmed a high
detection rate for less popular cyber attacks with infrequent observations, for example the
user to root attack, during which attackers gain access to the root by exploiting the system’s
vulnerabilities by logging as a regular user. The authors obtained lower false positive and
false negative rates than other intrusion-detection methods.

Qazi et al. in [156] proposed an automatic IDS using a DL approach. They considered
a new unsupervised technique connected with SVM classification: Stacked Non-symmetric
Deep Auto-Encoder (SNDAE). This connection increased the detection reliability and
decreased the computational requirements and the training and computing costs. The
authors performed a complex analysis of their approach using publicly available datasets.
The authors obtained an overall accuracy of 99.65% and a precision of 99.99%. Both results
were better during the comparison with similar techniques. The authors concluded that the
following research would consider a system’s ability to manage zero-day attacks.

In [157], Nguyen et al. proposed Realguard, an Intrusion-Detection System based on a
Deep Neural Network (DNN). The proposed approach can operate in the edge gateway of a
network of connected devices to distinguish between normal and attacking network traffic
and attacks. The proposed DNN model includes five hidden layers, where each neuron from
one layer connects with neurons from the next layer. In addition, the network considers over
34,000 parameters, which translates into a high efficiency of intrusion detection. The network
extracts the characteristics of the network traffic. Thus, it detects ten types of attacks, such as
MITM or denial of service attacks. The authors tested the operation of the proposed system on
a publicly available dataset. The obtained results showed the high precision and accuracy of
the system with a simultaneous low rate of false alarms.

Yang et al. in [158] proposed a lightweight and effective intrusion-detection method
based on cloud–edge collaboration. The authors used an auto-encoder, a temporal con-
volutional network, and a federated learning framework in this method. It enabled the
dimensionality reduction of raw network traffic data’s high-dimensional features. In com-
paring the proposed model with Long Short-Term Memory and the Gated Recurrent Unit,
the authors achieved better results (accuracy of 98.62%). The proposed method successfully
detected botnets in the network, brute force attacks, or DoS attacks. They concluded that
their method could reduce the computation and storage requirements. Also, it deals with
the issue of edge device resource limitations.
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In [159], Dina et al. used a focal loss function to train DL-based models to overcome
the data imbalance issue for intrusion detection in the IoT. The authors optimized the model
by enabling dynamically scaled gradient updatesand down-weighing easy instances. Also,
the focal loss function caused the model to focus on the hard misclassified examples. The
authors implemented this function in Feed-Forward Neural Networks and Convolutional
Neural Networks. They used well-known datasets to analyze the correctness of the pro-
posed intrusion-detection model. The authors received better results for the model based
on Feed-Forward Neural Networks.

Thus, in [160], Altaf et al. proposed a Graph Neural Network-based (GNN) Intrusion-
Detection System. In their method, the network graph processed multiple edges with
multi-dimensional edge features. Thanks to this, the network graph can capture the
complete exchange of information between any pair of nodes. In this structure, nodes mean
the source and destination IP addresses. Multiple adjacent edges and the multi-dimensional
edge feature matrix describe the device communication. The authors evaluated their model
on four benchmark datasets for typical performance metrics. Also, they compared their
method with other GNN models and achieved better effectiveness of their model than the
other models.

In [161–163], Blaise et al. developed a botnet-detection method called BotFP. The
proposed method considers two variants: the network traffic is defined according to the
source IP address, and the frequency distribution signatures of the IP protocol attributes
distinguish the host activity. The first variant groups similar traffic instances using clus-
tering algorithms, while the second variant is used to classify new bots and uses the SVM
and Multi-layer Perceptron algorithms. The research showed that the proposed method
detects bots with high accuracy in both variants. Nevertheless, the method proposed by
Blaise et al. filters out hosts with the number of packets below a certain threshold value,
which means that bots must be active on the network and can help bypass hidden bots.

Ilango et al. in [164] focused on detecting Low-Rate Denial of Service (LR DoS) attacks.
These are attacks where the attacker acts with extreme care and sends a burst of traffic
that forces the data flow using the TCP protocol to enter the retransmission timeout state.
These attacks are difficult to detect because they resemble real network traffic. The authors
proposed an LR-DoS-attack-detection system based on the Feed-Forward Convolutional
Neural Network (FFCNN). The system transforms the data into a two-dimensional grid
for the CNN, which it then uses to extract the input features deeply. The system processes
the output to judge whether the traffic is malicious or benign. The system was tested and
compared with other IDS solutions using publicly available datasets.

