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Abstract: Animation visualization is one of the primary methods for analyzing unsteady flow fields.
In this paper, we addressed the issue of data visualization for large-scale unsteady flow fields using
animation. Loading and rendering individual time steps sequentially can result in substantial frame
delay, whereas loading and rendering all time steps simultaneously can result in excessive memory
usage. To address these issues, the proposed method analyzes the variable description information
in the data files to bypass redundant variables and read the flow field data as required. Second, a
hash table is constructed to derive the two-dimensional surface mesh of the flow field and complex
mesh cells are simplified into simple linear cells to reduce the mesh’s complexity. This paper presents
a method for reducing the memory usage of complex data sets by more than 90%, compared with
the ParaView data reading method. The proposed method is tested on four sets of unstructured
unsteady flow field data with different data structures. The animation visualization method based
on simplified data can achieve an average frame rate of less than 100ms and supports real-time user
interaction on personal computers. It extends the ability of personal computers to analyze large-scale
unstructured unsteady flow fields.

Keywords: unsteady flow; flow animation; unstructured mesh; mesh simplification; interactive
visualization

1. Introduction

CFD (computational fluid dynamics) is a numerical simulation technique used to study
fluid motion, heat transmission, and other phenomena by approximating complex flow
field problems with a finite number of discrete points [1]. Numerous scientific phenomena
are time-dependent, such as the development of thunderstorms, the combustion of sub-
stances, and the movement of ocean currents. The distribution of flow field characteristics
corresponding to these conditions is related to both spatial and temporal variations. CFD
simulations of time-dependent phenomena will produce a series of time-continuous flow
field data, also known as unsteady flow field data.

Typically, geometry modeling, mesh generation, and numerical solution are required
to obtain simulated data for the flow field problem during the CFD simulation process.
Finally, scientific visualization techniques are used to graphically represent the flow field
characteristics encoded within the simulated data. Flow field data can be categorized as
structured mesh, unstructured mesh, or hybrid mesh data based on the various mesh gener-
ation methodologies. Unstructured meshes do not have mathematically logical connections
between their internal nodes. They have high generalizability, strong adaptability to regions
with intricate flow fields, and flexible mesh generation. Using mesh adaptive refinement,
they can increase the computational accuracy of specific regions and have been increasingly
used to solve increasingly complex engineering problems. Unsteady flow field data based
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on unstructured meshes is now a crucial and common type of flow field data for the inves-
tigation of complex time-varying phenomena. The data scale grows massively over time,
which impedes the visualization and analysis of the unsteady flow field data. Data I/O
delay, slow rendering, and inefficient interaction response are some of the main difficulties.
Therefore, effective visualization techniques are needed to analyze such flow field data.

Animation visualization is a general-purpose technique for displaying time series data
and an essential technique for displaying unsteady flow fields. It imports and draws the
flow field data of each time step in chronological order, forming an unsteady animation [2],
and then displays the spatiotemporal characteristics of the unsteady flow field in animation
form in a more comprehensive manner [3]. Unlike traditional animation, animation visual-
ization does more than play pictures composed of pixels one after the other. Fundamental
computer graphic elements like triangles form the base for animation visualization. The
flow field mesh is rendered for display via graphic elements in flow field visualization. This
rendering method can make use of computer graphic techniques like transformation matri-
ces, which let the user manipulate the flow field image by panning, zooming, reflecting, and
so on. Furthermore, the distribution of the flow field’s physical quantities is represented
by the values of the variables dispersed across the mesh. It allows the user to color the
flow field mesh according to the scalar values of the variables and can also calculate to
generate other graphs, such as isosurfaces. Users can interact in real time at any point
during the animation visualization with the support of visualization techniques and flow
field data. The rendering pipeline creates new images in real time based on the interaction
parameters whenever the user interacts, for example, by rotating, panning, or changing
the coloring variables. As a result, the animation visualization can offer a comprehensive
study of the unsteady flow field. However, the application of animation visualization to
unstructured unsteady flow fields still faces the following issues: (1) Each frame of the
animation must acquire the flow field topology and variable information corresponding
to the time step. Reading and constructing the unstructured mesh from the data file is a
lengthy process due to the complexity and diversity of the unstructured mesh’s topological
elements. Therefore, loading each time step separately will result in a significant interframe
delay [4]. (2) The number of flow field meshes and the temporal resolution (number of time
steps) are increasing as a result of the continuous enhancement of computer hardware and
software performance, which is resulting in an increase in the scale of CFD simulation data.
Consequently, a single time step of flow field meshes can reach millions or even billions
of elements and the time steps can be hundreds or thousands, making it challenging for
common computers to load all time steps into memory for visual analysis.

To resolve the aforementioned issues, a method for the visualization of large-scale
unstructured unsteady flow field animation is proposed. By concentrating the data I/O, the
method continues to load all time step data first and then play the animation, so that the
inter-frame animation update does not need to read data from the external storage again,
thereby eliminating the inter-frame delay caused by the I/O bottleneck and enhancing
the animation’s smoothness. The method loads the flow field variables that users are
interested in and uses data filtering to remove redundant data to minimize the memory
usage and input/output time that comes with loading all the time steps of unsteady data.
Further, it reduces the data size by employing the mesh simplification technique. Lastly,
it enables personal computers to perform animation visualization analysis on large-scale
unstructured unsteady flow field data while ensuring animation smoothness and real-time
visual interaction performance.

