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Abstract: A double-plunger type overspeed protection mechanism has excellent performance in
turbine overspeed protection, but the complicated operating principle thereof makes long-term use
difficult. In this study, a dynamic model is established to explain the relationship between the motion
state and the force situation. Through the analysis of the dynamic model, the specific process of
the linked plunger for achieving overspeed protection with tripping action is determined, and the
motion law of the inner and outer plungers is clarified. Additionally, the complete solution method
and calculation procedure for the tripping speed of the submerged plunger are established, and the
specific process for solving the relevant equations with numerical iteration is clarified. Finally, a
rigid-flexible coupling virtual prototype model is established, which validates the conclusion that
initial eccentric distance and spring stiffness are key factors affecting tripping speed and the motion
process of inner and outer plungers.

Keywords: mechanical overspeed protection device; dynamics; numerical approaches

1. Introduction

The main shaft of a turbine rotates with a centrifugal force proportional to the square
of the angular velocity. Once the design speed is exceeded, there is a high risk of damage
to the unit and serious accidents [1]. Therefore, the overspeed protection device is of great
importance for ensuring the safe operation of the turbine unit for a long time. There have
been many studies on turbine overspeed protection devices, but the focus has been on
electronic trip systems, which use speed sensors and electrical circuits [2–4]. For example,
an electromagnetic system is used to monitor the system’s operating status in real-time [5],
and the timing of starting the overspeed protection program is determined by judging
the current operating conditions. Mechanical overspeed protection devices usually use
centrifugal force at high rotational speeds to drive the mechanism to generate tripping
action. However, mechanical overspeed protection has the situation of “mal-operation” or
“refused operation of protection” [6], which is more evident in traditional single-plunger
type overspeed protection mechanisms. Compared with the traditional single-plunger
type, the double-plunger type can act more promptly and accurately when the unit is
running overspeed, has a more stable performance at higher speeds, and can adjust the
trip speed by changing the position of the outer plunger. Additionally, compared to
other principle-based overspeed protection devices such as electromagnetic and hydraulic
types, the mechanical type can work in a liquid environment, is easier to disassemble,
does not need to provide power during operation, and can still work in the case of loss
of external power supply [7]. However, the motion process and force conditions of the
double-plunger type overspeed protection mechanism are also more complicated than
those of the traditional single-plunger type, which makes it difficult to directly obtain the
corresponding relationship between the structural parameters and trip speed and adds
challenges to the design and widespread use of this device. In actual use, the corresponding
relationship between the adjustment value and the trip speed has to be determined by
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repeated tests, which not only consumes considerable manpower but also reduces the
operating efficiency of the turbine unit.

The objective of this study is to establish the equations of the dynamics of the inner and
outer plungers and further explore the mechanism of the plunger to achieve the overspeed
protection function, clarify the motion process of the inner and outer plungers, and verify
it by simulation.

2. Device Operation Principle

The basic structure of the double-plunger type is shown in Figure 1.
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Figure 1. Structure of double-plunger type overspeed protection mechanism.

The entire device is placed in a radial through hole in the main shaft, and the device
can only move along the radial direction of the main shaft. The set bushings and adjustable
bushings are attached to the main shaft with threads. In the initial state, the outer spring is
in a compressed state, the outer flyweight is pressed by the outer spring on the lower cock,
and the displacement is limited. By adjusting the depth of the adjustable bushing screwed
into the main shaft, the overall height of the plungers can be adjusted. Compared with the
traditional single-plunger type overspeed protector [8], the outer plunger is a cavity, and
the inner plunger, inner spring, and spring base can be placed in the cavity of the outer
plunger. The back cover and the outer plunger are integrally connected by threads, and
the inner spring is in a compressed state at this time, which can limit the movement of the
inner plunger.

Figure 2 shows the whole system in the complete state in (a), the main shaft cut state
in (b), and the outer plunger cut state in (c).
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value, the centrifugal force of the inner plunger overcomes the spring force to extend out-
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then finally leads to the main shaft stopping. 

Figure 2. (a) Orthographic projection; (b) half-section view; (c) complete cut view.