Gupta et al. in [165] focused on MITM attacks in medical sensor networks. The
authors proposed an attack-detection model based on the combined RF and Grid Search
CV techniques. Gupta et al. showed that the proposed model could protect sensor data
against cyber attacks. Thus, the proposed system can help protect the privacy and security
of patients in real-time. Using a publicly available dataset for MITM attacks, the authors
lost the system and obtained an average accuracy of 94.23%. Additionally, the authors
tested the model for its performance and achieved a shorter classification time than other
ML techniques.

In [166], Sohi et al. also focused on applying DL techniques to IDSs. This time, the
authors focused primarily on zero-day attacks related to newly discovered vulnerabilities in
various systems. Sohi et al. found that signature-based IDSs may not detect zero-day attacks.
For this reason, they used Recursive Neural Networks (RNNs) to find complex attack
patterns and generate similar signatures. The generated signatures were also assessed to
improve the IDS detection rate. The performance evaluation of the proposed RNN showed
that the accuracy of this system increased by 16.67% compared to other detection methods.
In conclusion, the authors emphasized that RNNs can be successfully used in IDS systems
due to the possibility of extracting features from existing attack patterns and generating
new variants to anticipate new and unknown attacks.
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It is also worth mentioning verifying the correctness of the operation and the effective-
ness of IDSs’ intrusion detection and that the types of attacks and the methods of carrying
them out are constantly evolving. Hence, there is also a need to model attacks using AI
methods to strengthen systems protecting [167] network users. The main problem during
AI usage can be adversarial attacks. During this attack, the attacker tries to fool the AI
model by applying perturbations to some data. Adversarial attacks can affect AI algorithms’
training phase, resulting in false detection, favoring the attacker.

The works by Han et al. [168,169] proposed a new adversarial attack structure that assesses
the resistance of IDSs based on ML algorithms. The created structure considered the automatic
mutation of malicious network traffic while maintaining its functionality. Using this structure’s
Generative Adversarial Network (GAN), the authors generated opposing features. Then, using
Particle Swarm Optimization (PSO), they searched for mutants of the mysterious movement.
Also, they proposed a system for IDSs’ verification.

Also, Jiang et al. in [170] considered an adversarial attack problem. Firstly, the authors
proposed an algorithm for generating adversarial samples. Secondly, they offered an IDS for
an IoT network called the Feature Grouping and Multi-model Fusion Detector. The authors
tested their model using publicly available datasets for the IoT. Also, the authors obtained
better performance of the proposed system than another method against adversarial attacks.
Jiang et al. concluded that their approach allowed for resisting adversarial attacks with
high precision.

Another problem related to users’ security is malicious software, for example malware
in intelligent devices. Usually, the attacker prepares malware to steal the data, but also, it
can contain code that will harm the operating system [171]. Imtiaz et al. in [172] considered
the malware-detection problem. The authors proposed the DeepAMD system for Android-
based devices. The proposed method used Deep Artificial Neural Networks to identify and
detect malware applications on the Android system. The test results confirmed the high
precision of malicious software detection.

In turn, Rey et al. in [173] used FL for malware detection in IoT devices. The authors
employed Multi-Layer Perceptron and auto-encoder-based models. The authors used a
dataset that models malware-affected network traffic for tests. They compared the federated
approach with a non-privacy-preserving setup and a local setup. They concluded that
federated methods positively impact malware detection in IoT devices.

4.2. Discussion and Findings

This subsection summarizes the overviewed papers on TAI-based security for users
against intrusion attacks. Tables 3 and 4 have an identical structure. In the column
Refs., we assigned bibliographic references to the overviewed papers. The second column
contains information about the AI techniques used during the research. In the third column,
we summarize the characteristics of the proposed method. The fourth column contains
information about the application of the proposed methods. The fifth column (Acc.)
contains the average accuracy value obtained during the research. The last column (Prec.)
contains the average precision value obtained during the research. The designation NM in
the last two columns means that these values were Not Mentioned in the cited papers.

Table 3 summarizes the overviewed proposed AI techniques used in IDSs, including
their application. We overviewed IDSs for each CPS and specific solutions like the IoT or
vehicular networks. The most-popular AI techniques in the overviewed systems were the
RF, GRU, and LSTM. The features of the overviewed methods depended on AI techniques
and IDS solutions.

In Table 4, we summarize the overviewed proposed AI techniques for specific attacks
and malware detection. We overviewed methods for each CPS and methods dedicated
to the IoT. Also, there were methods dedicated to devices with the Android operating
system. These studies focused on malware detection and dangerous attacks like zero-day,
DoS, MITM, and adversarial attacks. The most-popular AI techniques in the overviewed
methods were the SVM, DNN, and RNN.



