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Abstract: Ocean reverberations, a significant interference source in active sonar, arise as a response
generated by random scattering at the receiving end, a consequence of randomly distributed clutter or
irregular interfaces. Statistical analysis of reverberation data has revealed a predominant adherence to
the Rayleigh distribution, signifying its departure from specific distribution forms like the Gaussian
distribution. This study introduces the Gaussian mixture model, capable of simulating random
variables conforming to a wide array of distributions through the integration of an adequate number
of components. Leveraging the unique statistical attributes of reverberation, we initiate the Gaussian
mixture model’s parameters via the frequency histogram of the reverberation data. Subsequently,
model parameters are estimated using the expectation–maximization (EM) algorithm and the most
suitable statistical model is selected based on robust model selection criteria. Through a compre-
hensive evaluation that encompasses both simulated and observed data, our results underscore the
Gaussian mixture model’s effectiveness in accurately characterizing the distribution of reverberation
data, yielding a mean squared error of less than 4‰.

Keywords: gaussian mixture model; oceanic reverberation; parameter estimation; statistical properties;
EM iterative algorithm

1. Introduction

Active sonar systems employ transducers to emit specific waveform acoustic sig-
nals. Typical sonar signal frequencies are categorized as low (1 kHz–10 kHz), medium
(10 kHz–50 kHz), and high frequencies (50 kHz–several hundred kHz), with each tailored
to distinct applications. Waveforms, including pulsed waveforms, continuous waves, and
frequency–modulated continuous waves, are selected to match the specific use case. Signal
duration is adapted to application requirements, utilizing short pulses for target detection
and longer signals for imaging or communication. The depth of signal penetration and
range distance are contingent upon the interaction between frequency, water properties,
and signal strength. Low frequencies penetrate deeply but have a limited range, whereas
high frequencies offer an extended range with reduced penetration. Upon detecting a target,
these systems generate echo signals at specific angles, which are subsequently received
by hydrophones. These echo signals are frequently intertwined with a significant amount
of ambient ocean noise and reverberation. Unlike ambient ocean noise, reverberation
constitutes a distinctive physical phenomenon induced by the signals emitted by active
sonar. It grows increasingly intricate with amplified signal strength and the multiplica-
tion of scattering elements, particularly in shallow water environments where multiple
scattering effects are pronounced. Consequently, the processing of reverberation signals
presents greater complexity, posing formidable challenges to active sonar technologies
encompassing target detection, localization, and identification, among other functions [1,2].

From a statistical perspective, reverberation can be viewed as a non–stationary stochas-
tic process, essentially stemming from the stochastic scattering response at the receiv-
ing end generated by randomly distributed scatterers or randomly irregular interfaces.
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The statistical model for reverberation was initially proposed by Faure [3], and subse-
quently, B. Olishevski and Middleton conducted further research on the reverberation
model, referring to this theory as the FOA (First Order Ambisonics) reverberation theory
model [4,5]. To address the challenge of parameter estimation in the presence of missing
data, Arthur Dempster and colleagues introduced the expectation–maximization (EM)
algorithm, which significantly reduces computational complexity by transforming the
maximization of the likelihood function into an optimization problem involving expected
values and maximization [6]. Wei HK improved the Greedy EM algorithm in the context
of image processing and successfully applied it to the one–dimensional Gaussian mix-
ture model (GMM) modeling of underwater reverberation [7]. Furthermore, the GMM
is frequently employed in various domains such as cluster analysis, acoustic modeling,
image segmentation, and feature extraction. Wang PB effectively modeled ocean rever-
beration data using a Symmetric Alpha–Stable (SαS) distribution model that adheres to a
zero–mean, unimodal bell–shaped distribution [8]. Liu WS intuitively demonstrated the
performance differences between traditional algorithms and the Greedy EM algorithm
through numerical simulation examples [9]. To mitigate the issue of the clustering effect
of the EM algorithm relying too heavily on the initial probability density center, Liu M
proposed an improved EM algorithm based on the Fuzzy C–means algorithm for pa-
rameter initialization, which exhibits superior performance [10]. Fatma Najar employed
the GMM, Generalized Gaussian Mixture Models (GGMMs), Bounded Gaussian Mixture
Models (BGMMs), and Bounded Generalized Gaussian Mixture Models (BGGMMs) for
multidimensional data clustering and assessed the robustness of the models [11]. Wen H
introduced asymmetric Gaussian mixture models into finite mixture models to simulate
more complex asymmetric distributions [12]. Mateusz Przyborowski presented an approx-
imate method for the parameter learning of Gaussian mixture models in large datasets
using the EM algorithm [13].