As shown in Figure 3, since the center of mass of the inner plunger does not coincide
with the center of rotation of the spindle when the main shaft starts to rotate, the inner
plunger is subjected to centrifugal force. When the rotational speed reaches a critical value,
the centrifugal force of the inner plunger overcomes the spring force to extend outward,
which causes the eccentricity of the overall center of mass of the whole device to further
increase. Subsequently, the outer plunger overcomes the spring force to fly out, and the
extended plunger hits the lever mechanism to create subsequent actions, which then finally
leads to the main shaft stopping.
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3. Dynamic Modeling of Plungers
3.1. Analysis of Plunger Motion States

In the dynamics of multibody systems, to describe the motion of each object accurately,
it is necessary to establish a suitable coordinate system based on its connections and
constraints [9]. As shown in Figure 4, the absolute coordinate system, i.e., the fixed
coordinate system ox0y0z0, and the relative coordinate system, i.e., the dynamic coordinate
system oxyz, which is attached to the main shaft, are established. The x-axis of the dynamic
coordinate system coincides with the axis of the turbine main shaft and is defined as the
axial direction, and the z-axis of the dynamic coordinate system is defined as the radial
direction. The basis vectors along the z and y axes in the dynamic coordinate system are eρ

and eθ, respectively. In this study, the spindle only has rotational motion around its axis;
relative rotation around the x-axis between the relative and absolute coordinate systems
occurs; and the angle between the y0-axis in the absolute coordinate system and the y-axis
in the relative coordinate system is θ. The angular velocity of the spindle rotation isω =

.
θ.
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After analyzing the constraints between each component, it can be seen that the inner
and outer plungers have two degrees of freedom, and the compound motion of the inner
plunger consists of two parts: the rotation around the axis along with the spindle, denoted
as θ, and the radial movement along the y-axis of the dynamic coordinate system in the
outer plunger cavity, denoted as ρ2. Similarly, the compound motion of the outer plunger
consists of two parts: the rotation following the spindle, which is at the same angle as
the rotation of the inner plunger and therefore also θ, and the radial movement inside the
spindle bore cavity, denoted as ρ1. The moving points C1 and C2 are defined as the centers
of mass of the outer and inner plungers, respectively; their radius vectors to the origin O in
the absolute coordinate system are defined as r1 and r2, and the radius vectors to the origin
in the relative coordinate system are defined as ρ1 and ρ2, respectively. The coordinate
transformation matrix from the fixed coordinate system to the dynamic coordinate system
is A. Then, the equations of motion of the plungers can be expressed as

r = A(t)ρ(t) A =


1 0 0

0 − cos θ(t) sin θ(t)

0 sin θ(t) cos θ(t)

 ρ =
[
ρ1(t) ρ2(t)

]
(1)

where r and ρ are matrices with three rows and two columns.
It is clear that matrix A satisfies AAT = I, i.e., A−1 = AT, which means that it is an

orthogonal matrix [10]. Therefore, ρ can be expressed as

ρ = A−1r = ATr (2)

To find the velocity of motion of the center of mass, Equation (1) is derived with
respect to time:

.
r =

.
Aρ + A

.
ρ =

.
AATr + A

.
ρ (3)

Matrix
.
AAT is discussed next, with derivatives for time t on both sides of the equation

AAT = I:
d
dt
(AAT) =

.
AAT + A

.
A

T
=

.
AAT + (A

.
A)

T
= 0 (4)

which means
.
AAT = −(A

.
A)

T
(5)



Appl. Sci. 2023, 13, 11995 6 of 18

This shows that matrix
.
AAT is an antisymmetric matrix whose diagonal elements are

all zero and whose only three elements are independent. Therefore, it can be written in the
following form:

.
AAT =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (6)

It is clear that matrix
.
AAT is the skew-symmetric matrix of the vector ω = [ωx ωy ωz]T,

denoted as ω̃. Substituting this into Equation (3) yields

.
r = ω̃r + A

.
ρ (7)

where
.
ρ is the velocity vector of moving point C in the relative coordinate system and A

.
ρ

is its velocity vector in the absolute coordinate system. Then, the absolute velocity of the
center of mass of the inner plunger is

.
r = ω × r + A

.
ρ (8)