2. Related Work

Animation visualization of unstructured unsteady data primarily addresses two issues.
First, data compression or minimizing the amount of data required for animation visual-
ization so that it can be applied to larger-scale unsteady data, and second, minimizing the
inter-frame delay during animation playback. Due to hardware performance limitations,
computer memory and external storage space were relatively limited in early scientific
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visualization research [5], and unsteady data would consume a great deal of resources from
storage to loading. To reduce the demand for computational resources, related research
concentrated primarily on the compression of unsteady data by reducing the size of the data.
In addition, traditional unsteady animation visualization implements unsteady animation
by loading each time step according to “load data, render, and release memory” to reduce
memory consumption. However, this I/O process of loading data files into memory will
consume a great deal of time, resulting in a significant latency between animation frames [6].
Consequently, reducing the latency in animation playback is also a focus of related research.

2.1. Unsteady Data Compression

Memory optimization is primarily focused on the spatial consistency within a single
time step and the temporal consistency between continuous time steps in order to compress
data for an unsteady flow field with temporal and spatial dimensions. Shen et al. [7] de-
signed a time-space partitioning (TSP) tree that divides the spatial domain into an octree
as the primary structure, then divides the temporal domain into a binary time tree as the
secondary structure and uses the data in the adjacent spatiotemporal domain to represent
the current data based on the error tolerance. Du et al. [8] proposed a space-partitioning time
(spt) tree, which first divides the temporal domain into a fully balanced binary time tree as
a primary structure and then divides the spatial domain into a standard complete octree,
obtaining a higher data reuse rate because unsteady data exhibits a stronger correlation in
time. Ma et al. [9] used temporal consistency to prune tree nodes by storing each time step
of data in an octree form separately and then comparing the similarity of adjacent time step
data for pruning. The kind of method that separates the temporal and spatial dimensions
and uses differential coding and octree to compress unsteady data by using temporal and
spatial correlation, respectively, can reorganize the original data into a multi-resolution
hierarchy, which has a faster encoding and decoding speed and higher compression ratio.
The accuracy loss caused by compression is small [10], so it is widely used in unsteady
data visualization. Generalizing existing research to unstructured unsteady flow fields is
challenging. Most existing research relies on structured unsteady data. Thus, the regular
hexahedral mesh can use octree to represent the mesh distribution in eight directions accu-
rately [11]. Moreover, it can efficiently calculate differential coding under a certain premise.
The premise is that the flow field meshes do not change with time; only the flow field
variables change with time. However, unstructured unsteady flow fields are different. They
have some challenges that make it difficult to explicitly represent hierarchical structures.
They have an irregular mesh distribution and multi-density characteristics. The meshes and
variables of the flow field will change over time. If structured meshes are used to represent
unstructured flow fields and then spatiotemporal domain partitioning is performed, there
are issues such as mesh partitioning density affecting data accuracy, difficulty in fitting
complex unstructured mesh structures, and an inability to correspond vertex data accu-
rately. Therefore, compressing unstructured meshes into structured meshes is challenging.
It is possible to attempt to design adaptive octrees using leaf nodes of different densities
to represent an unstructured triangular mesh with an irregular mesh density distribution.
But, it is challenging to design compression algorithms that correspond to mesh spatial
positions in different time steps.

In addition to the aforementioned compression techniques that separate the temporal
and spatial dimensions, there are also compression techniques that regard the entire un-
steady data set as four-dimensional data and extend the three-dimensional volume data
compression techniques to four-dimensional space compression. Ibarria et al. [12], for
instance, proposed a high-dimensional data compression method that combines volume
texture compression (VTC) and the Lorenzo high-dimensional parallelogram predictor,
which uses the temporal and spatial correlation of time-varying data to predict the current
voxel value from the decompressed adjacent voxel data values. Linsen et al. [13] proposed
a partitioning method based on the fourth root of 2 to divide unsteady data into fine-
grained hierarchical data, sampling and approximating each detail level with biquadratic
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B-spline wavelets. Wilhelms et al. [14] proposed a method for encoding unsteady data
using four-dimensional trees, with each node containing the data model below it, the error
and evaluation information of selective traversal, and the structural information. These
techniques have a high compression ratio, little accuracy loss, and can make good use of the
correlation between adjacent time steps. However, during decompression, they heavily rely
on neighboring time steps, which leads to high time and space overhead. Data compression
can significantly reduce the amount of data that must be loaded into memory, but it also
introduces a data decompression process during animation playback, which adds to the
animation’s interframe delay. Additionally, the majority of four-dimensional compression
techniques currently in use are based on structured meshes, which makes them challenging
to adapt to complex unstructured data.

2.2. Animation Inter-Frame Delay Optimization

Typically, the method of reading and rendering while playing an unsteady animation
is used to increase resource utilization. The rendering process can be accelerated by the
use of multithreading, GPU encoding, and other techniques [15,16]. Mensmann et al. [17]
implemented a CPU-GPU hybrid decompression that conducted LZO lossless decom-
pression on the CPU, followed by variable-length coding decompression and differential
decompression on the GPU, thereby decreasing the time overhead of data decompression.
Chiueh et al. [18] proposed a pipeline rendering method for unsteady data that alternates
the execution of the data I/O process and the rendering and drawing process, thus conceal-
ing the data reading overhead. Nevertheless, the data I/O time will be much greater than
the rendering time when a lot of data is processed in a single time step. Creating a pipeline
is challenging due to the performance bottleneck in loading data from external memory,
which necessitates the use of additional processors for parallel processing. Yu et al. [19] de-
signed a parallel architecture pipeline for unsteady data, which can be used for interactive
visualization of large-scale seismic simulation data, but this parallel design requires the
support of a supercomputer’s multi-processor and high memory capacity and is therefore
incompatible with ordinary computers. Therefore, when the size of the unsteady data is
large, there is not yet a general data processing method that enables standard personal
computers to play unsteady animation smoothly.

