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Abstract: Alzheimer’s disease (AD) is one of the most common irreversible brain diseases in the
elderly. Mild cognitive impairment (MCI) is an early symptom of AD, and the early intervention
of MCI may slow down the progress of AD. However, due to the subtle neuroimaging differences
between MCI and normal control (NC), the clinical diagnosis is subjective and easy to misdiagnose.
Machine learning can extract depth features from neural images, and analyze and label them to
assist the diagnosis of diseases. This paper combines diffusion tensor imaging (DTI) and support
vector machine (SVM) to classify AD, MCI, and NC. First, the white matter connectivity network
was constructed based on DTI. Second, the nodes with significant differences between groups
were screened out by the two-sample t-test. Third, the optimal feature subset was selected as the
classification feature by recursive feature elimination (RFE). Finally, the Gaussian kernel support
vector machine was used for classification. The experiment tested and verified the data downloaded
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, and the area under the curve
(AUC) of AD/MCI and MCI/NC are 0.94 and 0.95, respectively, which have certain competitive
advantages compared with other methods.

Keywords: Alzheimer’s disease; mild cognitive impairment; brain networks; diffusion tensor imaging;
recursive feature elimination; support vector machine

1. Introduction

Alzheimer’s disease (AD) is one of the most influential neurological diseases in the
world. According to the statistics, AD accounts for 60–80% of all dementia cases [1].
Although the incidence of AD is high, its pathophysiological mechanism is still unclear.
Mild cognitive impairment (MCI) lies between normal control (NC) and AD. Studies
have indicated that people with MCI are progressing to AD at a pace of about 10–15%
annually [2], and that appropriate therapeutic interventions can slow the progression of
the disease if taken at the MCI stage [3]. Therefore, the early recognition of MCI is of great
significance for timely intervention and delaying the progression of AD.

Due to subtle changes in the brain structure of MCI patients, the characteristics of
magnetic resonance imaging (MRI) are not obvious, so it is difficult to distinguish MCI
from AD and NC. Studies have shown that microstructural changes in white matter (WM)
appear earlier than aberrant modifications in gray matter and functional connectivity
during AD progression [4]. Therefore, WM degeneration is an effective biomarker for MCI.
Diffusion tensor imaging (DTI) is an important tool for studying the microstructure of the
brain, which can examine the fine structural changes in WM fibers and provide highly
specific anatomical information [5–7]. DTI diffusion tensor parameters include fractional
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and so on. Among them,
FA and MD are the main parameters used by DTI to assess the integrity and degree of
damage of WM fiber bundles [8]. Dalboni et al. [9] conducted a voxel-based analysis of FA
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in AD, MCI, and NC, and found that the bilateral intersection of the hippocampal cingulum
and parahippocampal gyrus was the most differentiated area in AD. Jung et al. [10] applied
DTI to the memory-related WM fiber tracts of MCI subjects and found that MCI subjects
had decreased FA values and increased MD values in the cingulate gyrus tract, superior
longitudinal fasciculus, and other regions compared to the NC group. Bergamino et al. [11]
compared the free water DTI of AD and MCI subjects and found significant differences in
the WM fibers in multiple regions between the two groups. Among them, higher FA values
were found in the anterior thalamic and corticospinal tracts of the AD group, while the
fornix had lower FA values and higher MD values, which may be related to a decrease in
cognitive ability. Wurst et al. [12] used DTI to study changes in the WM structure of motor
basal ganglia in AD and NC. The results indicated that, compared with the NC group, the
FA in the right caudate nucleus of the AD group decreased significantly, while the FA in
the left and right putamen increased significantly.

The human brain is one of the most sophisticated systems in nature, consisting of
a complex and vast network of billions of neurons, which is the physiological basis for
information processing and cognitive expression [13]. Extensive studies have shown that
the pathogenesis of AD is not only limited to a single brain region but that there is a problem
with the synergy between multiple regions of the brain. Therefore, experiments need to
study AD from a holistic perspective using complex network theory [14–19]. Machine
learning is a pattern recognition technology. While producing a classification, it can also
train a large number of historical data through algorithms and learn the characteristic
rules from them, to realize the recognition of new sample data and some predictions
for the future [20]. Machine learning can greatly improve the efficiency of diagnosis. If
given enough training data, the system can be trained in a short time and a lot of feature
information can be obtained, and finally, reliable classification results can be made. In recent
years, the combination of various machine learning-based classification techniques like
support vector machine (SVM) [21] and brain networks have gradually been widely used
in the early diagnosis of neurodegenerative diseases [22–24]. SVM is a two-classification
generalized linear classifier based on supervised learning. The appearance of the kernel
method broadens the application scope of SVM, which enables SVM to deal with nonlinear
problems and high-dimensional data (such as MRI, DTI, and other neuroimaging data).
Brain networks can analyze abnormal changes in brain function and structure. Therefore,
researchers often use DTI and fiber bundle imaging technology to construct a whole
brain white matter connection network, use various feature extraction methods to extract
effective feature information from the white matter connection network, and use SVM to
classify. Gao et al. [25] utilized the complex network visualization method [26] to construct
functional brain networks related to AD and used the topological features of brain network
regions as classifier samples to construct SVM models. Meanwhile, this study further
explored the local topological abnormalities of AD brain networks and found that the
brain regions with abnormal functional connectivity caused by AD involved the left insula
region, the right posterior cingulate region, and other cortical regions. Dai et al. [27] used
DTI’s automated fiber quantification method [28] to track 20 WM fiber bundles from
the whole brain to classify and predict different subtypes of MCI using SVM models.
Zhao et al. [29] extracted blood oxygen level-dependent time series from white and gray
matter, constructed functional connectivity brain networks with static and dynamic between
white and gray matter as well as static and dynamic within gray matter, and assessed these
features using SVM. Li et al. [30] used the network clustering coefficient, global efficiency,
and average node degree as features to distinguish amnesia MCI from NC, and established
an SVM classification model.