To find the acceleration of the movement of moving point C, Equation (8) is derived
for time:

..
r =

.
ω × r + ω × .

r +
d
dt
(A

.
ρ) (9)

Defining the rate of change of the vector in time with respect to the fixed coordinate
system as the absolute derivative and the rate of change in time with respect to the dynamic
coordinate system as the relative derivative, the last term in Equation (9) becomes the
absolute derivative of the relative velocity vector. Since the absolute derivative of a vector is
equal to its relative derivative plus the cross product of the angular velocity of the dynamic
system and this vector [8]; therefore,

d
dt
(A

.
ρ) =

d
.
ρ

dt
+ ω × (A

.
ρ) (10)

Substitute Equations (8) and (10) into Equation (9) yields

..
r =

.
ω × r + ω × (ω × r + A

.
ρ) + d

.
ρ

dt + ω × (A
.
ρ)

=
.

ω × r + ω × (ω × r) + 2ω × A
.
ρ + d

.
ρ

dt

= ae + ar + ac

(11)

where ae =
.

ω × r + ω × (ω × r) is the acceleration of the dynamic system with re-
spect to the fixed system, i.e., the convective acceleration; ar = 2ω × A

.
ρ is the Coriolis

acceleration [11]; ac =
d

.
ρ

dt is the acceleration of the moving point with respect to the moving
system, i.e., the relative acceleration. It can be seen that the acceleration of a plunger in
motion is a vector sum of the above three accelerations. The complex motion of an object in
space can be described as a linear combination of basis vectors by establishing multiple
basis vectors [10], each of which usually represents a certain characteristic direction of the
object during its motion. In this study, the basis vectors eθ and eρ are established along
the tangential and radial directions of the main shaft, respectively. Then, the convective
acceleration for the inner plunger is

ae2 =
..
θρ2eθ −

.
θ

2
ρ2eρ (12)

the relative acceleration is
ar2 =

..
ρ2eρ (13)
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the Coriolis acceleration is
ac2 = 2

.
ρ2

.
θeθ (14)

Similarly, the acceleration of the outer plunger during the motion is

ae1 =
..
θρ2eθ −

.
θ

2
ρ2eρ ar1 =

..
ρ2eρ ac1 = 2

.
ρ2

.
θeθ (15)

3.2. Analysis of the Plungers Force Situation

During the entire motion, the inner plunger may be subjected to the contact force Ft2
along the tangential direction of the spindle, the contact force Fr2 along the radial direction
of the spindle, the frictional force f 2, and the elastic force S2 generated by the inner spring
and the outer plunger. These forces always satisfy the following equations:

Fr2 + f2 + S2 = m
..
ρ2eρ − m

.
θ

2
ρ2eρ (16)

Ft2 =
..
θL2eθ + 2m

.
ρ2

.
θeθ (17)

Similarly, the outer plunger may be subjected to a contact force Ft1 along the tangential
direction of the spindle, a contact force Fr1 along the radial direction of the spindle, a
frictional force f 1, an elastic force S1 generated by the outer spring, and an elastic force S2
generated by the inner spring. These forces always satisfy the following equations:

Fr1 + f1 + S1 + S2 = m
..
ρ1eρ − m

.
θ

2
ρ1eρ (18)

Ft1 =
..
θL1eθ + 2m

.
ρ1

.
θeθ (19)

The force on the plungers is different when they are in different positions. As shown
in Figure 5, there are three main cases for an inner plunger, as follows.
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When the inner plunger is located in the initial position, at which time
.
ρ2 =

..
ρ2 = 0,

Equations (16) and (17) can be rewritten as

Fr2 + f2 + S2 = m
.
θ

2
ρ2eρ (20)

Ft2 =
..
θL2eθ (21)

When the inner plunger moves inside the outer plunger cavity and its upper and lower
end surfaces are not in contact with the inner wall of the outer plunger, the outer plunger
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does not produce a contact force along the radial direction of the main shaft, Fr2 = 0. At
this time, Equation (16) is written as follows:

f2 + S2 = m
..
ρ2eρ − m

.
θ

2
ρ2eρ (22)

