
Citation: Cibrián, E.; Álvarez-

Rodríguez, J.M.; Mendieta, R.;

Llorens, J. Towards a Method to

Enable the Selection of Physical

Models within the Systems

Engineering Process: A Case Study

with Simulink Models. Appl. Sci.

2023, 13, 11999. https://doi.org/

10.3390/app132111999

Academic Editor: Jose Machado

Received: 9 October 2023

Revised: 25 October 2023

Accepted: 30 October 2023

Published: 3 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Towards a Method to Enable the Selection of Physical Models
within the Systems Engineering Process: A Case Study with
Simulink Models
Eduardo Cibrián 1,* , Jose María Álvarez-Rodríguez 1 , Roy Mendieta 2 and Juan Llorens 1

1 Computer Science and Engineering Department, Carlos III University of Madrid, 28911 Leganés, Spain;
joalvare@inf.uc3m.es (J.M.Á.-R.); llorens@inf.uc3m.es (J.L.)

2 The REUSE Company, 28919 Leganés, Spain; roy.mendieta@reusecompany.com
* Correspondence: ecibrian@inf.uc3m.es

Abstract: The use of different techniques and tools is a common practice to cover all stages in the de-
velopment life-cycle of systems generating a significant number of work products. These artefacts are
frequently encoded using diverse formats, and often require access through non-standard protocols
and formats. In this context, Model-Based Systems Engineering (MBSE) emerges as a methodology
to shift the paradigm of Systems Engineering practice from a document-oriented environment to a
model-intensive environment. To achieve this major goal, a formalised application of modelling is
employed throughout the life-cycle of systems to generate various system artefacts represented as
models, such as requirements, logical models, and multi-physics models. However, the mere use of
models does not guarantee one of the main challenges in the Systems Engineering discipline, namely,
the reuse of system artefacts. Considering the fact that models are becoming the main type of system
artefact, it is necessary to provide the capability to properly and efficiently represent and retrieve
the generated models. In light of this, traditional information retrieval techniques have been widely
studied to match existing software assets according to a set of capabilities or restrictions. However,
there is much more at stake than the simple retrieval of models or even any piece of knowledge.
An environment for model reuse must provide the proper mechanisms to (1) represent any piece of
data, information, or knowledge under a common and shared data model, and (2) provide advanced
retrieval mechanisms to elevate the meaning of information resources from text-based descriptions
to concept-based ones. This need has led to novel methods using word embeddings and vector-
based representations to semantically encode information. Such methods are applied to encode the
information of physical models while preserving their underlying semantics. In this study, a text
corpus from MATLAB Simulink models was preprocessed using Natural Language Processing (NLP)
techniques and trained to generate word vector representations. Then, the presented method was
validated using a testbed of MATLAB Simulink physical models in which verbalisations of models
are transformed into vectors. The effectiveness of the proposed solution was assessed through a use
case study. Evaluation of the results demonstrates a precision value of 0.925, a recall value of 0.865,
and an F1 score of 0.884.

Keywords: reuse models; physical models; word embedding; semantic representation; similarity
algorithm

1. Introduction

Model-based Systems Engineering (MBSE [1]) has gained traction in the Systems
Engineering discipline as a comprehensive methodology to unify techniques, methods, and
tools for the design and implementation of cyber–physical systems [2,3] through different
types of models [4]. Different types of system artefacts are produced as a kind of model
through an engineering process, method, task, or activity. Considering that a model is a type
of software artefact, model reuse can be defined as a process that systematically specifies,

Appl. Sci. 2023, 13, 11999. https://doi.org/10.3390/app132111999 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132111999
https://doi.org/10.3390/app132111999
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0002-2441-1253
https://orcid.org/0000-0003-1668-6054
https://doi.org/10.3390/app132111999
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132111999?type=check_update&version=3

Appl. Sci. 2023, 13, 11999 2 of 14

produces, classifies, retrieves, and adapts models for use in future engineering designs.
This simple and powerful definition was introduced in the software reuse discipline [5] to
overcome the problem of software failures, increase the productivity of engineers, improve
the quality of engineering designs, and create a cost-efficient engineering environment.
Nevertheless, challenges related to limited model reuse encompass both technical and
non-technical aspects, as indicated in [6]: (1) economic, organisational, educational, and
psychological factors and (2) a lack of modelling standards, reusable component libraries,
and suitable tools that can enhance reuse and promote interoperability.

In the context of technical challenges, software engineering methodologies have un-
dergone extensive examination, as exemplified in [7]. This examination aims to reinforce
the enduring principles of software reuse, as outlined in [8], encompassing abstraction,
selection, specialisation, and integration. Specifically, the essential feature for any reuse
technique can be considered as an abstraction that specifies when an artefact can be reused
and how it should be reused, effectively managing the intellectual complexity of a software
artefact. The discovery of software artefacts, including their representation, storage, classi-
fication, location, and comparison, is referred to as selection. The set of parameters and
transformations necessary for reusing a software artefact is encompassed by specialisation,
while the capability of software systems to communicate, collaborate, and exchange data to
create a combined software system is denoted as integration.

