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Abstract: As the development of high-performance computing (HPC) is growing, exascale computing
is on the horizon. Therefore, it is imperative to develop parallel systems, such as graphics processing
units (GPUs) and programming models, that can effectively utilise the powerful processing resources
of exascale computing. A tri-level programming model comprising message passing interface
(MPI), compute unified device architecture (CUDA), and open multi-processing (OpenMP) models
may significantly enhance the parallelism, performance, productivity, and programmability of the
heterogeneous architecture. However, the use of multiple programming models often leads to
unexpected errors and behaviours during run-time. It is also difficult to detect such errors in high-
level parallel programming languages. Therefore, this present study proposes a parallel hybrid
testing tool that employs both static and dynamic testing techniques to address this issue. The
proposed tool was designed to identify the run-time errors of C++ and MPI + OpenMP + CUDA
systems by analysing the source code during run-time, thereby optimising the testing process and
ensuring comprehensive error detection. The proposed tool was able to identify and categorise the
run-time errors of tri-level programming models. This highlights the need for a parallel testing
tool that is specifically designed for tri-level MPI + OpenMP + CUDA programming models. As
contemporary parallel testing tools cannot, at present, be used to test software applications produced
using tri-level MPI + OpenMP + CUDA programming models, this present study proposes the
architecture of a parallel testing tool to detect run-time errors in tri-level MPI + OpenMP + CUDA
programming models.

Keywords: hybrid analysis; Hybrid MPI/OpenMP; dynamic analysis; race; static analysis; tri-level
programming model run-time errors

1. Introduction

Exascale computing is the next milestone in the domain of high-performance comput-
ing (HPC). At present, exascale computing enables systems to compute one EXA, or one
quintillion, floating point operations per second (exaFLOPs). However, the objective is to
perform more than a quintillion operations per second, which would enable engineers and
scientific researchers to address extremely challenging problems, such as climate change,
medicine discovery, nuclear fusion, and computerised simulations, to name a few.
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An exascale system is unlike conventional HPC due to its abilities, topology, and
energy efficiency. Nevertheless, such systems suffer from constraints such as programming
frameworks, energy requirements, processor architectures, memory regulation, architec-
tural resilience, and parallel programming. Therefore, these limitations must be addressed
to achieve exascale systems.

Exascale systems are primarily plagued by two major challenges, namely energy re-
quirements and its parallelism capabilities. Its energy requirement issues may be overcome
using several proposed novel ideas [1–4], while the execution and improvement of its
parallelism capabilities may be addressed by combining multiple programming models
concurrently. Two or more models, which boast different features, may also be combined
for this purpose. However, the architecture of the combined processors must be well under-
stood to successfully and efficiently utilise their resources to build heterogeneous nodes.

Many programming models have been designed for a wide variety of tasks, such
as a message passing interface (MPI) [5] for message passing and open multi-processing
(OpenMP) [6] for shared memory parallelism. Programming models that contain acceler-
ators, such as graphics processing units (GPUs) and central processing units (CPUs), are
also popular options for heterogeneous systems. For instance, programming models such
as open accelerators (OpenACC) [7], the Open Computing Language (OpenCL™) [8], and
the compute unified device architecture (CUDA) [9]) are commonly used with GPUs.

Multiple studies have proven that it is possible to combine the features of multiple
programming models to create hybrid models that can scale between connectivity and
processing based on their memory efficiency. These hybrid models can be categorised
either as

• Single-level, comprising a standalone model, such as OpenMP, MPI, or CUDA;
• Dual-level (X + Y), comprising two programming models to improve parallelism, such

as MPI + OpenMP [10–12] or OpenMP + CUDA [13];
• Tri-level (MPI + X + Y) [14], comprising three distinct programming models to en-

hance parallelism.

However, the latter two programming models may produce new errors for a plethora
of reasons, unlike each of its individual constituent models. Several studies have shown
that each programming model boasts different features and serves different purposes.
For instance, the purpose of OpenACC is to make the parallel programming process of
heterogeneous CPU and GPU systems more straightforward [15], while OpenCL™ is
designed to utilise the computing power of GPUs to improve the productivity of GPU
applications. However, OpenCL™ may actually decrease productivity as it is complex and
difficult to programme [16]. OpenMP, on the other hand, is commonly used in systems and
architectures that have shared memory. It provides excellent parallelism at both coarse- and
fine-grained levels, as well as seamlessly integrating with a variety of hardware, platforms,
systems, and programming languages via its application programming interface (API),
and, specifically, its compiler directive streamlines the process of creating multiprocessing
shared-memory programmes. Meanwhile, other programming models, such as CUDA [9],
allow code to access data from any memory address, which provides developers with
some details, such as the kernel boot time mapping of threads, the memory transferred
from the host to the device, parallelism, and the temporary storage of data. The compute
unified device architecture (CUDA), which is also used in parallel computing, is commonly
programmed using the Fortran and C/C++ programming languages. As such, it supports
the use of GPUs and offers significant support in this regard.

Parallel models not only require more effort to test but also produce more parallel
errors. Furthermore, when parallel models are combined into one application, the causes
of these errors change during run-time as the models integrate. As present, there are
no compilers capable of detecting these types of run-time errors. Therefore, tri-level
programming models currently do not have testing tools that are capable of detecting
their run-time errors. As such, the purpose of this present study was to develop a parallel
hybrid testing tool using the C++ programming language and a combination of static and



Appl. Sci. 2023, 13, 11960 3 of 16

dynamic testing methods to effectively test and detect errors both in real time and during
run-time by analysing the source code of systems comprising MPI + OpenMP + CUDA
programming models, as parallel hybrid techniques may increase the testing efficiency and
detect more errors.