When the inner plunger moves to the outermost end, its upper surface comes into
contact with the top surface of the inner wall of the outer plunger, and there is no relative
motion between the inner and outer plunger. At this time, the outer plunger and inner
plunger can be seen as a whole and Equation (16) can be written as follows:

Fr2 + S2 = m
..
ρ2eρ − m

.
θ

2
ρ2eρ (23)

Similarly, as shown in Figure 6, there are two cases of forces on the outer plunger,
as follows.
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When no action occurs, similar to the inner plunger,
.
ρ1 =

.
ρ1 = 0, and Equations (18)

and (19) are written as

Fr1 + f1 + S1 = m
.
θ

2
ρ1eρ (24)

Ft1 = m
..
θL1eθ (25)

With the outer plunger action, due to the outer plunger action and the adjustable
bushing out of contact, the adjustable bushing on the radial contact force along the spindle
disappears. At this time, Fr1 = 0, and Equation (18) is rewritten as follows:

f1 + S1 = m
..
ρ1eρ −

.
θ

2
ρ1eρ (26)

4. Analysis of the Trip Process
4.1. Trip Speed of Plungers

When the rotation speed keeps rising to the preset tripping speed, there may be two
kinds of movements of the inner and outer plungers, as follows.

(1) The inner plunger moves first in the outer plunger cavity, and the outer plunger does
not move at this time.
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(2) The outer plunger drives the inner plunger to move both plungers together. Because
the bottom of the inner plunger is limited by the outer plunger base’s ability to move
downward, there is no situation in which the outer plunger moves but the inner
plunger remains in the same place.

To confirm the actual motion for the given parameters, the spindle speed can be
calculated by calculating the centrifugal force required to overcome the spring force at the
initial position of the inner and outer plungers for the action to occur. The spindle speed is
used as the unknown to solve the following two sets of equations.

f2 + S2 = m
.
θ2

2ρ2

Ft2 =
..
θL2

f2 = µFt2


f1 + S1 + S2 = m

.
θ1

2ρ1

Ft1 = m
..
θL1

f1 = µFt1

(27)

The spring forces S1 and S2 are calculated according to the following equation [12]:

S1 = k1(l1 + A1Xa − B1Xh) (28)

S2 = k2(l2 + A2Ya − B2Yh)

A1 = 1 − ϕ1
tgϕ1

, B1 = ϕ1
sin ϕ1

− 1, ϕ1 = ω0

√
ms1
k1

A2 = 1 − ϕ2
tgϕ2

, B1 = ϕ2
sin ϕ2 − 1, ϕ2 = ω0

√
ms2
k2

(29)

Xa, Xb, Ya, and Yb are shown in Figure 7.
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For the problems of the centrifugal force on the spring in the rotating system, some
scholars conducted relevant studies but did not propose a clear formula [13]. In this study,
we followed the aforementioned research results to use Equations (28) and (29) and verified
the equations as described in Section 5.

Using the algorithm in Section 4.1 to solve the above equation,
.
θ2 <

.
θ1 can be obtained,

which means that the action speed of the inner plunger is less than that of the outer plunger,
and when the spindle speed keeps rising, the inner plunger first reaches the critical state
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of imminent flying out, which is categorized as the first case mentioned above. The
.
θ2

at this time is recorded as ω2, which is the minimum speed to make the inner plunger
action occur.

Because the inner plunger is moved after causing the inner spring to be further
compressed, the elastic force S1 of the inner spring is also increased, and the force situation
is changed; thus, it is necessary to re-determine whether the outer plunger will move after
the spring force of the inner spring is increased. When the inner plunger is moved, the
inner spring force is a function of the radial displacement ρ2 of the inner plunger, denoted
as S2(ρ2). If the inner spring force is sufficient to overcome the frictional resistance and
centrifugal force to make the outer plunger fly out, then there is

S2(ρ2)− f1 − mh1ω2ρ1 > 0 (30)

According to the calculation of the relevant parameters, Equation (30) does not hold
when r0 < ρ2 < r0 + xmax. Therefore, the outer plunger does not produce radial displacement
during the movement of the inner plunger. When the inner plunger moves to the end, the
inner wall of the outer plunger is in contact, and the inner and outer plungers become a
whole. At this time, the plunger action occurs under the following conditions:

f1 + S1 = (mh1 + mh2)
.
θ

2
ρ1eρ (31)

This means that the centrifugal force overcomes the frictional force between the outer
plunger and the bushings and the spring force to make the inner plunger fly out along with
the outer plunger. Since the eccentricity of the inner and outer plungers is ρ2 = r0 + xmax,
the centrifugal force on the whole plunger is greatly increased, so ω1 < ω0, the value of the
left polynomial in Equation (31) is smaller than that of the right polynomial, and the whole
outer plunger flies outward.