From Figure 1, it is evident that the reverberation data exhibit characteristics such
as approximate zero mean, roughly equal positive and negative sample sizes, and nearly
symmetrical upper and lower envelopes. Various distribution models, including Gaussian
distribution, Gaussian mixture distribution, and SαS distribution, can be utilized for fit-
ting and modeling. Despite Gaussian mixture distribution having more parameters than
Gaussian and SαS distributions, it is capable of statistically modeling non–Gaussian data
with non–zero mean and multiple bell shapes. Therefore, the GMM exhibits broader appli-
cability, particularly in the context of reverberation data. Drawing from the fundamental
theory of reverberation and statistical distribution characteristics, this paper initializes
the parameters of GMM models corresponding to reverberation data. It employs the EM
algorithm to iteratively generate models for different cluster numbers. Building upon
various evaluation criteria, a statistical modeling approach for reverberation based on
the Gaussian reverberation model is proposed. This method offers valuable support for
investigating the characteristics of ocean reverberation information and advancing active
sonar technology.
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Figure 1. A typical waveform of element–level received data from an active sonar.

2. Theoretical and Statistical Distribution Characteristics of Reverberation

In shallow–water environments, the presence of non–uniformities in the ocean’s
surface and seafloor, coupled with the abundance of scattering objects, results in the
non–continuity of the physical properties of the oceanic medium. When sound waves
traverse these non–uniform regions during underwater propagation, they undergo partial
reflection, generating scattering. The cumulative scattering stemming from all scatter-
ing objects is termed “reverberation”. Ocean reverberation encompasses three distinct
components: surface reverberation, seabed reverberation, and volume reverberation, with
the first two collectively referred to as “interface reverberation” [14,15]. Despite reverbera-
tion arising from the amalgamation of echoes produced by a substantial number of chaotic
scattering objects, these echoes originate from the same excitation source, endowing rever-
beration data with unique statistical characteristics. Middleton’s reverberation statistical
model simplifies the representation of sound scattering non–uniformity in the ocean. It
conceptualizes scattering objects as embedded within the seafloor or floating on the sea
surface and within the seawater [16]. This model assumes their independence from one
another while disregarding secondary and higher–order scattering effects [17,18].

Assuming the transducer emits a pulse signal represented by s(t), the sound pressure
due to reverberation at time ‘t′ can be expressed as follows [18]:

p(t) =
N

∑
n=1

g(rn) f (rn)|αn ‖ s0(t− tn)| · ej[ω0(t−tn)+ψn(t−tn)+φn ], (1)

where g(rn) denotes the count of scattering objects within the spatial microelement ∆vn
situated at position rn. The term f (rn) signifies the round–trip propagation attenuation
factor for the scattering echoes originating from the scattering objects within ∆vn, while tn
corresponds to the arrival time of the echo. The parameter N represents the overall count
of scattering spatial microelements that contribute to time t. Let

Re[p(t)] = x(t) cos ω0t− y(t) sin ω0t. (2)

For the surface reverberation ps(t), as xs(t) and ys(t) follow zero–mean Gaussian
distributions, the amplitude rs(t) =

[
x2

s (t) + y2
s (t)

]1/2 of the reverberation also follows a
Rayleigh distribution [18], with probability density being as follows:

p(r) =
rs(t)
σ2

s (t)
exp
[
− r2

s (t)
σ2

s (t)

]
,
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where σ2
s (t) = E

[
x2

s (t)
]
= E

[
y2

s (t)
]
, representing the average intensity of the reverberation.