However, the selection of an adequate knowledge representation paradigm for reusing
any piece of information persists, as a suitable representation format (and syntax) can be
reached in several ways (e.g., ontologies, rules, and knowledge graphs [9]), and there are
several standardised languages to choose from, such as the Systems Modelling Language
(SysML), Unified Modelling Language (UML), or Modelica. Obviously, different types
of knowledge, including inference mechanisms, require different types of representation.
Any piece of information must be structured and stored in such a way as to support other
application services; moreover, in order to foster a collaborative Model-Based Systems
Engineering (MBSE) environment [10], it is necessary to (1) establish a seamless communi-
cation system among the various tools used in the development lifecycle, thereby easing
access to data and information; (2) provide a method for accurately representing system
artefacts and their underlying semantics, e.g., logical/descriptive vs. physical/analytical
models; and (3) empower engineering teams to efficiently search for and customise existing
engineering designs.

In this work, we introduce a method to support the process of reusing the knowledge
embedded within MBSE environments, with a special focus on physical models such
as Simulink models. This solution allows users to represent and retrieve information
regarding specific attributes within a given set of models, allowing them to perform
queries (for instance, “Which electrical models contain an AC voltage source rated at
100 V?”). To achieve this, we have designed and implemented a method that harnesses
word embeddings for the representation, indexing, and retrieval of information. The initial
dataset was created from Simulink documentation and samples, then further enriched
using Wikidata [11] as an external dataset. Natural Language Processing techniques are
applied to process the output text and build a word vector representation. To validate
the presented approach, a case study with Simulink models was conducted to show the
ability of the system to (1) represent physical models as vectors using the trained model
and (2) perform a set of queries against this dataset of vectors. In our evaluation, we used
the precision, recall, and F1 values as performance metrics to assess the retrieval system.

The rest of this paper is organised as follows. Related works are presented in Section 2,
where we discuss previous works in the field of reuse models that form the basis of the
present research. Section 3 presents the implemented solution along with a description
of the similarity algorithm. Section 4 describes the validation process, including the
methodology, results, and analysis of the results. Finally, Section 5 summarises the main
conclusions and outlines future research directions.

Appl. Sci. 2023, 13, 11999 3 of 14

2. Related Work

The semantic retrieval of physical models is the main objective of this work. Although
many studies have developed reuse techniques focusing on system artefact representation,
integrating more advanced methods based on artificial intelligence techniques remains a
challenge [12].

The continuous evolution of information representation techniques for searching
aims to enhance the accuracy and relevance of retrieval systems in order to provide users
with more effective experiences. Notable approaches include deep learning models for
text representations, which are capable of capturing high-level information; however,
these demand extensive labelled data [13]. Additionally, the use of graphs and structured
knowledge allows semantic relationships to be captured [14], although this usually requires
external data sources [15].

In the context of text representation, recent studies have seen the use of word em-
beddings as a technique to encode texts as dense low-dimensional vectors [16]. These
vectors represent the semantic and syntactic relationships between words, and are learned
through unsupervised training on a text corpus such has Word2Vec [17]. Word embeddings
can be used to improve the accuracy of tasks such as text classification [18], sentiment
analysis [19], and machine translation [20]. In order to retrieve information, this approach
has been presented in [21] to calculate the similarity between a query table and a set of
tabular datasets, although the implemented algorithm does not consider the similarity with
the input text pattern and does not apply preprocessing to the input text, as there is only
one term in each cell of the table.

The application of Large Language Models (LLMs) such as OpenAI GPT-x, Google
Bard, and Meta Llama to natural language processing tasks is a complete game-changer in
the text processing arena; these models use transformers [22] as an underlying architecture
to build relationships [23] between tokens derived from raw texts. Although these models
can probabilistically understand and produce text, and have been used to perform tasks
such as classification, content summarisation, entity recognition, question answering,
translation, etc., they lack the ability to perform reasoning without the support of external
tools; even more importantly for a retrieval system, they cannot trace the output to an input.

In the context of model reuse, ref [24] introduced an approach for representing and
retrieving Computer-Aided Design (CAD) models. This method involves the implemen-
tation of a mapping function designed to correlate the features of various CAD models.
Additionally, in the domain of model representation, prior work is exemplified in [25,26]. In
these studies, the authors proposed a solution for representing components within models
using a concept referred to as Physical Model Mappable Element (PMME). A PMME serves
as a means to capture information in a manner that transcends specific programming
languages, thereby enhancing cross-compatibility and language-independence. In [26], the
concept of a metamodel paved the way for demonstrating the feasibility of transforming
models to achieve the objective of reuse. The main limitation of these works is that it is
necessary to define an ontology that contains the domain terminology and semantics in
order to be able to reuse models. This requires significant effort, and there is no guarantee
of all the terms that may be used in a query being included in the domain knowledge.

Recently, interoperability-based approaches have been widely studied and developed
to define interoperable engineering environments in which data, metadata, and informa-
tion can be accessed through a standard service interface. Initiatives such as the family of
ISO 10303-STEP (Standard for the Exchange of Product Model Data) standards, e.g., ISO
10303-243:2021 [27] “Industrial automation systems and integration—Product data repre-
sentation and exchange”, or the Open Services for Life-cycle Collaboration (OASIS OSLC)
specifications, are focused on promoting the implementation of technical engineering
processes through an interoperable framework. These initiatives promote the creation of
federated environments of services (tools) by defining collaborative engineering ecosys-
tems through data shapes or schemes that serve as contractual agreements for accessing
information resources. Both the ISO 10303-STEP and OASIS OSLC families utilise the Rep-