This study aims to identify the effective features in white matter connectivity networks
to improve the classification performance. The main contributions are as follows:

(1) Calculate the DTI index of the WM connectivity between the brain regions of the
whole brain and construct the FA connectivity network as features.
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(2) Combine the statistical test and recursive feature elimination (RFE) [31] to screen the
combination features with better classification effects. The contribution of features was
also calculated using RFE to analyze the pathological mechanisms of AD and MCI.

2. Materials and Methods
2.1. Subjects and Experimental Environment

The data used for the experiments came from the open-source medical dataset Alzheimer’s
Disease Neuroimaging Initiative (ADNI). The main purpose of ADNI is to investigate
whether early progression of MCI and AD can be measured by combining a series of MRI,
DTI, other biomarkers, and clinical and neuropsychological evaluations. We randomly
selected 140 DTI data, which contained 38 AD data, 46 MCI data, and 56 NC data. All the
subjects underwent the mini-mental state examination (MMSE).

The classification experiments conducted in this study were implemented using the
TensorFlow 2.4.0 framework and Python 3.8 on an NVIDIA GeForce RTX 4090 GPU with
64 GB of memory.

2.2. System Pipeline

The key to the proposed classification framework is to use FA parameters to provide a
rich description of the connected network. The proposed classification process is shown
in Figure 1. First, we preprocessed the data and calculated the DTI parameter FA. Second,
we tracked the WM fiber bundle, generated the FA connection matrix, and constructed
a white matter connectivity network. Third, the FA connectivity matrix was tested by
two-sample t-test to select brain region nodes with significant differences between groups.
Finally, the optimal feature subset was selected using RFE to train the classifier. The test of
classification performance tests showed that our feature extraction method was effective.
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2.3. Image Processing

A series of pre-processing of the raw DTI images was required before further analysis.
In the experiments, the open-source toolkit FSL 6.0.3 [32] was used to preprocess the
data, including image format conversion, b0 images extraction, non-brain tissues removal,
eddy current correction, and tensor FA calculation. Figure 2 shows the overall flow of
preprocessing.
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2.4. White Matter Connectivity Network Construction

Individual white matter connectivity networks were constructed for each study subject.
The experiment used the automated anatomical labeling (AAL) 90 template, a standard
template for brain network mapping, to divide the brain into 90 brain regions, each repre-
senting a node in the white matter network. Edge represents the characteristics of nerve
fiber bundle connections between brain regions of interest, and in this paper, FA values
were defined as the edge of the network to describe the strength of connections between
nodes. The experiment used DSI Studio software (version 2023.06.05) to track fiber bundles
using fiber assignment by continuous tracking (FACT) technology. Tracking imaging was
terminated if the FA of each voxel was≤0.2 or tracking angle was >45◦ [33], and a complete
WM fiber bundle was obtained. Next, the nerve fiber FA connectivity matrix was generated
and presented using a hotspot map, which can show the connectivity between brain regions.
The horizontal and vertical coordinates were the serial numbers of the brain regions, and
the dots in the graph were the connectivity strengths of the two brain regions the horizontal
and vertical coordinates of which correspond to the serial numbers, the color of the points
in the graph is redder, indicating stronger intensity. Conversely, the color of the points
is bluer, indicating lower intensity. Finally, the BrainNet Viewer 1.7 toolkit was used to
construct and visualize the white matter connectivity network. Figure 3 shows the basic
process of white matter connectivity network construction.
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2.5. Gaussian Kernel Support Vector Machine

SVM is a kind of machine learning algorithm that is used to solve binary classification
problems by finding the partition hyperplane that separates different types of samples in
the sample space, maximizing the minimum distance from two-point sets to this plane, and
maximizing the distance from edge points in two-point sets to this plane.

The kernel function is an important part of SVM, especially the Gaussian kernel
function which is widely used in practice. Gaussian kernel function, also known as radial
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basis function (RBF), is a nonlinear function that can map data into higher dimensional
space. As shown in Figure 4, it can transform low-dimensional data into high-dimensional
data, thus making it easier for data to be separated in higher space [34].
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Figure 4. Gaussian kernel function mapping.