To handle large-scale unstructured unsteady data, most of the current state-of-the-art
commercial visualization software, for example, Tecplot 360 EX 2022 R1 and VisIt 3.3.0,
employ high-performance computing methods [20]. They avoid using data compression
techniques to render the animation, in order to preserve the data accuracy. By adopting a
server–client architecture, they distribute visualization computing tasks to multiple nodes
and leverage parallel computing to the fullest. This approach enables interactive animation
of large-scale unstructured unsteady flow fields, but it is costly due to the high demand for
hardware resources. Data compression methods based on tree structures and differential
coding can save memory, but they are not easy to apply to irregular unstructured unsteady
flow fields. Furthermore, these methods increase CPU loads on personal computers. They
need extra data decompression or specific rendering algorithms for the compressed data,
which lowers their generality. This paper proposes a data preprocessing method based on
the open-source software ParaView5.10, which minimizes the data size for visualization.
It avoids the introduction of additional computations in animation rendering and the
simplified data can be visualized directly using existing visualization engines with a high
degree of generality.

The current mainstream CFD post-processing analysis software, ParaView, implements
a general method for unsteady animation. It supports unstructured data with complex mesh
structures. However, it only supports one simple, traditional animation mode. Data I/O
and rendering calculations are required at every step of the animation to create an unsteady
animation. This playback pattern is adequate for smaller data sizes. Large datasets, especially
with large meshes, make the animation too slow to analyze the flow field. Therefore, this
paper proposes two unstructured unsteady flow field data simplification techniques and
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uses them to support two new animation playback modes. The first method simply loads
all the time steps first and then renders them for playback. This eliminates the overhead of
inter-frame I/O. The second method is based on a flow field data simplification technique,
which reads and simplifies all time steps before playing the animation. Data simplification is
performed according to user needs and data consistency is maintained as much as possible.
This approach further reduces the computational cost of the animation, so the animation
has a higher frame rate.

3. Methods
3.1. Analysis of Unsteady Animation Visualization

The visualization of an unsteady flow field animation can be used to demonstrate how
a flow field changes over time. The data for each time step in the unsteady flow field is
displayed using common visualization methods. It creates an interactive animation that
demonstrates the relationship between various time steps and the evolution of the flow field
over time [21]. It is important to process the flow field data for each time step according to
the flow field visualization technique used. Animation visualization is based on common
flow field visualization techniques and there are multiple time steps in an unsteady flow
field. This means that how the visualization technique is used will have a big impact on the
memory resources and inter-frame delay needed for animation visualization. In general, the
animated visualization should provide a global overview of the unsteady flow field.

Currently, according to the different visual expression methods, common flow field
visualization techniques can be divided into five categories [22]: geometric visualization,
volume rendering, texture-based visualization, feature-based visualization, and abstract-
based visualization. Among them, geometric shape visualization refers to displaying data in
the form of points, lines, surfaces, and other geometric shapes [23]. Volume rendering uses
a transfer function to directly map three-dimensional volume data to a two-dimensional
screen display [24,25]. Texture-based visualization is usually used on two-dimensional
planar structures to highlight the direction characteristics of the vector field in the data [26].
Feature-based visualization highlights the feature areas that are of special significance to
user, such as vortices and shock waves. This visualization technique primarily employs
numerical statistics, machine learning, and other techniques to extract feature areas of
interest to users [27]. Abstract-based visualization is a new form of visualization expression
that uses data abstraction and enhancement techniques [28], which can show more data
information by combining with the other four traditional visualization techniques. A
detailed analysis can be performed on the visual expression forms of the common flow
field visualization techniques. The analysis indicates that there is a unique need for volume
rendering. When mapping three-dimensional data, it must utilize all flow field data to
produce visual expression effects. For example, in Figure 1, to show the temperature
distribution of the combustion phenomenon via volume rendering, ray-casting calculations
employing all of the voxels in the flow field data are essential. On the other hand, geometric
visualization, texture-based visualization, and feature-based visualization have different
requirements. They only use points, lines, surfaces, and other surface data that can be
seen by the user’s line of sight. This way, they can achieve ideal visual expression effects
when performing visual expression. Other data can be reduced due to occlusion of the
line of sight during visualization expression, such as in Figure 2a, where only the surface
data and pressure contour line data are needed to achieve the pressure cloud map and
contour the line visualization expression effect around the wing; in Figure 2b, only the
surface texture data generated via calculation are needed to achieve the surface texture
visualization expression effect of the wing; in Figure 2c, only the surface data and streamline
data are needed to achieve the streamline visual expression effect around the spacecraft.

In conclusion, the majority of flow field visualization techniques only require a portion
of the original data as the input data or the calculated or processed data derived from
the original data for rendering images. However, volume rendering requires complete
original data and the spatiotemporal overhead of the ray casting calculation is extremely
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high, making it challenging to support the drawing of large-scale unsteady animation
with the hardware environment of conventional computers. Consequently, the current
unsteady animation is typically based on geometric visualization techniques, which are
created by loading and rendering the flow field’s visual surface in time steps. The actual
data required consists primarily of flow field surface data consisting of 0D points, 1D lines,
and 2D surfaces. To make animation visualization techniques applicable to larger-scale
unsteady data, pre-processing can be performed on unsteady data and only the minimum
amount of data required to draw each time step flow field is retained, thereby reducing
animation visualization’s memory consumption and inter-frame delay.

Figure 1. Volume rendering of combustion chamber. The scalar mapping bar shows the correspon-
dence between temperature and color.