Similarly, it can be deduced that the amplitude of the volume reverberation pv(t) also
follows a Rayleigh distribution [18].

For the seabed reverberation, as the scattering objects are fixed, the reverberation
sound pressure is a periodic signal [18]:

pb(t) = rb(t)e f [ω0t+φ0(t)].

The total reverberation is as follows:

pc(t) = ps(t) + pv(t) + pb(t),

the amplitude rc(t) of pc(t) follows a modified Rayleigh distribution, also known as the
Rice distribution:

p(r) =
r(t)

σ2
c (t)

exp

∣∣∣∣∣− r2(t) + rb
2(t)

2σ2
j (t)

∣∣∣∣∣I0

∣∣∣∣∣ r(t) + rb(t)
σ2

j (t)

∣∣∣∣∣, (3)

where σ2
j (t) = σ2

s (t) + σ2
v (t), and I0 is the zero–order modified Bessel function [18].

The above analysis shows that reverberation is not a stationary random process. Its
intensity decays rapidly over time. At each fixed time t, the amplitude of the reverberation
follows a Rice distribution. If the seabed reverberation is neglected, then the amplitude
of the reverberation follows a Rayleigh distribution. Statistical modeling can be used to
describe the reverberation data. Currently, typical distributions used for this purpose
include Gaussian distribution, SαS distribution, and Gaussian mixture distribution, all
of which can describe data with similar statistical characteristics using their probability
density function (PDF) [19].

3. Statistical Modeling of Ocean Reverberation Data Based on the Gaussian Mixture
Model (GMM) Method
3.1. Gaussian Mixture Model (GMM) and Its Parameter Estimation Method (EM Algorithm)

The Gaussian mixture model is a linear combination of multiple Gaussian distributions
with the following probability distribution model:

f (x; λ, µ, σ) =
K

∑
k=1

λk pk(x; µk, σ2
k ) =

K

∑
k=1

− λk√
2πσ2

k

exp

[
− (x− µk)

2

2σ2
k

], (4)

where K is the number of individual Gaussian models in the mixture model, also known as
the cluster number or model order. λk represents the mixture weight, satisfying 0 < λk < 1
and ∑K

k=1 λk = 1. When λ = 1, the model degenerates into a Gaussian model. pk represents
the k− th Gaussian component, while µk and σ2

k represent the mean and variance of the
distribution, respectively. In theory, if the number of Gaussian models fused by a certain
Gaussian mixture model is large enough, and the weights set between them are reasonable
enough, the Gaussian mixture model can fit any distribution [20].

The EM algorithm is used for parameter estimates in the Gaussian mixture model
with latent variables. Assuming that the observed dataset is X = {x1, x2, . . . , xN}, each
data point xi is independent, and the latent parameters are Z = {z1, z2, . . . , zN}, where
zi indicates the probability that the sampling point xi comes from a certain Gaussian
distribution. Given the initial parameter value Θ(0) = {λk, µk,σk}, the iterative solution
for maximizing the likelihood function of X is employed to determine the parameters Θ
that optimize this likelihood function.
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3.2. Improved EM Parameter Estimation Method

In the context of parameter estimation using the EM algorithm, it is crucial to predefine
the number of clusters (K), means, and variances. Without proper initialization of these
parameters, the EM algorithm is susceptible to converging towards local optima or even
experiencing convergence failures [21]. In this study, we adopt a systematic approach to
address this issue. Initially, we initialize the number of clusters, means, and variances by
leveraging the frequency histogram of the reverberation data. Subsequently, we employ
the EM algorithm for iterative parameter estimation, covering various cluster numbers.
Ultimately, the selection of the most suitable model is based on rigorous evaluation metrics.
The detailed algorithmic workflow is visually presented in Figure 2.