Appl. Sci. 2023, 13, 11999 4 of 14

resentational State Transfer (REST) software versionarchitecture style to manage publicly
represented information resources, which can be exchanged in formats such as JSON, XML,
or even the Resource Description Framework (RDF). For instance, the specification of the
OSLC Knowledge Management (KM) domain represents both the data and metadata of a
system artefact [28]. Similarly, the latest version of the SysMLV2 API (Systems Modelling
Application Programming Interface and Services specifications) follows this approach by
defining a REST API for consuming SysML models as key-value documents. Although
these approaches have made great efforts to define an engineering environment as a set
of standardised federated set of services, they are mainly focused on metadata exchange,
and have only partially addressed the challenges around enabling reuse of system arte-
facts. In the case of OSLC, the implementations may offer a kind of interface to perform
SPARQL-like queries over the indexed metadata without the possibility of properly pro-
cessing the internal entities and relationships. Other efforts, such as the Open Model-Based
Engineering Environment (OpenMBEE) and the Model Management System (MMS) tool,
do offer the possibility of accessing specific elements. However, designing the required
SPARQL-like queries to gather the proper information resources and deciphering their
internal representation are challenging tasks.

In summary, the state of the art highlights the challenges and advancements in the
field of semantic retrieval of physical models and information representation techniques
for building retrieval systems; while various works have focused on system artefact repre-
sentation, the integration of more advanced artificial intelligence techniques, such as deep
learning models for text representations and word embeddings, remains a challenge. Word
embeddings offer a method of encoding texts as dense vectors to capture the semantic
and syntactic relationships between words, and have found applications in text classifica-
tion, sentiment analysis, and machine translation. However, existing approaches may not
comprehensively consider the similarity with input text patterns.

3. Proposed Method for Representing and Searching Physical Models

In the context of the semantic reuse of physical models, we have designed a five-step
method was (see Figure 1) to illustrate the relevant aspects involved in moving from a
domain-specific representation of a physical model to a word-vector representation used to
implement a retrieval system. Our main objective was to establish a structured graphical
representation of physical models able to encompass model elements and their relationships
within a graph. Subsequently, this graphical representation formed the baseline for the
generation of detailed textual descriptions of these models. This approach enables queries
that are based on metadata while additionally serving as content, thereby allowing the
retrieval of information based on the inherent content and semantic concepts of the model.

Figure 1. Stages of the proposed method for representing and searching physical models.

Appl. Sci. 2023, 13, 11999 5 of 14

3.1. Corpus Extraction

The first step involves the creation of an initial corpus of documents, which is a pivotal
stage in the development of a word embedding model. The primary goal of this model is to
represent the terms associated with physical models within a vector space. To establish this
corpus, it is necessary to start with a baseline of terms that can be commonly found in these
physical models. This foundational terminology can be sourced from official documentation
or manuals that encompass terminology related to physical models. However, in certain
cases official documentation or manuals may not offer a sufficiently extensive corpus.
Consequently, it becomes essential to augment this foundational information with data
from other sources.

In the case of reusing Simulink physical models, the names of the elements of the
physical models from Simulink’s official documentation were used as input, and similar
elements were searched in Wikidata. Specifically, for each term ti in the input set A (where
ti ∈ A), a new output set of terms B is obtained from the labels, as shown in Figure 2.
For each ti, a document is obtained with the definition extracted from the Encyclopædia
Britannica, which becomes part of the training corpus C. In the next iteration, the output
set B becomes the input set A. In total, a set of 9620 terms was discovered in this process.

Figure 2. Extraction of the corpus to obtain labels from Wikidata concepts.

3.2. Word Embeddings Training

Word embeddings play a crucial role in modern natural language processing and
comprehension by representing and extracting semantic information from textual data.
These embeddings serve as the fundamental framework for capturing relationships between
words and phrases, thereby enhancing the understanding of machines of human language.
In the context of this work, our attention is directed towards the second phase of the
methodology, where we harness word embeddings. This step is designed to further
enhance the comprehension and representation of terminology and semantics within
physical models.

Pretrained models are typically built upon extensive amounts of text data, frequently
sourced from references such as Wikipedia. This pre-existing knowledge can substantially
enhance the quality and effectiveness of forthcoming tasks. However, when retraining
a word embeddings model with a new vocabulary it is important to emphasise that a
significant reshaping of word vectors takes place; this adaptation is crucial to ensuring the
alignment of word vectors with domain-specific semantics.

1. Data Collection: in this initial step, we employ a pretrained model, denoted as M
and available from [29]. This model is typically constructed using a substantial
corpus, such as the 2021 Wikipedia dump. This corpus forms the foundation for the
subsequent stages of the process.

2. Corpus Preprocessing: the text corpus C obtained in the prior stage undergoes a
series of essential preprocessing steps. These steps are vital for cleaning and preparing
the data for further training. Preprocessing can include operations such as tokenisa-
tion, which involves breaking text into individual words or tokens; normalisation,
which often entails converting text to singular to ensure consistent representation;
and the removal of stopwords, which are common words that do not significantly

Appl. Sci. 2023, 13, 11999 6 of 14

contribute to the semantic meaning of the text. These preprocessing steps serve to
enhance the quality of the input data and ensure the effectiveness of the subsequent
training process.

3. Training with Pretrained Model: with the preprocessed corpus C at hand, the next
phase involves training the word vectors in the pretrained model M. This training
process necessitates adjusting the existing word vectors within the pretrained model
to better reflect the specific vocabulary and semantics relevant to the given application
or domain. The result of this phase is the creation of a new word embeddings model,
denoted as M+.