Figure 2. Contour line (a), texture (b), and streamline (c) visualization.

3.2. Unsteady Animation Visualization Method

Figure 3 shows the overall procedure of the unstructured unsteady flow field animation
visualization method. To avoid animation latency due to data I/O, this method uses a pre-
processing technique that loads all unsteady data before drawing the animation in time
steps. Upon loading the flow field file, the flow field variables and flow field meshes that
make up the majority of the data file’s content are analyzed to simplify them based on
the minimal amount of data required for animation visualization. Before loading the data
centrally, the user can explore the unsteady flow field with a visualization method that
renders while the data is being loaded. In this way, the user can initially explore the flow
field information to identify the target variables for unsteady animation studies. After the
user has performed a preliminary analysis of the flow field’s characteristics, they can set
the variable loading parameters as required and begin reading all of the time-step data into
memory and simplify them, thereby reducing the unsteady data size while ensuring the
accuracy of the visualization results. So that it can be applied to large-scale unstructured
unsteady flow fields, the simplified dataset is then used as the input data for animation
visualization. Simplified data contains the flow field surface mesh and the required flow field
variables for surface rendering. These data enable quick access in memory to generate the
graphics’ elements and form the flow field animation. This method enables quick access to
simplified data in memory, allowing for interactive animation analysis and the observation
of the unsteady flow field development in any region at a higher rendering frame rate.
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Figure 3. Unsteady flow animation visualization process.

3.2.1. Loading Parameter

As shown in Figure 4, the I/O process of the CFD simulation data consists primarily of
flow field mesh construction and flow field variable loading. Although flow field variables
are used to record the physical quantities of vertices and cells, their reading process is
relatively independent of the flow field mesh and these two types of data are typically
loaded as separate data objects in the actual I/O process, then linked by the vertex or cell
index. Since the flow field mesh has spatial connection relationships, it is necessary to
obtain the complete mesh cell information to analyze and simplify it; therefore, the flow
field mesh simplification cannot be conducted until the data I/O of each time step has been
completed. However, there is no complex spatial relationship between flow field variables,
and flow field variable simplification can be accomplished at the I/O stage by utilizing the
variable description information contained within the data file.

Multiple flow field variables, like fluid velocity, temperature, and pressure, are fre-
quently included in scientific simulation data. Additionally, only one or a few variables are
actually required to serve as the research object when analyzing a specific, time-varying
scientific problem. Therefore, the user should be given the option to select the flow field
variables that best suit their needs. The principle of selective data loading is to load only
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the flow field variables of interest to the user and to avoid loading redundant data. By
doing this, the data size reduction goal is met while the animated visualizations are kept.
As depicted in Figure 5, studying the attitude change in a missile after launch can use the
pressure distribution on the upper and lower surfaces of the missile (involving the pres-
sure variable) or the airflow direction around the missile (involving the velocity variable)
and other variables become redundant and can be simplified at this time. To aid users in
determining the necessary flow field variables, the first timestep of the unsteady flow field
is loaded in the form of a steady flow field. Data preprocessing can be performed using
common visualization techniques such as isosurfaces, cloud maps, streamlines, etc. to
achieve the desired visualization effect and then determine the required flow field variables.
To facilitate a more thorough analysis of unsteady data when determining the necessary
variables, the proposed method enables unsteady animation using the conventional loading
and drawing method. In this playback mode, only the current time step flow field data is
loaded into memory. Although the animation latency is high, this mode allows users to
investigate the temporal characteristics of unsteady data. If users are unable to determine
the required flow field variables based on the first timestep flow field alone, they can
switch to any time step and confirm the animation’s required variables via a comprehensive
analysis of the data from multiple time steps.

Figure 4. Process of data loading.

Figure 5. Geometry−based visualization (a) plots the velocity vector arrows, and (b) displays the
cloud map with pressure coefficient variable.

After obtaining the user-required flow field variables through the preceding data
preprocessing, these variable names are used as reading parameters to sequentially read
the data files of all time steps of the unsteady flow field. The data loading algorithm filters
all data according to the reading parameters, retaining only the necessary variables and
avoiding the reading of redundant variables, thereby reducing memory consumption and
accelerating data I/O.
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3.2.2. Selective Data Loading

After obtaining the flow field variable reading parameters, the external storage data
files can be parsed sequentially and redundant variables that the user is not interested in are
skipped over via selective data reading. Figure 6 shows the composition of unstructured
flow field simulation data. These data have an explicitly defined topological structure.
Usually, a list of points per cell is used to represent this structure. However, compared to
structured data, this approach uses more storage space. Together with the geometric struc-
ture, it constitutes the flow field mesh, which is the primary component of the unstructured
flow field data file. Typically, the storage of variable data consists of variable description
information and variable values stored sequentially. After being read into memory, the
variables are associated with the corresponding geometric vertices or mesh cells via point
or cell ID numbers.

Figure 6. Components of unstructured flow field simulation data.

Different CFD software vendors have developed various file formats for flow field
data, which, according to the data storage mechanism, can be classified as single-file or
multi-file storage types. For the single-file variety, each time step flow field’s information is
stored in a single file. The flow field variables occupy a continuous storage space in the file,
where each variable is separated into a separate data area and the area header contains the
variable’s description information, such as variable name, variable distribution (on vertices
or cells), variable value type, etc. In addition to storing vertex-, cell-, and variable-related
data in discrete files, the multi-file type additionally includes an I/O entry file. The entry
file contains the filenames of various data files, allowing the reading algorithm to locate
the flow field mesh and variable data files. In combination with the data documentation
supplied by the vendor, the following reading algorithm may be applied to the flow field
variable data to accomplish on-demand loading of the flow field variables:

Input: flow field data file;
Output: collection of arrays of selected flow field variables.
Step one, read the variable description information: Read the variable’s description

information from the file and parse the variable’s name, data type, length, and other
description information. Check, for each variable, whether its name is included in the
user-specified reading parameters. If yes, proceed to step two; if no, continue to step three.