Figure 2. Statistical modeling method for ocean reverberation data based on GMM.

3.2.1. Parameter Initialization Based on Reverberation Data

With an ample sample size, the histogram outcomes can be deemed representative of
the actual distribution. The steps for initializing data using the frequency histogram (FH)
are outlined as follows:

(1) Assuming that KB represents the optimal number of clusters, the process involves
identifying the local maxima and minima of each bell curve. The abscissa of the local
maximum, denoted as µk, corresponds to the mean of the associated Gaussian component.
The initial cluster number is established as KH = ∑ k.

(2) Determine the minimum extreme value difference, denoted as hmin, among all
bell–shaped curves. The sample width, represented as ek, corresponds to the interval
spanned by the samples encompassed within hmin, with the center being set as the mean
of the respective Gaussian component. When KB = KH , the weight λk for each Gaussian
distribution can be estimated utilizing ek :

λk =
ek

∑KH
k=1 ek

. (5)
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(3) Utilizing µ1 and µKH as segmentation boundaries to separate the first and last bell–
shaped curves, we determine σ1 and σKH by employing the 3σ principles. Subsequently,
we initialize the corresponding σ values based on the ratio of each bell curve’s maximum
value to its area.

(4) When KB > KH, in accordance with steps (1)~(3), considering the statistical at-
tributes that a significant portion of the reverberation data conforms to a zero–mean
distribution, the Gaussian component characterized by λ = λmax is partitioned into O
segments (O = B− H + 1). Within these segments, µo is set to 0, λo equals 1/λmax, and σ
is established as 1.

As illustrated in Figure 3, the abscissa of the maximum point of each bell–shaped
curve, denoted as µ1, µ2, and µ3, and the abscissa of the minimum points w1 and w2, are
acquired from the PDF curve. In this scenario, where KH equals 3 and hmin equals h3, the
sample widths are e1, e2, and e3, respectively. Notably, KB is equivalent to KH , which is 3 in
this case. The weights for each Gaussian distribution, λk, are determined as λk =

ek
e1+e1+e3

,
where k spans from 1 to 3. Subsequently, the variances of the Gaussian components, σ1, σ3,
and σ2, are calculated using s1 and s3.

Figure 3. The initialization of the parameters for GMM.

3.2.2. GMM Parameter Estimation Based on EM Algorithm

Employing the EM algorithm based on parameter estimation for the GMM, the loga-
rithmic likelihood function [22] in Equation (4) is as follows:

L( x|Θ) = ∑
i

ln ∑
k

ωi,k
p(xi | z = k, µk, σk)p(z = k)

ωi,k
, (6)

here, ωi,k represents the posterior probability determined via Bayes’ Rule, and αk denotes
the prior distribution of z:

ωi,k = p(z = k | xi, µk, σk). (7)

The specific steps for iteratively updating Θ are as follows:
E–step: Compute the posterior probability for each sample’s affiliation with model k

utilizing the Gaussian mixture distributions and the prior probabilities acquired following
each iteration. Subsequently, derive the most current expression for the objective function.

Q
(
Θ, Θt) = ∑i ∑k ωt

i,k

(
ln αk − ln ωt

i,k − ln
√

2πσ2
k −

(xi − µk)
2

2σ2
k

)
, (8)

αk is the prior distribution of z.
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M–step: Determine the estimated parameters of the GMM by maximizing the objective
function, resulting in updated formulations for αt+1

k , µt+1
k , and

(
σ2

k
)t+1:

αt+1
k =

∑i ωt
i,k

N ,

µt+1
k =

∑i ωt
i,kxi

∑i ωt
i,k

,(
σ2

k
)t+1

=
∑i ωi,k(xi−µt+1

k )
2

∑i ωi,k
.