The expression of the RBF function is

K(x, y) = e−γ||x−y||2 (1)

where x and y are sample vectors, γ is the parameter of the Gaussian kernel function.
||x− y||2 is the square of the Euclidean distance between the sample vectors. SVM-RBF can
learn more complex models, thus improving the classification performance of the model.

2.6. Statistical Processing

The experiment was conducted using SPSS software (version 26.0) to analyze differ-
ences between groups in the basic information of each group. χ2 test was used for gender,
and a one-way ANOVA was used for age, years of education, and MMSE scores. p < 0.05
indicated a statistically significant difference between groups. A two-sample t-test was
conducted on the FA values of all fiber bundles using MATLAB software (version R2023a),
fiber nodes that were statistically different between groups were screened using p < 0.01 as
a condition.

2.7. Evaluation Indicators

To evaluate the classification effect of the optimal feature subset, the accuracy (ACC),
sensitivity (SEN), and specificity (SPE) are chosen as evaluation indexes in this paper.

ACC =
TP + TN

TP + TN + FP + FN
(2)

SEN =
TP

TP + TN
(3)

SPE =
TN

TN + FP
(4)

AUC =
∑
(

pi, nj
)

pi>nj

P×N
(5)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively. P represents the number of positive samples, N represents the
number of negative samples, pi represents the prediction score for positive samples, and ni
represents the prediction score for negative samples.

The receiver operating characteristic (ROC) curve was also plotted, with the horizontal
axis indicating the false positive rate (SPE), the vertical axis indicating the true positive rate
(SEN), and the area under the curve (AUC) representing the efficacy of correct classification.
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3. Results and Discussion
3.1. Analysis of Demographic Information

The demographic data and neuropsychological scores of each group are shown in
Table 1. There was no statistically notable variations in gender (p = 0.053), age (p = 0.270),
education attainment (p = 0.068), and MMSE (p = 0.303) among the groups.

Table 1. Results of demographic characteristics and scale scores of the subjects.

Characteristics and Ratings AD MCI NC p-Value

Age 67.76 ± 5.91 67.96 ± 5.27 65.64 ± 4.55 0.053
Gender (M/F) 22/16 23/23 23/33 0.270

Educational attainment 11.81 ± 3.46 12.03 ± 3.76 14.05 ± 2.34 0.068
MMSE 23.13 ± 2.98 28.87 ± 2.10 29.48 ± 1.09 0.303

3.2. Comparison of FA Values

Table 2 shows the nodes with notable variations in the FA values between the MCI
and NC groups. A total of 16 FA values were selected based on the results of the statistical
comparison between the groups. Compared with the NC group, the FA values of the WM
were significantly lower in the brain regions such as the bilateral superior parietal gyrus,
bilateral supraorbital frontal gyrus, left posterior cingulate gyrus, left cuneiform lobe, right
medial supraorbital gyrus, and right angular gyrus in the MCI group.

Table 2. Nodes with significant differences in FA values between MCI and NC groups.

Mricro Name MCI NC p-Value

Parietal_Sup_L 0.19 ± 0.20 0.31 ± 0.17 9.42 × 10−4

Parietal_Sup_R 0.07 ± 0.18 0.24 ± 0.26 5.18 × 10−4

Frontal_Sup_Orb_L 0.30 ± 0.23 0.41 ± 0.16 6.01 × 10−3

Frontal_Sup_Orb_R 0.30 ± 0.21 0.40 ± 0.14 5.91 × 10−3

Cingulum_Post_L 0.07 ± 0.18 0.24 ± 0.26 5.18 × 10−4

Cuneus_L 0.19 ± 0.20 0.31 ± 0.17 9.42 × 10−4

Rectus_L 0.07 ± 0.18 0.23 ± 0.23 1.59 × 10−3

Pallidum_L 0.12 ± 0.22 0.27 ± 0.27 3.15 × 10−3

Caudate_L 0.30 ± 0.21 0.40 ± 0.14 5.91 × 10−3

Insula_L 0.39 ± 0.19 0.47 ± 0.10 7.33 × 10−3

Lingual_L 0.39 ± 0.19 0.47 ± 0.10 7.33 × 10−3

Cingulum_Mid_L 0.40 ± 0.17 0.46 ± 0.05 9.28 × 10−3

Postcentral_L 0.40 ± 0.17 0.46 ± 0.05 9.28 × 10−3

Frontal_Sup_Medial_R 0.09 ± 0.18 0.23 ± 0.23 1.59 × 10−3

Angular_R 0.01 ± 0.07 0.11 ± 0.22 5.49 × 10−3

Frontal_Mid_Orb_R 0.01 ± 0.06 0.08 ± 0.17 9.65 × 10−3

Table 3 shows the nodes that have significant differences in FA values between the
MCI and AD groups. A total of 16 FA values were selected based on the results of the
statistical comparison between the groups. Compared with the MCI group, the FA values
of the WM in brain regions such as the bilateral lenticular nucleus, bilateral thalamus, left
precuneus, left medial superior frontal gyrus, right insula, and right sub frontal gyrus of
insula were significantly lower in the AD group.