Appl. Sci. 2023, 13, 12068 22 of 32

Table 3. Summary of overviewed proposed AI techniques used in IDSs.

Refs. AI Techniques Characteristics Application Acc. Prec.

[137] DNN

• complies with security, privacy, centralization, trust,
and integrity requirements in connected
device environments

• uses blockchain technology

IoT 98.97 97.71

[139] SVM, NB
• converts low-quality data to high-quality data
• uses the idea of feature embedding to classify the

features of normal and abnormal data
CPSs NM NM

[140] RNN, LSTM, GRU, RF

• effective monitoring of network traffic and alerting
about possible attacks in real-time

• uses KPCA to reduce dimensionality without
losing data

CPS 98 96

[141] LightGBM • effectively detects threats related to remote
network connections

CPS 99.2 98.78

[145] DRNN
• the used dense clusters can communicate and perform

interactions similar to the interactions between
brain cells

IoT 99.14 99.13

[146] Metric Learning
• tested using two specially prepared datasets
• a feature classifier may use a subtractive angular

margin loss in a cosine space
CPS 99.94 99

[147] GA, PSO, IRF
• selects the best features, thus minimizing the number

of dimensions, increasing the true positive rate and
lowering the false positive rate

CPS 98.98 99.85

[148] ML, BL
• ensures safe travel with intelligent vehicles and roads
• protects the network and the devices against attacks,

thus protecting human life
VANET NM NM

[150,151] DL, LSTM, GRU
• detects attacks in vehicle networks
• reduces training and response times and improves the

accuracy of attack detection
VANET 99.7 97.26

[152] FL, GRU, RF

• learning is asynchronous
• each network node independently executes the

training algorithm with its copy of the dataset
• each node shares the weights of the local learned

model with the aggregate instance

VANET 99.52 99.77

[153] CNN
• it effectively distinguishes attack traffic from ordinary

information flowing in a network of vehicles
• enables detection of intrusions in real-time

VANET NM NM

[154,155] KNN, RF, XGBoost • high detection rate of less-popular cyber attacks IoT 99.11 98.56

[158] FL • high accuracy
• high detection rate of popular cyber attacks

IoT 98.62 98.9

[159] FFCNN • adaptation of focal loss function intrusion detection IoT 93.26 95.24

[160] GNN • processing multiple edges with multi-dimensional
edge features in the graph structure

IoT 99.45 98.89

Some overviewed studies did not adapt existing AI algorithms for intrusion or attack
detection. The authors of these studies proposed their own solution, so they marked an
AI method family (ML or DL) only. Each proposed method was verified according to
the accuracy, precision, and detection rate (recall) metrics and the F1-score. The most-
significant parameters were the accuracy and precision. Accuracy is a measure of the
efficiency or effectiveness in the context of classification in Machine Learning. It measures
how accurately a model classifies data. Precision is a widely utilized performance indicator
in the fields of Machine Learning and statistics, particularly within the domain of binary
classification. The metric evaluates the precision of a model’s positive predictions by
calculating the proportion of true positive predictions to the overall number of positive
predictions, encompassing both true positives and false positives. The precision metric is
employed to assess the efficacy of a model in accurately predicting the classification of an
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example as belonging to the positive class. We included the average values of the accuracy
and precision mentioned by the authors in Tables 3 and 4. The authors used publicly
available datasets to prove their methods. Only Cai et al. in [146] prepared their datasets.

Table 4. Summary of overviewed proposed AI techniques for specific attacks and malware detection.

Refs. AI Techniques Characteristics Application Acc. Prec.

[156] DL, SNDAE, SVM • ability to detect zero-day attacks IoT 99.65 99.99

[157] DNN • extracts the characteristics of network traffic
• detects MITM and DoS attacks

IoT 99.57 98.45

[161–163] SVM, Multilayer Perceptron
• defines network traffic based on the source IP address
• identifies host activity using the frequency

distribution signature of IP protocol attributes
• detects botnets

CPS NM NM

[164] FFCNN • detects Low-Rate Denial of Service attacks IoT 99 99.45

[165] RF, Grid Search CV
• protects the privacy and security of patients in

real-time
• detection of MITM attacks in medical sensor networks

IoT 94.23 93.45

[166] RNN

• detects zero-day attacks
• used in IDSs due to the possibility of extracting

functions from existing attack patterns and generating
new variants of attacks to predict new and
unknown attacks