(9)

3.2.3. Model Evaluation

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) [23]
are utilized to ascertain the suitability of the fitted model as the optimal one [24,25]. The
formal definitions for these criteria are as follows

AIC = 2k− 2ln(L),BIC = ln(n)k− 2ln(L). (10)

Here, k is the number of parameters, L is the likelihood function, and n is the sample
size. The AIC and BIC serve as statistical criteria for model selection, with smaller values
indicating superior fitting results. Both criteria incorporate penalty terms that account
for the number of model parameters, but it is worth noting that the BIC employs a larger
penalty term compared to the AIC. This discrepancy becomes particularly relevant in cases
with an abundance of samples or when the model exhibits excessive complexity. The AIC
might be prone to overfitting under these circumstances, while the BIC effectively mitigates
the risk of over–complex models. To determine the optimal model, various sets of model
parameters Θ are obtained through iterative processes with different K–values using KH as
a reference. Subsequently, the AIC and BIC are employed to ascertain if the model under
consideration best fits the data.

4. Simulation and Experiments Analysis

Figure 4a presents the generation of non–Gaussian random sequences using the param-
eter

[
λi, µi,σ2

i
]
= [0.4, 0, 1; 0.6, 0, 4]. In Figure 5a, simulated reverberation data are depicted,

where the excitation signal is a Linear Frequency Modulated (LFM) signal with a pulse
width of 2 milliseconds, a frequency range spanning 60–100 kHz, and a sampling frequency
of 250 kHz. Figure 6a showcases a continuous wave (CW) signal with a central frequency
of 4 kHz and a sampling frequency of 25 kHz. Figures 4b,c, 5 and 6a,b display PDF com-
parison plots for various models fitting the reverberation signals. Figures 4c, 5 and 6a–c
depict comparative mean square error plots for the fitted PDF results using various mod-
els. The thick solid black line represents the true PDF curve drawn using the specified
parameters. The thick red dashed line illustrates the PDF obtained through frequency
histogram statistics, which can be considered an approximation of the true PDF. The pink
curve denotes the PDF fitted with a Gaussian distribution and is labeled as G–D. Employing
the logarithmic moment method, the PDF curve for the SαS distribution is represented in
navy blue and labeled as SαS–D. The light blue curve showcases the fitting results of the
GMM [26] and is denoted as GM–D. Table 1 documents the fitting results and error statistics
for non–Gaussian random sequences, while Table 2 provides parameter estimation and
error statistics for simulated reverberation data of the FLM signal, and Table 3 furnishes
parameter estimation and error statistics for simulated reverberation data of the CW signal.



Appl. Sci. 2023, 13, 12063 8 of 17

Figure 4. Waveform plot, probability density function (PDF) curve, and mean square error of non–
Gaussian random sequences. (a) Waveform plot; (b) comparative PDF curves based on different
models in graphical format; and (c) mean square error plots of the fitting results from different models.

Table 1. Fitting results and statistical analysis of errors for non–Gaussian random sequences.

Distribution G–D SαS–D GM–D

Parameter [µ,σ] [α,β,γ,µ] [λk,µk,σk]

Estimation 0.096 1.710 1.579 0.149 1.011 0.141
0.648 0.185 2.015
0.352 −0.068 0.881

MSE 2.2 × 10−4 2.4 × 10−5 1.8 × 10−5
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Figure 5. Simulation of the reverberation data of an LFM signal, the PDF curve, and its mean square
error plot. (a) Waveform plot; (b) comparative PDF curves based on different models in graphical
format; and (c) mean square error plots of the fitting results from different models.

Table 2. Parameter estimation results and error statistics of LFM signals.

Distribution G–D SαS–D GM–D

Parameter [µ,σ] [α,β,γ,µ] [λk,µk,σk]

Estimation −0.144 0.271 1.430 0.112 −0.148 −0.123
0.385 −0.123 2.091
0.615 −0.158 0.267

MSE 0.0420 0.0062 0.0009
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Figure 6. Simulation of the reverberation data of a CW signal, the PDF curve, and its mean square
error plot. (a) Waveform plot; (b) comparative PDF curves based on different models in graphical
format; and (c) mean square error plots of the fitting results from different models.