In this study, we found that there was a left–right brain asymmetry in the areas of
reduced FA values in some fiber tracts in the AD and MCI groups, and both of them
had larger areas of reduced FA on the left side compared to the right side, and this result
reveals that the left hemisphere of the brain in the patients with AD and MCI is more
severely damaged in the WM. In addition, this study also found significant differences
in the brain regions between these groups, which is more consistent with the findings of
existing studies [35–37], that cognitive dysfunction in patients with MCI is not caused by
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damage to a few brain regions, but rather, multiple brain regions throughout the whole
brain have different degrees of damage.

Table 3. Nodes with significant differences in FA values between the MCI and AD groups.

Mricro Name MCI AD p-Value

Putamen_L 0.48 ± 0.13 0.26 ± 0.25 3.31 × 10−6

Putamen_R 0.47 ± 0.15 0.25 ± 0.26 1.27 × 10−5

Thalamus_L 0.43 ± 0.17 0.21 ± 0.24 5.55 × 10−6

Thalamus_R 0.41 ± 0.19 0.20 ± 0.24 3.39 × 10−5

Supp_Motor_Area_L 0.41 ± 0.07 0.27 ± 0.19 2.49 × 10−5

Supp_Motor_Area_R 0.39 ± 0.15 0.19 ± 0.22 5.17 × 10−6

Caudate_L 0.31 ± 0.23 0.11 ± 0.20 7.11 × 10−5

Caudate_R 0.47 ± 0.13 0.28 ± 0.26 5.10 × 10−5

Precuneus_L 0.36 ± 0.16 0.17 ± 0.21 1.05 × 10−5

Frontal_Sup_Medial_L 0.41 ± 0.07 0.27 ± 0.19 2.49 × 10−5

Hippocampus_L 0.47 ± 0.17 0.26 ± 0.27 2.93 × 10−5

Pallidum_L 0.41 ± 0.22 0.19 ± 0.25 3.41 × 10−5

Cingulum_Post_L 0.30 ± 0.25 0.08 ± 0.18 4.02 × 10−5

Insula_R 0.39 ± 0.15 0.19 ± 0.22 5.17 × 10−6

Frontal_Inf_Oper_R 0.37 ± 0.06 0.24 ± 0.19 3.33 × 10−5

Frontal_Sup_R 0.37 ± 0.06 0.24 ± 0.19 3.33 × 10−5

3.3. Feature Extraction

Figure 5 shows the cross-validation scores of the feature factor RFE between the MCI
and NC groups. As can be seen from the figure, the left gyrus rectus had the highest score,
the model had the best performance, and the prediction accuracy was 81.67%. Several brain
regions with higher scores were highly correlated with visual function, so it is hypothesized
that there may be a direct or indirect relationship between the degradation of visual function
and cognitive dysfunction in patients with MCI, which is consistent with previous studies
on the association of visual networks with cognitive dysfunction [38]. It also reveals that
the MCI stage is already potentially at risk for impaired motor levels.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 13 
 

 

Figure 5. Cross-validation scores of eigenvectors between MCI and NC groups. 

Figure 6 shows the cross-validation scores after the RFE of the trait factors between 

the MCI and AD groups. As can be seen from the figure, the right thalamus has the highest 

score, the model had the best performance, and the prediction accuracy was 86.92%. The 

several brain regions with higher scores are highly correlated with motor and sensory 

functions. Therefore, we believe that the decrease in motor ability in AD patients may be 

affected by changes in the WM fiber bundle, and during the MCI stage, the fiber bundle 

may have partially changed, but not enough to affect the patient’s motor level. At the same 

time, declines in sensory abilities, and a wide range of brain functions including sensory 

processing, attention, decision-making, and memory, are consistent with the early symp-

toms exhibited by AD patients [39]. 

 

Figure 6. Cross-validation scores of eigenvectors between MCI and AD groups. 

The features selected for the RFE between the MCI and NC groups were the left sup-

plementary motor area-right thalamus, left medial superior frontal gyrus-left posterior 

cingulate gyrus, right insula-right supplementary motor area, right insula-left lenticular 

nucleus, right insula-left pallidum lenticular nucleus, and right dorsolateral superior 

frontal gyrus-right opercular part inferior frontal gyrus. The features selected for the RFE 

between the MCI and AD groups were the left orbitofrontal gyrus-right medial superior 

frontal gyrus, left gyrus rectus-right medial superior frontal gyrus, left insula-left lingual 

gyrus, left cuneate lobe-left superior parietal gyrus, left postcentral gyrus-left medial and 

para-cingulate cingulate gyrus, right orbitofrontal gyrus-left caudate nucleus, right pos-

terior cingulate gyrus-right posterior cingulate gyrus, and left leguminous pallidum-left 

posterior cingulate gyrus. The FA values of these inter-brain interval fibers were used as 

Figure 5. Cross-validation scores of eigenvectors between MCI and NC groups.