After the inner plunger moves in the cavity, its eccentricity increases further and the
centrifugal force on it increases at the same time, but the spring is also further compressed
and the spring force on it increases further. Therefore, the combined external force on the
inner plunger is a function of ρ2, denoted as F2(ρ2).

F2(ρ2) = mh2ω2ρ2 − f2 − S2(ρ2) (32)

After numerical calculation, F2 increases monotonically with the rise of the eccentricity ρ2
and the rotational speed ω, i.e., the combined external force on the inner plunger increases
continuously and always points to the direction of motion. Therefore, the motion law
of the inner plunger after the action occurs is to continuously accelerate along the radial
direction of the spindle until it comes into contact with the inner wall of the outer plunger.
Additionally, at this time, the motion of the inner plunger satisfies Equation (26).

When the inner plunger moved to the end and made contact with the outer plunger,
the two had no relative motion; at this time, they could be seen as a whole. At this time, the
external force on plungers can be expressed as

F = ω2(mh1 + mh2)R1 − f1 − S1 (33)

We can see that Equation (33) is greater than 0 at this time through numerical calcula-
tion; therefore, the outer plunger will fly out with the inner plunger together at this time.

In summary, the movement law of the inner and outer plungers states that after
reaching the critical speed, the inner plunger starts to accelerate the movement. In this
process, the outer plunger does not experience radial displacement. When the inner plunger
and the inner wall of the outer plunger come into contact, the inner and outer plungers
become whole and fly out together.
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4.2. Motion Time of Plungers

Because the spindle speed is still changing after the action of the plunger occurs, the
time interval between the action of the inner and outer plungers needs to be calculated
to finally determine the time when the plunger completes the tripping action and obtain
the final tripping speed according to the angular acceleration of the main shaft. The
inner plunger in the outer plunger cavity performs a variable acceleration motion with
the combined external force to meet Equation (32). Then, the kinetic energy of the inner
plunger distance after the movement of x is as follows [14]:

T2 = 1
2 mh2v(x)2 =

∫ x
0 F2(x)dx

F2(x) = mh2ω2(r0 + x)− f2 − S2(x)
(34)

From the set of Equation (34), the velocity of the inner plunger in this position can be
expressed as

v(x) =

√
2
∫ x

0 F2(x)dx
mh2

(35)

The average speed of the inner plunger during the whole motion is

v =
∫ xmax

0
v(x)dx/x (36)

According to Equations (34)–(36), v can be expressed as

v = (
∫ xmax

0

√
(2
∫ x

0
F2(x)dx)/mh2 dx)/x (37)

The time spent by the inner plunger during its trip process is

t2 = xmax
2/(

∫ xmax

0

√
2(
∫ x

r0

F2(x)dx)/mh2dx ) (38)

After the inner plunger movement to the outermost side (ρ2 = r0 + xmax), at this time
the inner and outer plungers can be seen as a whole, similar to the inner plunger, and
the movement time consumption of the whole plunger can be calculated using the same
method. Therefore, the outer plunger movement time consumption is

t1 = H2/(
∫ H

0

√
2(
∫ x

0
F1(x)dx)/(mh2 + mh1)dx ) (39)

F1(x) = (mh2 + mh1)ω
2(d1 + x)− f1 − S1(x) (40)

The final trip speed can be obtained with the following equation:

ω = ω2 + (t1 + t2)β (41)

5. Numerical Solution of the Dynamic Model
5.1. Processes of Solving

The computational process for the dynamic model of the inner and outer plungers can
be represented as shown in Figure 8.
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First, it is necessary to calculate the minimum rotational speed ω2 that causes the
action of the inner and outer plungers to occur at the initial position. Second, given that
there is no analytical solution for the set of equations used to solve the rotational speed of
the inner plunger tripping in Equation (37), the value of the rotational speed that satisfies
the condition is solved with the numerical iterative method. Figure 8a shows the whole
process of iterative calculation, in which the accuracy of the iterative calculation is set to
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0.01 and the iterative process stops when the difference between the calculated result and
the target value is less than 0.01.