Step two, load the variable data: Load the data values of each variable one by one into
the variable array in memory based on the data type and length specified in the variable
description information and designate the variable as a vertex or cell variable based on its
distribution position. After loading the variable in question, proceed to step four.

Step three, skip redundant variables: For simulation data stored in a single file,
calculate the number of bytes occupied by the variable in the binary data file based on the
variable type and number and skip the current variable data area by setting the file pointer



Appl. Sci. 2023, 13, 12062 10 of 19

offset; for simulation data stored in separate files, directly skip the data file that contains
the variable based on its name.

Step four, read the remaining variables: If there are still unprocessed flow field vari-
ables in the data file, go to step one. After processing all the variable data in the data file,
save the variable arrays inserted into memory along with the variables’ names, data type,
and other data as a flow field variable dataset.

3.2.3. Mesh Simplification

The flow field mesh stores the spatial information of the flow field, and because the
mesh cells of the unstructured flow field data have various types and complex connection
relationships, the memory overhead of importing the unstructured mesh is substantial.
Since the complete cell connection relationship can only be obtained after reading all the
meshes, the mesh simplification must be conducted after the single time step data I/O has
been completed; it cannot be simplified like the flow field variables during the I/O stage.
The flow field mesh simplification algorithm analyzes the flow field’s topology structure,
obtains the surface mesh necessary for drawing each time step’s flow field, and divides it
into simple linear cells to reduce the memory overhead and accelerate image rendering. To
extract and divide the surface mesh, the algorithm separately processes three-dimensional
and non-three-dimensional mesh cells, where non-three-dimensional cells all belong to
the visible portion of the surface rendering and therefore only need to be divided into
simple linear cells. The processing of three-dimensional cells is more intricate; therefore, it
is necessary to first extract the outer surface of the cell as the visible portion before dividing
the surface cell into simple linear surfaces for visualization input.

Non-Three-Dimensional Cells

Zero-dimensional (0D) cells consist only of vertex and multi-vertex cells, which are
made up of two or more vertices with no connection between them. As shown in Figure 7,
a vertex cell can be saved directly to the surface output cell, while a multi-vertex cell is
divided into multiple vertex cells and then the variable attributes of the corresponding cells
are copied and processed as vertex cells.

Figure 7. Simplification method of multi-vertex, polyline, and quadratic curve. The dots in the figure
represent the points of the cell. The numbers record the index of the cell after subdividing.
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There are three different varieties of 1D cells: line, polyline, and quadratic curve. A
polyline is a cell that consists of multiple lines. The method of processing is comparable to
the 0D cell. As output cells, the polyline is divided into several separate lines during mesh
simplification. A quadratic curve is the simplest nonlinear cell, defined by its beginning
point, ending point, and inflection point. When rendering nonlinear cells, computer graph-
ics libraries must typically subdivide nonlinear cells into linear cells before converting them
into linear primitives for rendering. Consequently, it can be directly subdivided into linear
cells when simplifying the mesh, without both affecting the final visual effect and requiring
repetitive cell subdivision operations during rendering. As shown in Figure 7, a quadratic
curve cell can be viewed as a polyline composed of two lines, after which a straightforward
linear cell division is performed.

Two-dimensional cells consist of triangle, quadratic triangle, quadrilateral, quadratic
quadrilateral, etc. Even though there are more cell types than 0D and 1D, the processing
principle is still to subdivide nonlinear cells into linear cells and then divide the linear
cells into simple linear cells. Using a quadratic quadrilateral cell as an example, first add a
midpoint, then use the midpoint as a common vertex and form four linear quadrilateral cells
with the original eight vertices, as depicted in Figure 8. This completes the simplification of
a nonlinear 2D cell.

Figure 8. Subdivision of quadratic quadrilateral.

Three-Dimensional Cells

The processing of 3D cells is the most complicated part of mesh simplification, which
requires analyzing all 2D surfaces of each 3D cell and only retaining the 2D surfaces that
constitute the flow field surface. The judgment rules are as follows: let the set of 3D cells in
the flow field be V, the set of surfaces that constitute the flow field surface be S, and the
vertices of a 2D surface f be P, then for this 2D surface, if there exists a unique v ∈ V such
that P ⊆ v, that is, all vertices in P are contained in the unique 3D cell v, then the surface f
is the external surface of the flow field. On the contrary, if there is no such unique 3D cell,
then the surface f is the internal surface of the flow field. Let the set of vertices of 3D cell v
be Vv. Then, for a 2D surface f = p1, p2, . . . , pk|k ∈ N, k ≥ 3, where pi(i ∈ N∗) denotes
the ith vertex of f , the judgment process can be described as follows:

∀ f , P ⊆ Vv, v ∈ V, f = {p1, p2, . . . , pk | k ∈ N, k ≥ 3}, ∃!v ∈ V · s.t.P ⊆ Vv =⇒ f ∈ S (1)