Figure 6 shows the cross-validation scores after the RFE of the trait factors between
the MCI and AD groups. As can be seen from the figure, the right thalamus has the highest
score, the model had the best performance, and the prediction accuracy was 86.92%. The
several brain regions with higher scores are highly correlated with motor and sensory
functions. Therefore, we believe that the decrease in motor ability in AD patients may be
affected by changes in the WM fiber bundle, and during the MCI stage, the fiber bundle
may have partially changed, but not enough to affect the patient’s motor level. At the
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same time, declines in sensory abilities, and a wide range of brain functions including
sensory processing, attention, decision-making, and memory, are consistent with the early
symptoms exhibited by AD patients [39].
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The features selected for the RFE between the MCI and NC groups were the left
supplementary motor area-right thalamus, left medial superior frontal gyrus-left posterior
cingulate gyrus, right insula-right supplementary motor area, right insula-left lenticular
nucleus, right insula-left pallidum lenticular nucleus, and right dorsolateral superior frontal
gyrus-right opercular part inferior frontal gyrus. The features selected for the RFE between
the MCI and AD groups were the left orbitofrontal gyrus-right medial superior frontal
gyrus, left gyrus rectus-right medial superior frontal gyrus, left insula-left lingual gyrus,
left cuneate lobe-left superior parietal gyrus, left postcentral gyrus-left medial and para-
cingulate cingulate gyrus, right orbitofrontal gyrus-left caudate nucleus, right posterior
cingulate gyrus-right posterior cingulate gyrus, and left leguminous pallidum-left posterior
cingulate gyrus. The FA values of these inter-brain interval fibers were used as the optimal
feature subset for SVM-RBF classification. Figure 7 shows the schematic diagram of the
connections between each group of brain regions.
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3.4. Results and Discussion

Based on the results of the RFE feature selection, the SVM-RBF classification algorithm
was used to classify two subject groups of AD and MCI, and NC and MCI, and Table 4
shows the results. Figure 8 shows the ROC curves for each group.
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Table 4. Classification results of SVM-RBF.

Indicators AD vs. MCI MCI vs. NC

ACC 89.29% 91.18%
SEN 92.86% 92.31%
SPE 85.71% 90.48%

AUC 0.94 0.95
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In the classification of AD, MCI, and NC, Table 5 demonstrates the relevant studies
on DTI-based classification tasks in recent years using different classification methods.
Khvostikov et al. [40] fused the ROI of structural MRI and DTI, extracted the MD of the
hippocampus (HIP), and classified AD, MCI, and NC by using a convolutional neural
network (CNN). The experiment only used an evaluation index of ACC, and it was low,
with the ACC of AD/MCI being 80% and MCI/NC being 63%. Dalboni et al. [9] selected
the FA value of bilateral para-hippocampal gyrus and used linear SVM to classify AD, MCI,
and NC. Although the ACC of the AD/MCI and MCI/NC classification was high, both
of which were 90%, the evaluation index of the experiment was relatively single and the
dataset was small, which made it easy to overfit. Marzban et al. [41] selected the MD values
of the HIP and the entrepreneurial cortex (EC), and classified MCI and NC using a CNN.
Although ACC, SPE, and AUC were selected as evaluation indexes, the results were not
very good. The ACC was 71.1%, the SPE was 81.8%, and the AUC was 0.68, which were
lower than the results of our study. Zhou et al. [42] also used SVM-RFE to classify MCI
and NC. Although the selected evaluation indexes were the same as ours, all the indexes
were lower than our results, with an ACC of 79.8%, SEN of 84.1%, SPE of 73.8%, and AUC
of 0.901. The reason may be that only the FA value related to the HIP was selected as the
classification feature, and the influence of other fiber bundles in the development of AD
was ignored. Bigham et al. [43] classified AD, MCI, and NC according to the DTI features
in superficial WM, extracted the FA, MD, and RD values of the whole brain, and used
quadratic SVM as the classifier. Although the SPE of AD/MCI and the SEN of MCI/NC
were higher than our results, which were 86.3% and 94.4%, respectively, the other indexes
were lower than our results, and the experimental data were also less than ours. In this
study, we calculated the FA values of the whole brain WM, and selected the nodes with
significant differences as the classification features using statistical tests and RFE. The ACC
for AD/MCI was 89.29%, the SEN was 92.86%, the SPE was 85.71%, and the AUC was
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0.94; for MCI/NC, the ACC was 91.18%, the SEN was 92.31%, the SPE was 90.48%, and the
AUC was 0.95. Compared with these studies, our method has a competitive advantage in
classification performance.

Table 5. Comparison with the previous studies.