Figure 8b shows the process of solving the motion time consumption of the inner and
outer plungers using the relevant equations in Section 3. The average speed expression
calculated according to Equation (37) is complicated and cannot be directly solved for its
original function to perform integral operations, so the calculation result of Equation (37) is
calculated with numerical integration, after which the final tripping speed of the plunger
as a whole can be found according to Equation (40) in combination with process 1.

5.2. Results and Discussion

The centrifugal force generated by the main shaft driving the rotation of the inner
plunger is the driving force that causes the eccentric motion of the inner plunger, while
the pre-compression of the inner spring provides the resistance to stop the movement of
the inner plunger, so the action speed of the inner plunger is primarily determined by the
following two factors:

(1) The pre-compression force provided by the inner spring;
(2) The eccentricity of the center of mass of the inner plunger relative to the center of

rotation of the main shaft.

After executing the process shown in Figure 8b, the calculation result is shown in
Figure 9. The condition-satisfyingω2 is obtained at the iteration up to i = 10 times, and the
computation converges here.

1 

 

 

Figure 9. Result of flow path b.

The calculation results of the time spent on the movement of the inner and outer
plungers are shown in Figure 10.
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As the number of selected data points increases, the step size of each calculation
gradually decreases, and the final integration value gradually converges. The joint between
the inner and outer plungers is categorized as a translation joint with dry clearance. For the
movement trend between the inner and outer plungers, the friction force generated by the
dry friction between the two is not a constant value [15]. This part of the friction situation
can be further discussed in future research by analyzing the factors affecting the friction
force of dry friction with clearance to establish a model for the change of friction coefficient
between the inner and outer plunger and finally clarify the change law of the friction force.

6. Dynamic Simulation and Validation
6.1. Elasticity Calculation Formula Verification

The spring force calculation of Equations (28) and (29) for the spring in the rotating
regime is verified with a simulation. As shown in Figure 11a, a flexible body model of
the spring is given a load condition in the simulation software with both ends fixed and
rotating around a certain axis while ensuring that the material parameters such as density,
Young’s modulus, and Poisson’s ratio of the spring are consistent with the actual situation.
By measuring the pressure at the fixed end, the spring force in the rotating condition can
be obtained.
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The simulation results are shown in Figure 11b. The speed of rotation and the position
of the center of rotation are changed, the simulation results are measured, and the results
are consistent with the theoretical equations, which verify the correctness of Equations (28)
and (29).

6.2. Simulation of the Trip Process

Validation experiments using turbine units are too expensive and time-consuming to
compete. In this study, simulation experiments are chosen to verify the correctness of the
theoretical analysis [16]. Furthermore, we use the dynamics module in ADAMS to simulate
the whole process of the overspeed protection system. Similar to the common process of
using ADAMS for mechanism motion simulation [17], we set up constraints, loads, and
motion subsets for the imported physical model in ADAMS, and we set up sensors to
obtain motion parameters.

Figure 12 shows the model of the overspeed protection system in ADAMS.
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Because the eccentricities of each part of the inner and outer springs are different
during the motion of the plunger, the magnitude of the centrifugal force is also different.
The resulting inhomogeneous deformation changes the spring’s mass distribution, and
the centrifugal force changes with the change in mass distribution. Therefore, although
the reaction force that varies linearly with the displacement of the constrained end can be
achieved by setting a spring-damper force in ADAMS, to accurately simulate the actual
spring force in the rotating system, the spring needs to be imported into the simulation
model and defined as a flexible body. In this study, the modal neutral file is generated
using the Ansys workbench, and the .mnf file is used to generate the modal neutral file
and provide the mesh and stress information in ADAMS to realize the flexibility of the
spring. In the multibody system dynamics simulation environment, the pre-compression
condition of the spring cannot be set, and the spring force used to hold the plunger in place
is simulated by defining the force acting directly on the plunger after the inner and outer
springs are pre-compressed.