For each 2D surface of a 3D cell, the connectivity of the 3D cell where it is located can
be analyzed to determine whether the surface belongs to the external surface of the flow
field. First, obtain all the vertices that make up the 2D surface and then traverse all the cells
connected to the current cell. If there exists any adjacent cell that contains these vertices, it
means that it is shared by at least two 3D cells, so it is not an external surface. Otherwise, it
can be processed as an external surface of the flow field according to the 2D cell. However,
this traditional method based on cell connectivity requires multiple traversals of adjacent
mesh cells, and for the data with n 2D surfaces contained in 3D cells, the algorithm time
complexity is as high as O(n2).
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In order to reduce the time overhead of extracting the surface mesh, according to
the condition described in Equation (1), it can be known that for the 2D surface f ∈ S
that constitutes the flow field surface, it will only appear once when traversing all the
2D surfaces of the 3D cells, and the surfaces that appear repeatedly must be internal
surfaces. Therefore, the unique key–value pair characteristics of the hash table can be used
to efficiently deduplicate and then quickly obtain the 2D surfaces that constitute the flow
field surface mesh. A structure based on a hash table was designed, as shown in Figure 9.
The data subject consisted of the vertices that make up the 2D surface and the id of the 3D
cell where they are located, to enable surface deduplication, random access, and sequential
access for constructing the output data.

Figure 9. Hash table node structure.

Among them, pointList is the vertex list that makes up the surface, stored in ascending
order of vertex id, and cellId is the id number of the 3D cell where the surface is located. It
is used to copy the variable data on the cell when creating the output cell of the surface
mesh. The “next” pointer, which points to the next inserted node, is also used to handle the
mapping address conflicts. The hash table uses the smallest id number in the vertex list as
the key value for random access. When a conflict occurs, a chained hash table is used to
store the new surface node. When inserting, the repeated surface feature is that the vertex
list is exactly the same as the existing node. The repeated surface can be obtained via node
random access and comparison, then cellId is set to −1 (an illegal cell id value) to mark
it as an internal surface. Using this data structure, only one traversal of the 2D surfaces
can obtain all the 2D surfaces that constitute the flow field surface, thereby reducing the
algorithm time complexity to O(n). After completing the traversal, cellId in each table
node indicates whether the current surface is an external surface. By sequentially accessing
through the next pointer, each external surface can be efficiently inserted into the flow field
surface mesh output via the algorithm.

3.2.4. Interactive Animation

After performing selective reading and simplification processing on the unsteady
dataset, all the data required for animation drawing are loaded into memory and the
redundant portion of the original data is removed, which significantly reduces the data
size of the unstructured unsteady flow field, allowing personal computers to fully load
the simplified dataset, thereby eliminating the animation delay caused by data I/O and
accelerating image rendering. Based on the VTK 8.2 (Visualization Toolkit), interactive
animation visualization for large-scale unstructured unsteady flow fields is implemented
using data simplification algorithms.

The data processing and animation visualization proposed in this paper are imple-
mented based on VTK. The animation is made responsive to the real-time interaction
during playback by using the event observing mechanism of VTK to add a timer event to
the VTK interactor. This ensures that the visualization input data is updated according
to the time interval specified by the user. The timer is used to create animation updates
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and interactions within an animation. The VTK interactor offers a few fundamental inter-
activity features. Whenever the user conducts interactions such as viewpoint translation,
zooming, rotation, etc., the timer event response will be temporarily paused and resumed
once the interaction is complete. The animation enables examination of the time-varying
characteristics of the unsteady flow field and interaction with the animation to analyze the
spatial distribution of the specific time-step flow field.

As shown in Figure 10, besides the conventional interaction methods, a time-step
interaction widget was designed to support the control of animation playback. This widget
offers more interactive animation control options than the one provided by ParaView 5.10.
It allows the application of the proposed animation visualization methods, in addition
to traditional player controls such as play, pause, and toggle timestep operations. The
animation by default uses the playback mode of drawing while reading data, similar to
ParaView. The mode of centralized data loading and playback can be chosen by clicking on
the “Load animation” button. This enables the use of one or all selective I/O and mesh
simplification preprocessing to increase the animation frame rates. The “Data type” drop-
down box allows easy switching between the raw data and the simplified data. Moreover,
the parameters of the VTK timer are exposed to the user so that the animation playback
speed can be manually adjusted by modifying its trigger interval. The rendering window
and timestep widget facilitate easy interaction for better use of the animation visualization.

Figure 10. Animation timestep interaction widget (a) shows the timestep widget in ParaView, and
(b) shows our timestep widget, which has a more user-friendly interface and supports more animation
configurations.

4. Experiment

The experiment utilizes four groups of unstructured unsteady datasets and the data
processing method proposed in this paper to perform animation visualization. The fol-
lowing describes the computer hardware configuration used in the experiment: Intel Xeon
(Skylake) processor with 8 cores at 3.00 GHz, 32 GB of DIMM memory (16 GB × 2) and
an Nvidia GRID P40-1Q graphics card with 1 GB of video memory. Table 1 contains four
datasets derived from simulations of time-varying phenomena. Variable selective loading,
mesh simplification, and memory optimization combining the two methods were carried
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out on the experimental datasets to confirm the generalizability of the method proposed in
this paper. Among them, dataset 1’s flow field mesh contains only 2D cells and the data
memory ratio for flow field variables is relatively high. Dataset 2 is a single-variable flow
field composed of 3D cells; therefore, the method for selectively loading variables cannot
be applied. Both dataset 3 and dataset 4 are large-scale, unsteady flow field data consisting
of 2D and 3D cells and multiple variables that cannot be imported directly and entirely into
memory for animation visualization.

Table 1. Information on experimental data.