Studies
Subjects

Classifier Feature
Performance

AD MCI NC AD/MCI MCI/NC

Khvostikov et al. [40] 48 108 58 CNN HIP-related MD ACC: 80% ACC: 63%

Dalboni et al. [9] 15 15 15 Linear SVM
Bilateral

parahippocampal
gyrus FA

ACC: 90% ACC: 90%

Marzban et al. [41] / 106 185 CNN HIP-related and
EC-related MD

/
ACC: 71.1%
SPE: 81.8%
AUC: 0.68

Zhou et al. [42] / 42 54 SVM-RFE HIP-related FA /

ACC: 79.8%
SEN: 84.1%
SPE: 73.8%
AUC: 0.901

Bigham et al. [43] 24 24 24 Quadratic SVM Whole brain FA, MD,
RD

ACC: 83.3% ACC: 83.3%
SEN: 80.7% SEN: 94.4%
SPE: 86.3% SPE: 76.6%
AUC: 0.93 AUC: 0.88

Our study 38 46 56 SVM-RFE Whole brain FA

ACC: 89.29% ACC: 91.18%
SEN: 92.86% SEN: 92.31%
SPE: 85.71% SPE: 90.48%
AUC: 0.94 AUC: 0.95

4. Conclusions

DTI is currently the only noninvasive technique that can display the microstructure of
WM fiber bundles in the living brain, and previous studies have shown that the application
of DTI technology combined with machine learning has great potential in the classification
of AD, MCI, and NC. In this study, the white matter connectivity network of AD, MCI, and
NC was constructed based on DTI data. Statistical tests and RFE were used to select the
features of the nodes between the groups, and the FA values of the nodes with significant
differences were used as the combination of classification features. The SVM-RBF algorithm
was utilized to categorize AD, MCI, and NC. The experiment has achieved good classifica-
tion results, and it was also found that the changes in the FA values of the fiber bundles in
the cortical visual area, cortical motor area, and cortical sensory area are more significant
during the progress of AD, especially the WM degeneration in the cortical motor area,
which may play a decisive role in AD progression. This will provide some support and
help for a more in-depth study of the pathophysiological mechanisms of AD development
and new targets for its diagnosis and treatment, which are of great clinical significance for
an early and timely intervention to slow down the progression of AD.

However, there are still some limitations in this study. This study only discusses the
differences in the FA values among AD, MCI, and NC, and does not analyze and compare
the parameters such as MD and RD. After this, we will study other parameters of DTI
and compare them with the results of this study. At the same time, the current study only
uses the neuroimaging technology of DTI, in the future, we will try to carry out pattern
recognition and intelligent diagnosis by combining other neuroimaging technologies. Based
on the existing research results, we will improve the generalization ability by using deep
learning technology to further promote the early diagnosis of AD and MCI.
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Ganglia Compensatory White Matter Changes on DTI in Alzheimer’s Disease. Cells 2023, 12, 1220. [CrossRef]

13. Cole, K.; Wei, S.-M.; Martinez, P.E.; Gregory, M.D.; Kippenhan, J.S.; Kohn, P.D.; Nieman, L.K.; Yanovski, J.A.; Schmidt, P.J.;
Berman, K.F. Changes in Brain Structure Associated with Adrenarche in Typically Developing Prepubertal Children. Psychoneu-
roendocrinology 2023, 153, 1589. [CrossRef]

14. Bergamino, M.; Schiavi, S.; Daducci, A.; Walsh, R.R.; Stokes, A.M. Analysis of Brain Structural Connectivity Networks and White
Matter Integrity in Patients With Mild Cognitive Impairment. Front. Aging Neurosci. 2022, 14, 793991. [CrossRef] [PubMed]

15. Rizzolo, L.; Narbutas, J.; Van Egroo, M.; Chylinski, D.; Besson, G.; Baillet, M.; Bahri, M.A.; Salmon, E.; Maquet, P.; Vandewalle,
G.; et al. Relationship between brain AD biomarkers and episodic memory performance in healthy aging. Brain Cogn. 2021,
148, 105680. [CrossRef] [PubMed]

16. Borna, B.; Clara, T. Brain Networks, Clinical Manifestations, and Neuroimaging of Cognitive Disorders: The Role of Computed To-
mography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Other Advanced Neuroimaging
Tests. Clin. Geriatr. Med. 2023, 39, 45–65. [CrossRef]

17. Li, K.; Zeng, Q.; Luo, X.; Qi, S.; Xu, X.; Fu, Z.; Hong, L.; Liu, X.; Li, Z.; Fu, Y.; et al. Neuropsychiatric symptoms associated
multimodal brain networks in Alzheimer’s disease. Hum. Brain Mapp. 2023, 44, 119–130. [CrossRef]

18. Lu, M.; Guo, Z.; Gao, Z.; Cao, Y.; Fu, J. Multiscale Brain Network Models and Their Applications in Neuropsychiatric Diseases.
Electronics 2022, 11, 3468. [CrossRef]