4. Generating New Word Embeddings: the outcome of the training process in the pre-
vious step is a set of word vectors that have been tailored to align with the new
terminology and semantics derived from the particular corpus C associated with
Simulink models. These adapted word vectors now closely correspond with the
domain-specific context, rendering them better suited for tasks such as text compre-
hension and interpretation related to Simulink models.

3.3. Physical Model Information Extraction

In this step of the methodology, the main objective is access and representation of
physical models in the form of a knowledge graph. To do this, the development of a
component with three distinct layers is required (see Figure 3): the initial layer, the model
layer, assumes the role of extracting all the information embedded within the model; the
representation layer creates the graph representation; and the terminology layer is in charge
of populating this graph with terms and properties from the models. This structured
three-layered approach is essential to obtaining an accurate representation of all elements
within the model, as it effectively translates the underlying details of the physical models
into a coherent and machine-processable knowledge graph:

Figure 3. Architecture of semantic interpretation component for Simulink models.

Appl. Sci. 2023, 13, 11999 7 of 14

1. Model Layer: this layer represents a critical component that enables interaction with
the different modelling frameworks and platforms. It facilitates the retrieval of rel-
evant data from physical models, encompassing elements such as blocks, systems,
subsystems, properties, and even visual representations. Within this layer, a connec-
tor must be customised to harness platform-specific technologies and Application
Programming Interfaces (APIs), facilitating the retrieval of data associated with the
models. Subsequently, these data are processed and organised in accordance with
the data model established within the rendering layer. In the case of Simulink, this
layer facilitates all interactions with MATLAB Simulink. It utilises COM technology to
retrieve information about the elements that constitute the physical models, including
blocks, systems, subsystems, properties, and even image snapshots. Within this layer,
two components were developed that leverage the MATLAB interop engine [30] to exe-
cute commands from the MATLAB console and perform Simulink model component
recovery operations. The retrieved information is then processed and represented in
the data model defined in the rendering layer.

2. Representation Layer: this layer creates a connection between the underlying object
model of the source tool and a structured data shape based on a semantic graph
known as Mappeable Elements (MEs). MEs offer a standardised representation [28]
of the model artefacts, decoupling the representation of entities from the specific
object model of the source tool. In the case of Simulink, this layer transforms the
Simulink object model into a set of MEs. This representation facilitates the creation of
an underlying knowledge graph that can integrate information from different sources.

3. Terminology Layer: this layer facilitates the extraction of terminology from various
information sources. In the case of Simulink models, it retrieves component names,
component types, properties, and even images of the subsystems.

This architecture has been designed and developed in previous works [28] using the
Visual Studio .NET 2019 Framework 4.8, and provides a comprehensive framework for
the semantic interpretation of Simulink physical models. The model layer ensures smooth
communication with MATLAB Simulink, facilitating the extraction of comprehensive
information regarding the elements within the physical model. The representation layer
plays a critical role in transforming the Simulink object model into a standardised internal
data structure using semantic graphs. This transformation ensures a uniform representation
across various sources of information, simplifying the integration of knowledge from
different tools and frameworks. Finally, the vocabulary layer aids in the extraction and
organisation of pertinent terminology from Simulink models, enhancing the overall process
of semantic interpretation.

3.4. Physical Model Verbalisation

When the physical model has been represented as a knowledge graph, the next step
involves the transformation of this representation into a human-readable text. This textual
description encapsulates comprehensive details about the model, its constituent elements,
and the relationships among them. This process not only provides a concise summary of
the model’s contents, it facilitates content-based searches, thereby allowing users to query
and retrieve specific information based on the generated descriptions.

Figure 4 illustrates a representation of information from a physical model in a graph.
Nodes within the graph contain detailed information and properties of specific components,
while the relationships between nodes represent the connections and associations between
these components. In physical models, these relationships could include “connected to”
or “contains” along with different associated properties. To transform this information
represented in the graph into text, the pattern P1 is used, as shown in Figure 4.

Appl. Sci. 2023, 13, 11999 8 of 14

Figure 4. Example of transformation of information from graph representation to a pattern.

To retrieve information, a dataset of models was created. A connector was developed
to extract embedded information from Simulink models, and these data were converted
to text. This description was generated with a pattern containing the component names,
types, relationships, and property information (see Figure 5).

Figure 5. Example of the verbalisation process of an electrical model.

3.5. Search Algorithm

To carry out the retrieval process, an algorithm was designed and implemented based
on pattern matching algorithms [31], vector representation techniques [32], and cosine
similarity functions [33,34]. This algorithm calculates the similarity of the results from an
input query to enable the retrieval of relevant physical models. In this section, a detailed
explanation of the algorithm and its components is provided, along with a description of
how the semantic reuse of physical models is achieved through pattern matching, vector
representations, and cosine similarity.