CPS NM NM

[168,169] GAN, PSO • adversarial attack detection CPS NM NM
[170] LSTM, RNN • protects against adversarial attacks IoT 99.82 99.59

[172] DNN • identifies and detects malware applications on the
Android system

Android system, IoT NM NM

[173] FL • identifies and detects malware applications in the IoT
connected to WiFi, 5G, or B5G networks

IoT 99.87 99.98

The analyzed research showed a strong need to provide intelligent intrusion-and
attack-detection methods. This need is also related to the ever-growing demand for com-
munication via electronic links between users and devices. Users communicate with each
other, communicate with devices, as well as their devices communicate with other devices.
Users, therefore, require that information transmitted during such communication remains
safe and intact by rogue computer network users. Determining which attack is the most-
dangerous for users and devices operating on computer networks is impossible. All kinds
of inappropriate user activity can devastate users and their data.

Hence, trust in AI algorithms is needed to assess network traffic in terms of possible
intrusions. IDSs should meet data privacy and security requirements by detecting common
and less-popular attacks for a specific solution. Users should feel safe knowing that a
trustworthy system will respond quickly and block a bad connection. At this same time,
TAI methods in IDSs successfully deal with technical problems related to data quality
and efficiency and reduce learning and response times. The prediction of an attack or
inappropriate user behavior should be prepared in real-time so that the system and its
methods become more trustworthy.

Our insights and findings from the described studies are as follows. Firstly, almost
all mentioned methods used publicly available datasets to train and verify the proposed
systems. These datasets may not imitate real network conditions. The network conditions
are constantly changing, and devices connect to and disconnect from the network, while
these devices have different software and hardware configurations. Also, we can indicate
many types of malware software that are still evolving. Thus, methods for Intrusion-
Detection Systems should also be trained and verified using real network environments
and devices. Thanks to this, the analysis and evaluations will show the proposed methods’
effectiveness. The issue of preparing realistic datasets should be approached in several
steps. First, it should be determined whether the set is to be prepared for one specific
attack, for several, or for general network traffic, which will enable the detection of various
irregularities in the network. Each dataset version will be equally valuable due to the
possibility of testing IDSs. Then, we need to prepare a controlled test environment against
which we can test attacks. Attacks should be conducted based on real scenarios, including
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various types of network traffic, devices, regular user traffic, and environmental attacks.
This ensures that the test data generated will be both realistic and diverse. Operational
scenarios should also consider different levels of attack complexity, different network
protocols and attack styles, and different times of device connections and activity in
the network, such as infinite attacks or data transformation attempts, depending on the
assumptions made before preparing the test environment.

Secondly, the set of cyber attack types is extensive. Probably, no system will detect
all possible attacks and intrusions. So, these detection methods focus mainly on the most-
typical attacks on CPSs, and identifying the most-prevalent threats is a good approach.
However, detecting the least-popular, niche attacks should also be considered to prevent
more-complex attacks using many types of attacks. Some CPSs must be secured against one
or two attack types, but most of them must be secured against a broad spectrum of attacks,
mainly in the case of users’ data. Indicating specific threats or attack vectors that need to
be considered is difficult. Both methods of defending against cyber attacks and conducting
cyber attacks are constantly evolving. This all depends on the specific environment. In
the context of IoT security, in addition to the typical attacks mentioned earlier and attacks
related to the poor security of IoT devices (due to a lack of software updates or the use of
weak passwords), you should also pay attention to the following:

• Attacks on custom network configurations;
• Attacks on unique systems (for example, those using specialized software or niche

technologies);
• Attacks on custom ports or services unique to a particular organization or industry;
• Attacks on protocols: old generation, new generation, or less popular.

These attack vectors primarily target the technical parameters of IoT environments
and CPSs and can be very dangerous for users and the entire infrastructure. So, CPSs need
Intrusion-Detection Systems and methods for specific attack detection.

At last, the accuracy and precision values obtained and included in Tables 3 and 4
are promising. They allowed us to conclude that the discussed methods meet TAI’s safety,
robustness, privacy and data governance assumptions. High accuracy and precision values
(over 90%) suggest that these systems detect network intrusions and threats with high
efficiency and precision. This means that they provide the appropriate level of network user
safety. Moreover, if network users are secure, their data also are secure. So, the privacy and
data governance dimension requirements can also be considered fulfilled. The robustness
dimension is the system’s ability to respond even during disturbances. Network traffic has
various characteristics, so disturbances in it are a natural phenomenon that IDSs detect.
This means that each mentioned system can adapt to changing network conditions and
correctly detect intrusions and threats in network traffic.