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
https://doi.org/10.13140/RG.2.2.22580.04483
https://doi.org/10.3390/s22030740
https://www.ncbi.nlm.nih.gov/pubmed/35161486
https://doi.org/10.1093/cercor/bhab407
https://www.ncbi.nlm.nih.gov/pubmed/34891164
https://doi.org/10.1016/j.mri.2023.09.010
https://www.ncbi.nlm.nih.gov/pubmed/37775062
https://doi.org/10.3389/fnins.2022.904309
https://doi.org/10.12786/bn.2022.15.e6
https://doi.org/10.1038/s41598-020-59327-2
https://doi.org/10.9758/cpn.2018.16.2.144
https://doi.org/10.1038/s41598-021-86505-7
https://doi.org/10.3390/cells12091220
https://doi.org/10.1016/j.psyneuen.2023.106265
https://doi.org/10.3389/fnagi.2022.793991
https://www.ncbi.nlm.nih.gov/pubmed/35173605
https://doi.org/10.1016/j.bandc.2020.105680
https://www.ncbi.nlm.nih.gov/pubmed/33418512
https://doi.org/10.1016/j.cger.2022.07.004
https://doi.org/10.1002/hbm.26051
https://doi.org/10.3390/electronics11213468


Appl. Sci. 2023, 13, 12030 12 of 12

19. Xu, X.; Xu, S.; Han, L.; Yao, X. Coupling analysis between functional and structural brain networks in Alzheimer’s disease. Math.
Biosci. Eng. MBE 2022, 19, 8963–8974. [CrossRef]

20. Billeci, L.; Badolato, A.; Bachi, L.; Tonacci, A. Machine Learning for the Classification of Alzheimer’s Disease and Its Prodromal
Stage Using Brain Diffusion Tensor Imaging Data: A Systematic Review. Processes 2020, 8, 1071. [CrossRef]

21. Platt, J. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines; Microsoft Research: Washington,
DC, USA, 1998.

22. Li, Q.; Tao, L.; Xiao, P.; Gui, H.; Xu, B.; Zhang, X.; Zhang, X.; Chen, H.; Wang, H.; He, W.; et al. Combined brain network
topological metrics with machine learning algorithms to identify essential tremor. Front. Neurosci. 2022, 16, 1035153. [CrossRef]

23. Lee, M.; Hong, Y.; An, S.; Park, U.; Shin, J.; Lee, J.; Oh, M.S.; Lee, B.-C.; Yu, K.-H.; Lim, J.-S.; et al. Machine learning-based
prediction of post-stroke cognitive status using electroencephalography-derived brain network attributes. Front. Aging Neurosci.
2023, 15, 1238274. [CrossRef] [PubMed]

24. Krämer, C.; Stumme, J.; da Costa Campos, L.; Rubbert, C.; Caspers, J.; Caspers, S.; Jockwitz, C. Classification and prediction
of cognitive performance differences in older age based on brain network patterns using a machine learning approach. Netw.
Neurosci. 2023, 7, 122–147. [CrossRef]

25. Gao, Z.; Feng, Y.; Ma, C.; Ma, K.; Cai, Q. Disrupted Time-Dependent and Functional Connectivity Brain Network in Alzheimer’s
Disease: A Resting-State fMRI Study Based on Visibility Graph. Curr. Alzheimer Res. 2020, 17, 69–79. [CrossRef]

26. Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuño, J.C. From time series to complex networks: The visibility graph. Proc. Natl.
Acad. Sci. USA 2008, 105, 4972–4975. [CrossRef] [PubMed]

27. Dai, K.; Lu, J.M.; Li, W.P.; Zhang, X.; Qing, Z.; Zhang, B. Classification prediction study of mild cognitive impairment based on
diffusion tensor imaging automated fiber quantitative analysis. J. Clin. Radiol. 2022, 41, 23–29.

28. Dou, X.; Yao, H.; Feng, F.; Wang, P.; Zhou, B.; Jin, D.; Yang, Z.; Li, J.; Zhao, C.; Wang, L.; et al. Characterizing white matter connec-
tivity in Alzheimer’s disease and mild cognitive impairment: An automated fiber quantification analysis with two independent
datasets. Cortex 2020, 129, 390–405. [CrossRef]

29. Zhao, J.; Ding, X.; Du, Y.; Wang, X.; Men, G. Functional connectivity between white matter and gray matter based on fMRI for
Alzheimer’s disease classification. Brain Behav. 2019, 9, e01407. [CrossRef]

30. Li, X.; Yang, C.; Xie, P.; Han, Y.; Su, R.; Li, Z.; Liu, Y. The diagnosis of amnestic mild cognitive impairment by combining the
characteristics of brain functional network and support vector machine classifier. J. Neurosci. Methods 2021, 363, 109334. [CrossRef]
[PubMed]

31. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn.
2002, 46, 389–422. [CrossRef]

32. Smith, S.; Bannister, P.R.; Beckmann, C.; Brady, M.; Clare, S.; Flitney, D.; Hansen, P.; Jenkinson, M.; Leibovici, D.; Ripley, B.; et al.
FSL: New tools for functional and structural brain image analysis. NeuroImage 2001, 13, 249. [CrossRef]

33. Shu, N.; Liu, Y.; Li, K.; Duan, Y.; Wang, J.; Yu, C.; Dong, H.; Ye, J.; He, Y. Diffusion tensor tractography reveals disrupted
topological efficiency in white matter structural networks in multiple sclerosis. Cereb. Cortex 2011, 21, 2565–2577. [CrossRef]