Table 3. Parameter estimation results and error statistics of CW signals.

Distribution G–D SαS–D GM–D

Parameter [µ,σ] [α,β,γ,µ] [λk,µk,σk]

Estimation −0.144 0.271 1.430 0.112 −0.148 −0.123
0.248 0.004 0.013
0.692 0.692 0.037
0.060 0.031 0.051

MSE 0.5546 0.0550 0.0139

Mean squared error (MSE) serves as a key metric for assessing the disparity between
the actual ground truth values and the estimated values derived from the established
model. MSE, as formally defined, quantifies this discrepancy as follows:

MSE =
1
N

N

∑
n=1

(θ − θ̂)
2
, (11)

where θ is the ground truth PDF value, θ̂ is the PDF value estimated by the model, and N is
the number of snapshots. Smaller MSE indicates that the predictive model is more accurate.

For the sake of model simplification, in cases where the MSE difference between two
Gaussian mixture models with varying K–values is less than 5%, we consider the model
with the higher K–value as exhibiting signs of overfitting.

When fitting simulated data using the GMM, preprocessing based on frequency
histograms was performed with an initial cluster number of KH = 1. As shown in
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Figures 4b, 5 and 6a,b, the fitting results of Gaussian distributions noticeably deviate from
the true PDF, while the PDF curves of other distributions almost perfectly overlap with
the curve representing the true PDF. Similarly, these results are consistently observed in
Figures 7c, 8, 9 and 10a–c. Data in Tables 1–3 suggest that the MSE for Gaussian mixture
and SαS distributions is approximately one–tenth of that for Gaussian distributions. It
can be inferred that for one–dimensional, zero–mean, single–peaked non–Gaussian data
generated by different modulation signals (CW and FLM), SαS and Gaussian mixture
distributions exhibit excellent fitting capabilities, whereas the fitting results of Gaussian
distributions fall far short of expectations.

Figure 7. The reverberation data obtained in Experiment 1, along with probability density func-
tion (PDF) curves and their mean square errors. (a) Waveform plots; (b) comparative PDF curve
comparisons based on different models; and (c) mean square error plots for the fitting results from
different models.
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Figure 8. The first section of reverberation data, PDF curves, and their mean square errors in
Experiment 2. (a) Waveform plots; (b) comparative PDF curve comparisons based on different
models; and (c) mean square error plots for the fitting results from different models.

Figure 9. Cont.
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Figure 9. The second section of reverberation data, PDF curves, and their mean square errors in
Experiment 2. (a) Waveform plots; (b) comparative PDF curve comparisons based on different models;
and (c) mean square error plots for the fitting results from different models.

Figure 10. The third section of reverberation data, PDF curves, and their mean square errors in
Experiment 2. (a) Waveform plots; (b) comparative PDF curve comparisons based on different
models; and (c) mean square error plots for the fitting results from different models.
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5. Verification Based on the Measured Data
5.1. Method Validation