5. Conclusions

This manuscript explored the use of Trustworthy Artificial Intelligence (TAI) methods
to enhance users’ physical and environmental security. It focused on traffic and pedestrian
safety systems, detecting and predicting behavior, and Intrusion-Detection Systems for
IoT systems. The study highlighted TAI’s safety and robustness dimensions, considering
users’ security in physical and environmental safety. It also explored less-exploited TAI
domains like Spiking Neural Networks, neuromorphic accelerators, and Dynamic Vision
Sensors. As an indispensable element of the modern world, AI is still evolving, and new
AI techniques are appearing. Trustworthiness should be a key feature of such solutions,
which make people aware of how much they can trust them. We must constantly verify
these methods to check their trustworthiness in many dimensions.

We noted the following insights and conclusions while analyzing the described meth-
ods and systems selected for this manuscript.

When it comes to safety regarding traffic, the analysis of the vehicle’s environment is
very important. As presented in numerous articles, vehicle detection is more straightfor-
ward due to the smaller variety of features of such objects. Systems in this area work very
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well, resulting in the existence of autonomous vehicles. In the case of pedestrian detection,
the problem is more complex. Under all conditions, an ideal system to recognize them can
improve their safety. Several proposals have been made for such systems, which achieve
good results, but it is still worth creating an infallible system.

The challenge for neural networks is the perfect detection of objects, preserving high
resilience to attacks. Further research should focus on improving current solutions to
enhance security. Increasing city safety can also be realized by implementing a “smart
city” [174,175]. We think the cooperation of multiple neural networks at different levels can
greatly improve our security, which will also be an interesting research direction. Fusion,
which involves the seamless integration of information from various sensors, such as
cameras and LiDARs, shows promising results [176–179]. These sensors operate using
different technologies, and analyzing environmental conditions for each of them poses
a challenge. Moreover, this advanced technique allows for a substantial improvement
in detection effectiveness, also in challenging environmental conditions, and it enhances
precision and decision reliability in favorable conditions.

We identified a small gap worth fulfilling as we found only a few papers concerning
explainable SNNs. Fulfilling this gap can go along with explainable AI methods on
traditional ANNs. However, some SNNs, based on the ToM, are already explicitly designed,
which is a step toward explainable SNNs.

Some of the mentioned papers point out that SNNs exhibit a natural ability to resist
some adversarial attacks to some extent (probably due to their stochastic nature) under the
condition that the parameters of a network are tuned. Hence, it is worth further exploring
the parameter space of SNNs to develop a framework for easier parameter tuning against
adversarial attacks.

It is also worth mentioning that we still do not have a stable and strongly neurobiolog-
ically inspired framework for SNNs’ training or continuous learning. Hence, designing
this kind of framework would be appreciated in the field.

In the case of environmental security, which is connected with users’ activities in the
network (for example, as IoT systems users), we observed the extreme need to provide
intelligent intrusion- and attack-detection methods. Also, security is highly joined with
the safety dimension of TAI. Users use a network during many activities, and many users
and devices connect with the network. They can be potential victims of cyber attacks
with different sources, courses, and effects. Also, technological development entails the
development of cyber attack methods.

Nevertheless, users cannot always defend themselves against attacks on their own,
and users need security and protection techniques that will protect their private data and
can rely on it. Therefore, we believe that creating intelligent methods of detecting intrusions
and attacks using TAI algorithms will undoubtedly increase users’ environmental security.

Based on our insights, future research directions in Intrusion-Detection Systems should
focus on methods of detecting all possible attacks, especially less-frequently used ones.
Especially, the research should consider attacks on custom network configurations, unique
systems (with specialized software or niche technologies), custom ports or services unique
to a particular organization or industry, and on protocols (old generation, new generation,
or less popular). Also, the important point in such research should be preparing datasets
corresponding to the real working environment of the devices and testing IDSs in a real
network. To prepare realistic datasets for IDSs, it is necessary to determine if the set is
for specific attacks or general network traffic. In the next step, researchers should create a
controlled test environment with real scenarios, including network traffic, devices, user
traffic, and environmental attacks. Also, it is necessary to consider different levels of attack
complexity, network protocols, attack styles, and device connections to ensure diverse and
realistic data. The existing datasets for testing are well-known and widely used. Therefore,
they may be unable to detect many security-threatening situations for network users on a
real network, especially the less-frequently used or the newest attacking techniques. Finally,
IDSs require continuous development. They should be continuously developed because
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the attacking methods still evolve, and IDSs should consider these changes to improve
their operation.
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