Data Memory Needed Number of Cells Timesteps Variables

Dataset 1 38.31 MB 433,602 17 Velocity, density, pressure, pressure coefficient
Dataset 2 14,300.5 MB 120,649,590 10 Velocity
Dataset 3 42,593.7 MB 575,859,614 38 Velocity, density, pressure, pressure coefficient
Dataset 4 42,762.9 MB 546,400,198 40 Velocity, density, pressure, pressure coefficient

4.1. Variable Simplification

Typically, CFD simulation simulates and solves the Navier–Stokes equations using
conservation laws such as mass and momentum conservation. The equation contains mul-
tiple variables such as fluid velocity, pressure, density, temperature, etc., and velocity is
the most significant unknown among them, as it directly affects the fluid’s momentum
and energy and can reveal the fluid’s motion state and motion characteristics, which are
the primary research topics. Therefore, in the experiment of variable loading on demand,
velocity is chosen as the visualization-loading variable, while other variables are regarded as
redundant data and omitted loading. The experimental outcomes are presented in Table 2.
According to the experimental results of dataset 1, dataset 3, and dataset 4, loading the flow
field variables on demand has a certain optimization effect when there are more categories of
variables in the dataset. The optimization effect of dataset 1 with a simple topology structure
and a high proportion of variable data is more apparent. The memory ratio indicates the
memory ratio of loading all the data with the selective I/O method compared to using the
VTK file reader directly. The selective I/O method only loads the velocity variable in the
data file and saves the extra space by not storing irrelevant variables.

Table 2. Experimental results of load-on-demand variable-optimized memory.

Data Original Memory Memory of Selective Loading Memory Ratio

Dataset 1 38.31 MB 32.34 MB 84.42%
Dataset 2 14,300.5 MB 14,300.5 MB 100%
Dataset 3 42,593.7 MB 39,166.4 MB 91.95%
Dataset 4 42,762.9 MB 40,690.8 MB 95.15%

Dataset 3 and dataset 4 reduce the memory overhead by 2 GB compared to the
original data, but cannot load all the time steps into memory to eliminate the playback
delay caused by inter-frame data I/O; dataset 2 is simulation data with a single flow field
variable, so variable simplification is not possible. Experimental findings indicate that
variable simplification has an optimization effect on multivariable flow fields. However,
the majority of the memory burden associated with loading unstructured data is due to its
complex topology structure. To further reduce the size of unsteady data, it is essential to
combine the flow field mesh simplification method.

4.2. Mesh Simplification

Structured simulation data can use its arrangement principles to store the flow field
mesh implicitly, whereas unstructured data requires extra space to record complex, un-
ordered, and diverse mesh cells and cell connectivity. The mesh simplification algorithm
analyzes the flow field topology structure based on the surface mesh required for surface
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drawing and then replaces the original data with the minimum data required for visualiza-
tion input, attaining the goal of reducing the data size. Table 3 displays the outcomes of
applying the mesh simplification method and combining it with the technique described
in Section 3.1 in order to optimize the memory of experimental datasets. The topology
structures of dataset 2, dataset 3, and dataset 4 are primarily composed of 3D cells and the
memory requirements are drastically reduced after surface extraction and linear surface
division. The mesh simplification method has a greater effect when the proportion of 3D
cells in the dataset is considerable, as indicated by the data in Table 4. Data preprocessing
leads to a significant memory reduction even in dataset 1, which does not contain 3D
cells. The combined optimization method makes use of both selective loading and mesh
simplification. By employing this method, high memory reductions were achieved for all
experimental datasets. It indicates that the method is highly universal for unstructured
unsteady data with various composition structures. A personal computer can display
larger-scale unsteady flow fields in animated form as a result of data simplification and
centralized loading of the entire time step. The data processing methods are based on the
VTK rendering pipeline, which also applies to the VTK-based ParaView. A new playback
mode can be created by substituting the data read after data I/O with the simplified data
at each time step.

Table 3. Mesh simplification and combinatorial optimization memory experiment results.

Data Simplified
Mesh

Memory Ratio of
Simplified Mesh

Combined
Optimization

Memory Ratio of
Combined Optimization

Dataset 1 25.17 MB 65.70% 17.99 MB 46.96%
Dataset 2 109.03 MB 0.76% 109.03 MB 0.76%
Dataset 3 2793.86 MB 6.56% 2290.07 MB 5.38%
Dataset 4 435.96 MB 1.02% 353.93 MB 0.83%

Table 4. Average time cost of the flow field surface mesh exraction algorithm.

Data Total 3D
Cells

3D Cells
Ratio

Common
Method

Hash-Based
Method

Improvement
Ratio

Dataset 2 120,649,590 100% 114 s 32.5 s 350%
Dataset 3 532,217,496 92.4% 883 s 333 s 265%
Dataset 4 540,141,070 98.9% 2879 s 1213 s 237%

The outer surface extraction algorithm for 3D cells on unstructured meshes was
analyzed and improved. The conventional VTK surface extraction algorithm uses cell
intersection to determine whether a 2D surface is an external surface. This requires first
querying which cells contain vertices within a 2D surface. The list of points that make up
these cells is then intersected. It can only be referred to as an external surface if these points
do not appear repeatedly in any cell. VTK reduces the overhead of seeking out cells by
constructing a table of connected relations for unstructured mesh cells. However, the time
it takes to build a table of connections is also costly. A hash structure was constructed to
assist the lookup surfaces and reduce the number of lookups and the time cost of unsteady
data processing for surface deduplication. It can significantly decrease the amount of time
needed for data preprocessing, which will improve user experience.