The spindle is driven with uniform acceleration, and the displacement of the outer
plunger along the Z-axis direction of the spindle is used as the condition for the simulation
process to stop. Specifically, the simulation process stops when the outer plunger flies out-
ward by more than 1 mm. According to the acceleration value and the spindle acceleration
time consumption, the final speed of the spindle can be obtained when the outer plunger
hits the leveraging mechanism.

Figure 13a shows the speed-displacement curve of the inner and outer plungers along
the radial direction of the main shaft.
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Figure 13. Results of simulation: (a) speed–displacement curve of the inner and outer plungers;
(b) trip speed change curve of the inner plunger.

The horizontal coordinate of Figure 13a is the rotational speed of the spindle, and
the vertical coordinate is the displacement of the inner or outer plungers along the radial
direction of the spindle relative to the initial position. The motion process is divided into
the following four stages:

(a) The spindle speed is low, and the inner and outer plungers are not displaced.
(b) The spindle speed is gradually approaching the inner plunger trip speed, and the

inner and outer plungers show an unstable state, resulting in a small displacement
(less than 0.1 mm).

(c) The inner plunger overcomes the spring resistance with the driving of centrifugal force
and starts accelerated motion, and the outer plunger does not move in this process.

(d) The inner plunger moves to the end and comes into contact with the top of the inner
wall of the outer plunger, and then both inner and outer plungers fly outward together.

As shown in Figure 13b, the final tripping speed of the plunger increases with acceler-
ation, and the trend is consistent with the results of the theoretical model.

As shown in Figure 14, trip speed grows with spring stiffness, and the inner plunger
trips at a higher speed over a shorter eccentric distance.

1 

 

 

Figure 14. Trip speed of inner plungers in different eccentric distance.

In summary, the simulation of the plunger motion is consistent with the theoretical analysis.

7. Conclusions

In this study, the relationship between the acceleration of the plunger in motion and
its position, spindle speed, eccentric distance, and other parameters was determined. The
inner plunger first moved radially along the main shaft with the action of centrifugal force
until it came into contact with the inner wall of the outer plunger, and then the inner and
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outer plungers flew outward together to produce the tripping action. The formula for
calculating the rotational speed of the inner plunger and the formula for calculating the time
required for the movement of the inner plunger in the outer plunger cavity were derived.

A rigid-flexible coupling virtual prototype model was established with ADAMS and
ANSYS. The entire process of plunger motion was simulated with a dynamics simulation
to verify the correctness of the plunger action mechanism in the theoretical model, and the
variation of the inner plunger action speed with the initial eccentric distance and spring
stiffness was demonstrated.

The action speed of the inner plunger was the key factor for determining the spindle
speed when the whole plunger tripped; the action speed of the inner plunger was primarily
affected by its initial state eccentricity and inner spring stiffness.
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Nomenclature

mh2 Inner plunger mass
mh1 Outer plunger mass (including locating bushings)
ms2 Inner spring mass
ms1 Outer spring mass
k2 Inner spring stiffness
k1 External spring stiffness
xmax Maximum displacement of the inner plunger relative to the outer plunger
H Maximum displacement of the outer plunger relative to the main shaft
d1 Distance between the center of mass of the outer plunger and the center of rotation
r0 Eccentricity of the inner plunger in the initial state
l2 Pre-compression length of the inner spring
l1 Pre-compression length of the outer spring
R1 Overall eccentricity of the plunger at the end of the inner plunger movement
µ1 Friction coefficient between the outer plunger and the plug
µ2 Friction coefficient between the inner plunger and the inner wall of the outer plunger

Ya
Distance from the center of mass of the outer spring to the contact surface of the
adjusting end

Yh
Distance from the center of mass of the outer spring to the contact surface of the
striking end

Xa Distance from the center of the inner spring to the contact surface of the adjusting end
Xh Distance from the inner spring center to the contact surface of the striking end
β Angular acceleration of the main shaft
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