Experiment 1 was conducted at Moganshan Lake in Huzhou, China, located at latitude
30.5425◦ and longitude 119.9774◦. This test site is specialized for conducting lake–based
environmental tests, featuring a water depth of approximately 8 m and a rocky lakebed. An
active sonar system was employed, equipped with independent transmitter and receiver
components. The experimental setup included a Uniform Linear Array (ULA) consisting
of four hydrophones, with a sampling frequency of 250 kHz and a sampling duration of
0.26 s per acquisition. The transmitted signal used a Linear Frequency Modulation (LFM)
signal with a frequency range of 2 to 4 kHz. The objective of the experiment was a spherical
object, with the aim of capturing its motion trajectory. Experiment 2 was carried out in
the marine area near Dalian, China, situated at latitude 38.9140◦ and longitude 121.6146◦,
representing a typical marine environmental testing ground. This region is characterized
by a water depth of approximately 70 m, substantial seabed sediment accumulation, and
a complex environmental profile. An active sonar system with a co–located transmitter
and receiver configuration was employed. In this experiment, a Uniform Linear Array
(ULA) consisting of 27 hydrophones was utilized, with element spacing set at 5 mm. The
ULA had a sampling frequency of 1000 kHz, and the sampling duration for each session
was 0.05 s. The transmitted signal also employed a Linear Frequency Modulation (LFM)
signal with a pulse width of 2 milliseconds and a frequency range of 100 to 200 kHz. The
experiment targeted an unmanned underwater vehicle (UUV) model with the objective of
capturing its dynamics. The typical sound velocity in water was around 1500 m per second,
which is a common characteristic of complex underwater datasets. Additionally, amplitude
normalization was applied to the data before modeling. It is worth noting that the Dalian
region experiences complex sea conditions, abundant underwater scatterers, and strong
reverberation interference, which was confirmed by subsequent waveform analysis.

Figure 7a displays the waveform of the measured reverberation data in Experiment 1,
while Figures 8a, 9 and 10a showcase the waveforms of three distinct segments of Experi-
ment 2’s measured reverberation data. In Figures 7b, 8, 9 and 10a,b, PDF curves fitted by
various models are presented. Figures 7c, 8, 9 and 10a–c depict comparative mean square
error plots for the fitted PDF results using various models. The gray bars within the figures
represent the frequency histogram of the reverberation data, with the red dashed line de-
picting the PDF curve derived statistically from the frequency histogram, thus representing
the true model values. The PDF curve for the Gaussian distribution is depicted by a pink
curve labeled as G–D in the figures. The PDF curve fitted by the GMM is represented in
sky blue and marked as GM–D in the figures, while the dark blue curve corresponds to the
PDF of the SαS distribution and is denoted as SαS–D in the figures.

5.2. Analysis of Results

Table 4 provides an overview of the values for KH, KAIC, KBIC, and KB, and MSE
corresponding to the four distinct sets of reverberation data. In Table 5, the parameter
estimation results for modeling the reverberation data using various models are detailed.
Table 6 focuses on the mean squared error (MSE) associated with each model. Analysis of
Table 4 reveals that the optimal order for the GMM obtained through both the AIC and BIC
is consistent. Specifically, concerning the reverberation data presented in Figure 6a, the AIC
algorithm determines the optimal GMM order to be 6, with a marginal 1.6‰ difference in
MSE when compared to the GMM model with a cluster number of 3. For the reverberation
data in Figure 7a, the MSE of fitting results with the GMM orders 5 and 3 varies by a slight
1.2‰. In the dataset featured in Figure 9a, the GMM fitting results indicate a minuscule
0.7‰ difference in MSE between clusters 6 and 5. In all these instances, the MSE remains
below 5‰, and for the sake of model simplification, the smaller K–value is favored as the
optimal model order.
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Table 4. GMM fitting results with different K–values and their MSE.

Data Figure 6a Figure 7a Figure 8a Figure 9a

KH 1 1 3 3

KH −MSE 0.0107 0.0170 0.0189 0.0230

KAIC 6 5 4 6

KAIC −MSE 0.0015 0.0015 0.0013 0.0006

KBIC 6 5 4 6

KBIC −MSE 0.0031 0.0015 0.0013 0.0006

KB 3 3 4 5

KH −MSE 0.0031 0.0027 0.0013 0.0013

Table 5. Fitting results of different distributions to reverberation data.