1. Pattern Matching: in this step, the algorithm searches for the semantic pattern of
the input query to be matched in the models. The model text and the query text are
processed using NLP techniques, such as tokenisation and normalisation, to calculate
the cosine similarity d between the resulting terms of the query tq and model tm. If
the cosine similarity of tq in tm is consecutively higher than the value of 0.7 set in the
algorithm, then the model is assigned a weight w = 1000. In this way, the models that
match the pattern return a higher similarity than the others (see Figure 6).
The threshold value of 0.7 was selected after an empirical experimentation process
in which we tested different values ranging from 0.4 to 0.9. The selected threshold

Appl. Sci. 2023, 13, 11999 9 of 14

consistently yielded the most accurate and relevant results while effectively balancing
precision and recall. When setting the threshold at 0.7, the algorithm assigns a
significant weight to highly relevant models that closely match the query’s semantic
pattern, thereby optimising the trade-off between capturing meaningful matches
and avoiding excessive false positives. Similarly, the assigned weight w = 1000
for matching models was determined through experimentation, where it was found
to provide a desirable emphasis on pattern matches while boosting the similarity
scores. This weighted approach prioritises models that closely align with the query
pattern, thereby refining the retrieval process. The combination of the threshold and
weight parameters ensures that the algorithm generates meaningful and relevant
results, facilitating the semantic reuse of physical models with improved precision
and effectiveness.

Figure 6. Example of the pattern matching calculation process.

2. Term Similarity: The last step of the algorithm consists of calculating the similarity
between tq and tm. The cosine distance d is calculated for each element tqi and tmj,
then multiplied by a weight function h(x, y) provided by Equation 1, where x is the
number of distance calculations with a value larger than a and less or equal to b and
y is the number of distance calculations with a value smaller or equal to a. After
conducting different tests and evaluations, the values of a = 0.6 and b = 0.85 were
determined to offer the best precision in the algorithm. This weight function was
implemented to take into account the relevance of terms in a query within a model.

h(x, y) =

1
y , for a ≥ d
1√
x , for a < d ≤ b

1, for b < d ≤ 1

(1)

Finally, the function to calculate the similarity of a model based on a query is presented
in Equation (2). This function takes into account the cosine similarity between the query
term (tq) and model term (tm) for each element in the query and model. The similarity score
is then multiplied by a weight function h(x, y) that considers the relevance of terms in the
query within the model.

Smodel =
n

∑
i=0

p

∑
j=0

d(tqi, tmj) · h(x, y) + w (2)

4. Case Study: Searching Physical Models in MATLAB Simulink

In this study, we aim to address two key questions in the context of the presented
case study: (1) Is it feasible to develop a semantic model to provide a search engine based
on vector representations? and (2) Can this search engine deliver accurate results? To
answer these questions, a case study using MATLAB Simulink was conducted to provide
an advanced mechanism for indexing and retrieval of Simulink models. The experiment
sought to evaluate the advantages of the proposed solution to retrieve physical models,
and was designed as follows:

Appl. Sci. 2023, 13, 11999 10 of 14

1. A dataset of Simulink models covering electronic models and physical models in the
automotive and aerospace domains was defined. This dataset comprised 40 models.

2. A query dataset for evaluating the retrieval capabilities of the proposed solution was
created. Queries were automatically designed by mixing the available terms in the
physical models with other related terms that do not appear in the generated text of
the model, such as the term circuit (see Table 1).

3. The indexing and retrieval process was executed. For each query defined in the
previous step, we analysed the models retrieved via the implemented method, taking
into account all matching term distances and patterns between the query and models.

4. The results were analysed and validated using the schema proposed in [35]. Specif-
ically, the performance metrics used to evaluate the method were (1) precision (the
proportion of retrieved information that is relevant); (2) recall (the proportion of
relevant information that is retrieved); and (3) the F1 score, which is a combination of
the first two metrics.

Table 1. List of queries executed to retrieve similar models.

Q Query Description

Q1 Circuits
Q2 Models with a DC power supply of 200 V
Q3 Models with hydraulic transfer functions
Q4 Models with an integrator
Q5 Electrical models using diodes
Q6 Sum operations with integrators
Q7 Resistor connected in series with a resistor
Q8 Models with memory
Q9 Circuits with supercapacitors
Q10 Resistors connected in parallel with diodes
Q11 Models with transfer functions
Q12 Models with switches
Q13 Models with voltages of at least 100 V
Q14 Models with a 3-phase harmonic filter
Q15 Models with SPICE resistors
Q16 Physical models with torque
Q17 Models with logical operations
Q18 A transistor connected in parallel with a resistor
Q19 Circuits with logical operations
Q20 Battery of 12 V
Q21 Models with sum operations
Q22 Bang–bang controller
Q23 AC voltage source of 100 V
Q24 Models with functions
Q25 Physical models with switches
Q26 Models with a signal input
Q27 A transistor in series with a resistor
Q28 Aerospace models
Q29 Capacitor connected with a voltage of 10 V
Q30 Models with thermocouples

Analysis of Results

The results presented in this subsection are based on the levels of “goodness” (as
outlined in Table 2) established in [36], a metric framework that has found successful
application in similar retrieval works such as those in [25,26]. Our results show that,
according to the metrics and the extracted performance metrics (see Table 3), all queries
except four obtained the maximum precision value when retrieving physical models, which
can be classified as excellent in terms of precision. Only one query performed below the
excellent level for precision, which was because the implemented search algorithm did not
take into account the semantic information about the different connection types between

Appl. Sci. 2023, 13, 11999 11 of 14

electronic components (parallel or series). In terms of recall, 58% of all executed queries
achieved an excellent value, and all queries had values higher than what is considered good.

Table 2. Goodness levels for the precision and recall metrics [36].

Level of “Goodness” Precision Recall

Acceptable ≥20% ≥60%
Good ≥30% ≥70%
Excellent ≥50% ≥80%

Table 3. Precision, recall, and F1 metrics for each query.