Table 4 shows the time overhead of the proposed method compared to common
surface extraction techniques. Dataset 1 was not tested because it had no 3D cells. The
experimental results indicate that the proposed method can achieve more than twice the
efficiency of the existing algorithm on dataset 2, dataset 3, and dataset 4, which mainly
consist of 3D cells, thus significantly reducing the data processing time. However, the
algorithm’s efficiency decreases gradually for complex and large-scale mesh structures due
to the overhead of managing insertion conflicts in the hash structure.
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4.3. Animation Playback Delay

Table 5 records the average inter-frame delay of the experimental data animation
playback using three different methods. Method (1) takes the raw flow field data as the
input data. At each time step, it performs the data loading and image rendering processes.
Consequently, most of the delay in method (1) results from data I/O. ParaView 5.10
currently employs this technique. All the time-step data is read into memory via Method (2).
The flow field data is acquired directly to render the animation. This method cannot be
applied when the data exceeds the memory capacity. Method (3) expands on Method (2) by
using data simplification to reduce the amount of data. Only a smaller portion of the data
required for visualization will be loaded into memory using selective loading and mesh
simplification. Mesh simplification contributes significantly to the decrease in animation
latency and variable loading has little effect on visualization calculations.

Among the datasets, dataset 3 and dataset 4 are too large in scale, and method (2)
cannot directly load all the time steps into memory, so the first 20 time steps are used
for research. To reduce the impact of random factors, the experiment records the total
time spent playing the dataset animation multiple times and calculates the average inter-
frame delay by dividing it by the total number of time steps. Compared with method (1),
method (2) eliminates the inter-frame data I/O time overhead. But, when the data scale
is larger (dataset 2, dataset 3, and dataset 4), the rendering and drawing time of each
time step flow field increases significantly, which causes a decrease in the smoothness and
real-time interactivity of the animation. Method (3) uses the simplified unsteady data as
the visualization input, which can reduce the graphics’ rendering computation based on
eliminating the inter-frame I/O time overhead, thereby further reducing the animation
playback delay. As can be seen from Table 5, the simplified experimental dataset was used
as the visual input via the proposed method, which achieved an average inter-frame delay
of animation rendering less than 100 ms. This enabled real-time response to the user’s
visual interaction.

Table 5. Average interframe delay for animation playback.

Data Method (1) Method (2) Method (3)

Dataset 1 67 ms 55 ms 51 ms
Dataset 2 8.0× 103 ms 3.5× 103 ms 83 ms
Dataset 3 1.2× 103 ms 7.8× 103 ms 92 ms
Dataset 4 3.3× 104 ms 2.7× 104 ms 55 ms

The data simplification improved the animations’ frame rates but also affected the
visualizations. The selective reading of variables had minimal impact, as the required
variables were usually known. Other variables could be quickly read using the file’s vari-
able description information. However, the mesh simplification, which retained only the
externally visible part of the flow field, altered some of the visualization results. Figure 11
illustrates the results of cloud map coloring with velocity at the sixth time step of dataset 2.
They had slightly different color mappings because of the internally invisible points and
cells and the variables distributed over them, which were removed. Thus, the range of
values of the variables differed. The velocity in Figure 11a has a maximum value of 1.5183,
whereas the maximum velocity in Figure 11b is 1.475. Interactions requiring inner data
from the flow field, such as isosurface extraction, may produce different results. The com-
plete isosurface of the turbulent region Figure 11c can be extracted from the flow field of
Figure 11a. Only contour lines can be extracted for the data in Figure 11b with the same
settings. Nonetheless, it offered an overall overview of the unsteady flow field and the
visible part of the mesh was unchanged. The proposed unsteady animation visualization
method enabled a global overview of the unsteady flow field using simplified data. Raw
data could be used for a more comprehensive visual analysis when needed.
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Figure 11. Comparison of dataset 2 visualization (a) is based on original data; (b) is based on
simplified data; (c) is an isosurface extracted from (a); and (d) is an isosurface extracted from (b).

5. Conclusions and Future Work

This paper examines the current techniques for animating unsteady flow fields. Per-
sonal computers face resource constraints to animate large-scale unstructured flow fields.
Unsteady data compression methods using hierarchical structures and differential cod-
ing are efficient but not suitable for unstructured flow fields. Compressing unstructured
flow field data with time and space dimensions requires designing fast decompression
or customized visualization algorithms, which is difficult. This paper presents two data
simplification algorithms using ParaView’s animation method. The algorithms simplify the
flow field data using variables and meshes, which are the main components, and enable
direct memory reading of the simplified data. The two data simplification algorithms in
this paper can lower the memory cost of complex datasets by over 90%, as shown by four
experiments. On this basis, personal computers can load simplified data directly into mem-
ory, thus avoiding inter-frame delays caused by data I/O. By comparing the three playback
methods, it is demonstrated that the method in this paper can visualize the animation of
large-scale unstructured unsteady flow fields on a personal computer and can respond to
user interactions within 100ms in real time. The method in this paper can enhance the user’s
analysis of unsteady flow fields, unlike the original playback method in ParaView. The
method does not use data compression techniques, so the simplified data can be rendered
directly by using existing flow field visualization techniques, which is very versatile.

However, the animations are rendered using geometry-based flow field visualization
techniques, so the simplified data lacks information about the interior of the flow field. The
simplified data cannot be used directly for volume rendering or isosurface extraction. The
user can switch between the simplified and raw data anytime with the timestep widget
in this paper. This enables the analysis of the unsteady flow field with other visualization
methods, combining the benefits of the two playback methods. Feature tracking and
animation visualization will be used in future work to extract and analyze the internal
regions and time-varying features of large-scale unsteady flow fields. Thread parallelism
rendering techniques will also be explored to leverage the multi-core performance of PCs
and enhance the animation frame rate.
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