Data
Parameter SαS–D

[α,β,γ,µ]
GM–D

[λk,µk,σk]

Figure 6a 1.627 0.151 0.133 0.024
0.767 0 0.023
0.206 0.0138 0.015
0.027 −0.037 0.100

Figure 7b 1.077 0.030 0.112 0.093
0.741 −0.087 0.149
0.254 −0.096 0.057
0.005 −0.656 0.253

Figure 8b 1.606 −0.028 0.09 −0.09

0.514 0.062 0.098
0.061 −0.062 0.281
0.354 0.077 0.253
0.061 0.782 0.096

Figure 9b 1.537 0.010 0.220 0.053

0.255 0.420 0.196
0.036 0.847 0.068
0.032 −0.752 0.059
0.372 0.060 0.115
0.305 −0.272 0.221

Table 6. Error statistics for various estimated distribution parameters.

MSE
Data Figure 6b Figure 7b Figure 8b Figure 9b

G–D 0.0107 0.0170 0.1525 0.0245

SαS–D 0.0037 0.0057 0.0088 0.0159

GM–D 0.0031 0.0027 0.0013 0.0013

Observing the PDF curve comparison charts in Figures 6b, 7, 8 and 9a,b, it becomes
evident that the reverberation data acquired in a complex measured environment exhibit
substantial deviations in the fitting results when employing a Gaussian distribution. For
the reverberation data conforming to a zero mean and a single bell–shaped distribution,
as depicted in Figures 6b and 7b, both the Gaussian Mixture Model (GMM) and SαS
distributions exhibit excellent fitting capabilities for the data’s PDF curve, with MSE values
of less than 3‰. However, when dealing with reverberation data characterized by multiple
peaks and non–zero mean, as demonstrated in Figures 8b and 9b, the SαS distribution
can only adequately fit the data associated with the primary peak, resulting in an error
exceeding 5‰. Conversely, the PDF curve fitted by the GMM aligns closely with the
true value. Table 6 data further emphasize the suitability of the GMM for reverberation
fitting, as they demonstrate a maximum error of 3.1‰. In contrast, the SαS distribution
exhibits a maximum error of 15.9‰, while the Gaussian distribution’s error exceeds 10‰,
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with a maximum reaching 152‰. Similarly, these results are consistently observed in
Figures 7c, 8, 9 and 10a–c, highlighting the minimal error associated with the GMM and
the maximum error exhibited by the Gaussian model. These findings underscore the
superiority of the GMM in accurately modeling reverberation data in diverse scenarios.

6. Conclusions

In this study, the GMM was employed to statistically characterize the distribution
characteristics of reverberation data. Prior to applying the expectation–maximization (EM)
algorithm for parameter estimation, data preprocessing was utilized to mitigate the limi-
tations associated with random parameter initialization, which can lead to convergence
towards suboptimal solutions and require extensive computational resources. Through
a systematic comparison of different cluster numbers, we effectively addressed the issue
of overfitting in the Akaike Information Criterion (AIC) algorithm within an acceptable
error margin, consequently reducing the model’s complexity. The validation, using both
simulated and real measured reverberation data, demonstrated that both the SαS distribu-
tion and GMM models offer robust modeling capabilities for single–peaked, zero–mean
reverberation data. In this context, the mean squared error (MSE) of the GMM was less
than 4‰, representing less than a tenth of the MSE achieved by a Gaussian distribution.
However, when dealing with reverberation data exhibiting multi–peaked distributions and
non–zero means, the GMM outperformed other distributions in terms of probability density
fitting. Specifically, the MSE of the GMM was less than 2‰, whereas the SαS distribution
exceeded 8‰, and the Gaussian distribution exceeded 24‰. The experimental results
clearly demonstrate that the GMM offers superior probability density fitting for measured
reverberation data in complex environments, showcasing its broader applicability.
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Nomenclature

EM Expectation–maximization
FOA First Order Ambisonics
GMM Gaussian Mixture Model
SαS Symmetric Alpha–Stable
GGMM Generalized Gaussian Mixture Model
BGMM Bounded Gaussian Mixture Model
BGGMM Bounded Generalized Gaussian Mixture Model
PDF Probability density function
FH Frequency histogram
LFM Linear Frequency Modulation
CW Continuous wave
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
MSE Mean squared error
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