Precision Recall F1

Q1 1.000 1.000 1.000
Q2 1.000 1.000 1.000
Q3 1.000 1.000 1.000
Q4 1.000 0.941 0.970
Q5 1.000 0.800 0.889
Q6 1.000 0.842 0.914
Q7 0.821 0.788 0.804
Q8 1.000 1.000 1.000
Q9 1.000 0.941 0.970
Q10 0.375 0.462 0.423
Q11 1.000 1.000 1.000
Q12 1.000 1.000 1.000
Q13 1.000 0.889 0.941
Q14 1.000 1.000 1.000
Q15 1.000 0.750 0.857
Q16 1.000 1.000 1.000
Q17 0.682 0.621 0.650
Q18 1.000 0.933 0.965
Q19 1.000 1.000 1.000
Q20 1.000 0.571 0.727
Q21 1.000 1.000 1.000
Q22 1.000 1.000 1.000
Q23 1.000 0.889 0.941
Q24 1.000 1.000 1.000
Q25 1.000 0.857 0.923
Q26 1.000 0.889 0.941
Q27 0.835 0.723 0.775
Q28 1.000 0.873 0.932
Q29 1.000 0.922 0.959
Q30 1.000 1.000 1.000

Avg 0.925 0.865 0.884

When analysing the overall average metrics, it is important to highlight that the recall
values are lower than the precision values. These findings indicate that while relevant
models for a query are retrieved, there is some retrieval of irrelevant ones as well, which
adversely impacts the value of the recall metric. This issue could be addressed by fine-
tuning the weights and adjusting the penalty function to minimise the retrieval of irrelevant
models and enhance overall performance.

The semantic search process conducted in the case study takes into account the content
of the model alongside the generated description text. This contrasts with the approach
presented in previous studies [25], where search was based on model metadata and a
limited vocabulary was represented in an ontology.

The results of our case study show that the proposed approach represents a promising
alternative that can assist engineers in reusing the content of physical models. By processing
the distance between the terms embedded in the models using a trained model of word

Appl. Sci. 2023, 13, 11999 12 of 14

embedding, our method retrieves models with a higher level of precision and recall than
the work presented in [25]. The proposed approach has the potential to save time and
resources by allowing engineers to quickly identify and reuse relevant physical models.

The results for the precision, recall, and F1 metrics for each query, shown in Table 3,
provide valuable insights that can help to address the two questions presented in this
case study. (1) It is evident that the implemented semantic model search engine utilising
pattern matching, vector representations, and cosine similarity is able to successfully
retrieve relevant models for the majority of queries. (2) Moreover, the search engine
demonstrates excellent accuracy, providing relevant and suitable results for the majority of
the executed queries.

However, while the results are encouraging, we acknowledge that more work is
needed to further improve the performance of the algorithm. In particular, we recommend
conducting experiments in larger settings that incorporate real user needs, such as queries
and large physical interconnected models. Testing the proposed approach with a wider
range of use cases and user requirements will make it possible to better understand how it
performs in real-world situations as well as to identify opportunities for further refinement.

5. Conclusions and Future Directions

In this work, we have emphasised the importance of representing and reusing models
through the use of word embeddings as a means of improving the systems development
process. To validate the presented approach, a case study was conducted representing and
indexing a dataset of physical models from Simulink. A set of queries was designed to
measure the performance of the retrieval system using a similarity algorithm that compares
the distances of concepts between the model and queries. Through this case study, we have
demonstrated the feasibility of the proposed approach in effectively supporting the two
first stages (abstraction and selection) of a reuse strategy for a physical model.

In addition, this work provides insights into the performance of the similarity algo-
rithm used in the process of reusing physical models. We found the algorithm to be effective
in identifying relevant models for the queries as well as when the query contained terms
that were not in the models; however, in certain cases irrelevant models were retrieved,
leading to penalisation of the recall metric. As such, we suggest that future research focus
on refining the algorithm to further improve its precision and recall values, for example, by
readjusting the weights and penalty functions.

The use of word embeddings and similar approaches for promoting the reuse of
physical models has the potential to revolutionise the engineering industry. By reducing
the need for engineers to create a domain ontology to represent the semantics of the
terminology, this methodology can speed up development times, improve efficiency, and
allow for more complex systems to be developed. As such, we believe that continued
research in this area is essential to unlocking the full potential of these techniques and
maximising their impact on the engineering discipline.

However, as part of future work it is important to understand the specific purpose of
a model and consider the viewpoints of stakeholders. To address potential confusion in
terminology usage, frameworks such as LOTAR [37] have been developed to incorporate
metadata that provide more precise definitions on the model’s domain. This can help
to clarify the intended purpose and perspective of the model, thereby reducing misin-
terpretations that may occur when diverse stakeholders hold varying viewpoints on the
same concept.

Overall, we believe that our approach has the potential to make a significant impact
in the field of physical modelling by providing a more efficient and effective way to reuse
existing models. We hope that our work will inspire further research in this area and that it
will ultimately lead to new tools and methods that make it easier for engineers to build and
maintain high-quality physical models.