34. Zhang, Y.; Han, J. Differential privacy fuzzy C-means clustering algorithm based on gaussian kernel function. PLoS ONE 2021,
16, e0248737. [CrossRef]

35. Kahl, M.; Wagner, G.; de la Cruz, F.; Köhler, S.; Schultz, C.C. Resilience and cortical thickness: A MRI study. Eur. Arch. Psychiatry
Clin. Neurosci. 2020, 270, 533–539. [CrossRef] [PubMed]

36. Khazaee, A.; Ebrahimzadeh, A.; Babajani-Feremi, A. Classification of patients with MCI and AD from healthy controls using
directed graph measures of resting-state fMRI. Behav. Brain Res. 2017, 322, 339–350. [CrossRef]

37. Fu, X.; Shrestha, S.; Sun, M.; Wu, Q.; Luo, Y.; Zhang, X.; Yin, J.; Ni, H. Microstructural White Matter Alterations in Mild Cognitive
Impairment and Alzheimer’s Disease: Study Based on Neurite Orientation Dispersion and Density Imaging (NODDI). Clin.
Neuroradiol. 2020, 30, 569–579. [CrossRef]

38. Cooray, G.K.; Sundgren, M.; Brismar, T. Mechanism of visual network dysfunction in relapsing-remitting multiple sclerosis and
its relation to cognition. Clin. Neurophysiol. 2020, 131, 361–367. [CrossRef] [PubMed]

39. Liu, W.; Gauthier, S.; Jia, J. Alzheimer’s disease: Current status and perspective. Sci. Bull. 2022, 67, 2494–2497. [CrossRef]
40. Khvostikov, A.; Aderghal, K.; Benois-Pineau, J.; Krylov, A.; Catheline, G. 3D CNN-based classification using sMRI and MD-DTI

images for Alzheimer disease studies. arXiv 2018, arXiv:1801.05968. [CrossRef]
41. Marzban, E.N.; Eldeib, A.M.; Yassine, I.A.; Kadah, Y.M. Alzheimer’s Disease Neurodegenerative Initiative. Alzheimer’s disease

diagnosis from diffusion tensor images using convolutional neural networks. PLoS ONE 2020, 15, e0230409. [CrossRef] [PubMed]
42. Zhou, Y.; Si, X.; Chao, Y.-P.; Chen, Y.; Lin, C.-P.; Li, S.; Zhang, X.; Sun, Y.; Ming, D.; Li, Q. Automated Classification of Mild

Cognitive Impairment by Machine Learning with Hippocampus-Related White Matter Network. Front. Aging Neurosci. 2022,
14, 866230. [CrossRef]

43. Bigham, B.; Zamanpour, S.A.; Zare, H. Features of the superficial white matter as biomarkers for the detection of Alzheimer’s
disease and mild cognitive impairment: A diffusion tensor imaging study. Heliyon 2022, 8, e08725. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3934/mbe.2022416
https://doi.org/10.3390/pr8091071
https://doi.org/10.3389/fnins.2022.1035153
https://doi.org/10.3389/fnagi.2023.1238274
https://www.ncbi.nlm.nih.gov/pubmed/37842126
https://doi.org/10.1162/netn_a_00275
https://doi.org/10.2174/1567205017666200213100607
https://doi.org/10.1073/pnas.0709247105
https://www.ncbi.nlm.nih.gov/pubmed/18362361
https://doi.org/10.1016/j.cortex.2020.03.032
https://doi.org/10.1002/brb3.1407
https://doi.org/10.1016/j.jneumeth.2021.109334
https://www.ncbi.nlm.nih.gov/pubmed/34428513
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1016/S1053-8119(01)91592-7
https://doi.org/10.1093/cercor/bhr039
https://doi.org/10.1371/journal.pone.0248737
https://doi.org/10.1007/s00406-018-0963-6
https://www.ncbi.nlm.nih.gov/pubmed/30542819
https://doi.org/10.1016/j.bbr.2016.06.043
https://doi.org/10.1007/s00062-019-00805-0
https://doi.org/10.1016/j.clinph.2019.10.029
https://www.ncbi.nlm.nih.gov/pubmed/31864125
https://doi.org/10.1016/j.scib.2022.12.006
https://doi.org/10.48550/arxiv.1801.05968
https://doi.org/10.1371/journal.pone.0230409
https://www.ncbi.nlm.nih.gov/pubmed/32208428
https://doi.org/10.3389/fnagi.2022.866230
https://doi.org/10.1016/j.heliyon.2022.e08725
https://www.ncbi.nlm.nih.gov/pubmed/35071808

	Introduction 
	Materials and Methods 
	Subjects and Experimental Environment 
	System Pipeline 
	Image Processing 
	White Matter Connectivity Network Construction 
	Gaussian Kernel Support Vector Machine 
	Statistical Processing 
	Evaluation Indicators 

	Results and Discussion 
	Analysis of Demographic Information 
	Comparison of FA Values 
	Feature Extraction 
	Results and Discussion 

	Conclusions 
	References