Appl. Sci. 2023, 13, 11999 13 of 14

Author Contributions: Methodology, E.C.; software, E.C. and R.M; validation, E.C., R.M. and J.M.Á.-
R.; formal analysis, E.C.; investigation, E.C., R.M. and J.M.Á.-R.; resources, E.C.; data curation, E.C.;
writing—original draft preparation, E.C.; writing—review and editing, J.M.Á.-R.; visualisation, E.C.;
supervision, J.M.Á.-R.; project administration, J.L.; funding acquisition, J.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was partially funded by H2020-ECSEL “Intelligent Reliability 4.0” (IREL
4.0; grant agreement: 876659), H2020-ECSEL Joint Undertaking (JU) "Arrowhead Tools for En-
gineering of Digitalisation Solutions" (grant agreement: 826452), and specific national programs
(AEI/10.13039/501100011033).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset of models used for conducting this case study is publicly
available at https://github.com/edcisa/physicalModels. The dataset consists of 40 diverse and
representative models created using Simulink. Each model captures a different aspect of physical
systems encompassing various domains, functionalities, and complexities. Additionally, the list of
9620 terms used to train the model is available in the same repository, providing a comprehensive
resource for further research and analysis.

Conflicts of Interest: Author Roy Mendieta was employed by the The Reuse Company. The remain-
ing author declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

References
1. Micouin, P. Model-Based Systems Engineering: Fundamentals and Methods; Control, Systems and Industrial Engineering Series; ISTE:

London, UK, 2014.
2. Madni, A.; Madni, C.; Lucero, S. Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems 2019, 7, 7.

[CrossRef]
3. Henderson, K.; Salado, A. Value and benefits of model-based systems engineering (MBSE): Evidence from the literature. Syst.

Eng. 2021, 24, 51–66. [CrossRef]
4. Zeigler, B.P.; Mittal, S.; Traore, M.K. MBSE with/out Simulation: State of the Art and Way Forward. Systems 2018, 6, 40. [CrossRef]
5. Mili, H.; Mili, F.; Mili, A. Reusing software: Issues and research directions. IEEE Trans. Softw. Eng. 1995, 21, 528–562. [CrossRef]
6. Smolárová, M.; Návrat, P. Software reuse: Principles, patterns, prospects. J. Comput. Inf. Technol. 1997, 5, 33–49.
7. Kim, Y.; Stohr, E.A. Software reuse: Survey and research directions. J. Manag. Inf. Syst. 1998, 14, 113–147. [CrossRef]
8. Krueger, C.W. Software reuse. ACM Comput. Surv. (CSUR) 1992, 24, 131–183. [CrossRef]
9. Hogan, A.; Blomqvist, E.; Cochez, M.; d’Amato, C.; de Melo, G.; Gutiérrez, C.; Kirrane, S.; Labra Gayo, J.E.; Navigli, R.; Neumaier,

S.; et al. Knowledge Graphs; Number 22 in Synthesis Lectures on Data, Semantics, and Knowledge; Springer: Berlin/Heidelberg,
Germany, 2021. [CrossRef]

10. Madni, A.M.; Erwin, D.; Madni, C.C. Digital twin-enabled MBSE testbed for prototyping and evaluating aerospace systems:
Lessons learned. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021; pp. 1–8.

11. Wikidata. 2023. Available online: https://www.wikidata.org/wiki/Wikidata:WikidataCon_2023 (accessed on 10 January 2022).
12. Peres, R.S.; Jia, X.; Lee, J.; Sun, K.; Colombo, A.W.; Barata, J. Industrial artificial intelligence in industry 4.0-systematic review,

challenges and outlook. IEEE Access 2020, 8, 220121–220139. [CrossRef]
13. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. arXiv 2020, arXiv:2005.14165.
14. Liu, R.; Fu, R.; Xu, K.; Shi, X.; Ren, X. A Review of Knowledge Graph-Based Reasoning Technology in the Operation of Power

Systems. Appl. Sci. 2023, 13, 4357. [CrossRef]
15. Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.N.; Bizer, C. DBpedia—A large-scale, multilingual

knowledge base extracted from Wikipedia. Semant. Web 2015, 6, 167–195. [CrossRef]
16. Pennington, J.; Socher, R.; Manning, C. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.
17. TensorFlow. Word2Vec. Available online: https://www.tensorflow.org/text/tutorials/word2vec (accessed on 1 March 2023).
18. Stein, R.A.; Jaques, P.A.; Valiati, J.F. An analysis of hierarchical text classification using word embeddings. Inf. Sci. 2019,

471, 216–232. [CrossRef]
19. Tang, J.; Xue, Y.; Wang, Z.; Hu, S.; Gong, T.; Chen, Y.; Zhao, H.; Xiao, L. Bayesian estimation-based sentiment word embedding

model for sentiment analysis. CAAI Trans. Intell. Technol. 2022, 7, 144–155. [CrossRef]

https://github.com/edcisa/physicalModels
http://doi.org/10.3390/systems7010007
http://dx.doi.org/10.1002/sys.21566
http://dx.doi.org/10.3390/systems6040040
http://dx.doi.org/10.1109/32.391379
http://dx.doi.org/10.1080/07421222.1998.11518188
http://dx.doi.org/10.1145/130844.130856
http://dx.doi.org/10.2200/S01125ED1V01Y202109DSK022
https://www.wikidata.org/wiki/Wikidata:WikidataCon_2023
http://dx.doi.org/10.1109/ACCESS.2020.3042874
http://dx.doi.org/10.3390/app13074357
http://dx.doi.org/10.3233/SW-140134
https://www.tensorflow.org/text/tutorials/word2vec
http://dx.doi.org/10.1016/j.ins.2018.09.001
http://dx.doi.org/10.1049/cit2.12037

Appl. Sci. 2023, 13, 11999 14 of 14

20. Satapathy, S.C.; Peer, P.; Tang, J.; Bhateja, V.; Ghosh, A. Machine Translation System Combination with Enhanced Alignments
Using Word Embeddings. In Intelligent Data Engineering and Analytics; Smart Innovation, Systems and Technologies; Springer
Singapore Pte. Limited: Singapore, 2022; Volume 266, pp. 19–29.

21. Berenguer, A.; Mazón, J.N.; Tomás, D. A Tabular Open Data Search Engine Based on Word Embeddings for Data Integration. In
New Trends in Database and Information Systems; Chiusano, S., Cerquitelli, T., Wrembel, R., Nørvåg, K., Catania, B., Vargas-Solar, G.,
Zumpano, E., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 99–108.

22. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
In Advances in Neural Information Processing Systems 30, Proceedings of the 31st Annual Conference on Neural Information Processing
Systems (NIPS 2017, Long Beach, CA, USA, 4–9 December 2017; Neural Information Processing Systems Foundation, Inc. (NeurIPS):
La Jolla, CA, USA, 2017.

23. Safavi, T.; Koutra, D. Relational world knowledge representation in contextual language models: A review. arXiv 2021,
arXiv:2104.05837.

24. Huang, B.; Zhang, S.; Huang, R.; Li, X.; Zhang, Y. An effective retrieval approach of 3D CAD models for macro process reuse. Int.
J. Adv. Manuf. Technol. 2019, 102, 1067–1089. [CrossRef]

25. Cibrián, E.; Mendieta, R.; Rodríguez, J.M.Á.; Morillo, J.L. Towards the reuse of physical models within the development life-cycle:
A case study of Simulink models. In Proceedings of the NOMS 2022-2022 IEEE/IFIP Network Operations and Management
Symposium, Budapest, Hungary, 25–29 April 2022; pp. 1–6.

26. Cibrian, E.; Alvarez-Rodriguez, J.M.; Mendieta, R.; Llorens, J. Discovering traces between textual requirements and logical
models in the functional design of Printed Circuit Boards. In Proceedings of the 2022 IEEE 5th International Conference on
Industrial Cyber-Physical Systems (ICPS), Coventry, UK, 24–26 May 2022; pp. 1–6.

27. ISO 10303-243:2021; Industrial Automation Systems and Integration—Product Data Representation and Exchange. International
Organization for Standardization: Geneva, Switzerland, 2021.

28. Rodríguez, J.M.Á.; Mendieta, R.; de la Vara, J.L.; Fraga, A.; Morillo, J.L. Enabling System Artefact Exchange and Selection through
a Linked Data Layer. J. Univers. Comput. Sci. 2018, 24, 1536–1560.

29. NLPL Word Embeddings Repository. Available online: http://vectors.nlpl.eu/repository/ (accessed on 20 June 2022).
30. MathWorks. Llamar a MATLAB desde NET-MATLAB & Simulink-MathWorks España. 2023. Available online: https://es.

mathworks.com/help/matlab/call-matlab-from-net.html (accessed on 28 June 2023).
31. Ouyang, W.; Tombari, F.; Mattoccia, S.; Di Stefano, L.; Cham, W.K. Performance evaluation of full search equivalent pattern

matching algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 127–143. [CrossRef] [PubMed]
32. Roy, D.; Ganguly, D.; Mitra, M.; Jones, G.J. Representing documents and queries as sets of word embedded vectors for information

retrieval. arXiv 2016, arXiv:1606.07869.
33. Jatnika, D.; Bijaksana, M.A.; Suryani, A.A. Word2vec model analysis for semantic similarities in english words. Procedia Comput.

Sci. 2019, 157, 160–167. [CrossRef]
34. Lahitani, A.R.; Permanasari, A.E.; Setiawan, N.A. Cosine similarity to determine similarity measure: Study case in online essay

assessment. In Proceedings of the 2016 4th International Conference on Cyber and IT Service Management, Bandung, Indonesia,
26–27 April 2016; pp. 1–6.

35. Juristo, N.; Moreno, A.M. Basics of Software Engineering Experimentation; Springer Science & Business Media: New York, NY,
USA, 2013.

36. Hayes, J.H.; Dekhtyar, A.; Sundaram, S.K. Improving after-the-fact tracing and mapping: Supporting software quality predictions.
IEEE Softw. 2005, 22, 30–37. [CrossRef]

37. Coïc, C.; Williams, M.; Mendo, J.C.; Alvarez-Rodriguez, J.M.; Richardson, M.K. Linking Design Requirements to FMUs to
create LOTAR compliant mBSE models. In Proceedings of the 15th International Modelica Conference, Aachen, Germany, 9–11
October 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00170-018-2968-8
http://vectors.nlpl.eu/repository/
https://es.mathworks.com/help/matlab/call-matlab-from-net.html
https://es.mathworks.com/help/matlab/call-matlab-from-net.html
http://dx.doi.org/10.1109/TPAMI.2011.106
http://www.ncbi.nlm.nih.gov/pubmed/21576734
http://dx.doi.org/10.1016/j.procs.2019.08.153
http://dx.doi.org/10.1109/MS.2005.156

	Introduction
	Related Work
	Proposed Method for Representing and Searching Physical Models
	Corpus Extraction
	Word Embeddings Training
	Physical Model Information Extraction
	Physical Model Verbalisation
	Search Algorithm

	Case Study: Searching Physical Models in MATLAB Simulink
	Conclusions and Future Directions
	References