2. Background

This section provides a comprehensive overview of the main aspects of this present
study and a more profound analysis of each aspect. The programming models used and
the reasons for their selection will be described. Some of the run-time errors and testing
techniques will also be explained and discussed.

2.1. Programming Models
2.1.1. Message Passing Interface (MPI)

The MPI standard [5] defines the interface for message passing libraries. Made publicly
available in May of 1994, the MPI method exchanges messages between processes to enable
parallel programming and facilitate the transportation of data. The purpose of MPI is to
achieve portability, efficiency, and flexibility in message passing applications. It is note-
worthy that MPI is a specification, not an implementation or programming language, and
its operations are expressed using Fortran, C, or C++ functions, subroutines, or methods.
The MPI offers numerous options, including Open MPI [17] and message passing interface
chameleon (MPICH) [18], which are open-source and free, as well as commercial options,
such as IBM® Spectrum MPI [19] and Intel® MPI [20]. As the MPI provides exceptional
features [19,20], it is highly advantageous for the following.

• Standardisation, as it is an exclusive message passing library that can, satisfactorily, be
considered a standard. It works on almost any high-performance computing system
and, in most cases, can replace any existing message passing library.

• Portability, as it requires minimal or no source code to port an application to a sup-
ported platform.

• Vendors, as they can to use its native capabilities to examine performance opportunities
and achieve optimal performance, wherever possible. Optimal algorithms may also
be developed for any implementation.

• Functionality, as it has over 430 functions, with MPI-2 and MPI-1 included in MPI-3.
However, a dozen or so routines are required to create a typical MPI application.

• Availability, as it has a wide selection of vendor and open-source options available.

2.1.2. Open Multi-Processing (OpenMP)

The OpenMP model [21] is a programme-shared memory that contains an API com-
prising compiler directives, variables, and a library of run-time routines. This structure has
set a standard that is suitable for several shared-memory platforms, architectures, hard-
ware, programming languages, and software vendors. It also facilitates the implementation
of coarse- and fine-grained parallelisms. The OpenMP model can also be executed on
many open-source or commercial compilers, such as GNU’s Not Unix! (GNU) Compiler
Collection, Intel® (Santa Clara, CA, USA), and Oracle® (Austin, TX, USA) Developer Studio
compilers [22].

2.1.3. Compute Unified Device Architecture (CUDA)

The CUDA [23] programming model and parallel platform commonly uses GPUs to
increase computing performance. As CUDA 2006 was first introduced by the NVIDIA®

Corporation (Santa Clara, CA, USA), it was only compatible with NVIDIA® GPUs for a
long time, thereby rendering it unportable. However, Fortran has since developed a CUDA
programming model using the C/C++ programming languages for GPUs. Nevertheless,
CUDA’s latest 12.0 version, which was released on 8 December 2022, only enables NVIDIA®

GPUs to take full advantage of its extensive parallelism. When programming in CUDA,
the low-level nature of the language facilitates reading from any memory address. This
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provides programmers with insights into the process of transferring memory from the host
to the device, the storage of temporary data, thread mapping during kernel start-up, and
the implementation of parallelism.

2.2. Tri-Level Programming Model (OPENMP + CUDA + MPI)

Combining several programming frameworks can enhance the abilities and efficacy
of heterogeneous platforms. Nevertheless, such models necessitate extensive and robust
programming to benefit from extensively parallel supercomputing systems. Integrating
OpenMP, MPI, and CUDA may improve the performance and dependability of a model.
Such frameworks can then be used to estimate the effects of climate change, locate oil
wells, perform real-time imaging, conduct protein folding research, and train deep-learning
systems. It can also be applied in numerous other domains, such as machine learning,
Big Data systems, cloud computing, cybersecurity, simulation, software development,
computer networking, and graphics. Therefore, integrating OpenMP, CUDA, and MPI
can offer different advantages, such as better performance and parallelism and lower
programming requirements, and benefit from GPU acceleration.

This present study discusses a tri-level programming model (MPI + OpenMP + CUDA)
as the benefits of combining these three frameworks are numerous and will not only
enhance parallelism and performance but decrease programming effort and capitalise on
GPU acceleration.

A tri-level programming architecture comprising MPI, OpenMP, and CUDA would
facilitate parallelism for different hardware systems. It would also facilitate parallelism
at numerous stages that comprise intra-node (OpenMP), inter-node (MPI), and graphics
processing units (CUDA). Its benefits would include scalability, robust performance due
to MPI, error management using OpenMP, portability, atomics, tasking extensions, and
accelerated computing. Moreover, CUDA offers robust programming, superior capabilities,
optimisation, and thread synchronisation. Therefore, combining these frameworks to create
a tri-level programming architecture would yield better performance and energy require-
ments than similar architectures. More specifically, as it is based on several parallelism
levels, the software can regulate and scale resources based on the hardware’s dynamics to
yield better efficiency, performance, and robustness.

Nevertheless, this combination may produce run-time errors that occur due to unique
reasons and that behave differently. For instance, a tri-level programming model could
become over-synchronised, move redundant data, and be inefficient and complex.

2.3. An Overview of Common Run-Time Errors
2.3.1. Deadlocks

A deadlock occurs when multiple processes are trapped in a state of waiting for each
other to release resources or complete execution, during which neither process progresses
at all. Deadlocks are a serious issue in parallel systems as they can bring the entire system
to a halt. Although deadlocks are easy to detect once they have occurred, in some cases,
they can be difficult to detect early on due to specific interleaving [24]. Furthermore,
the execution environment and sequence of any system may or may not create actual or
potential deadlocks.

For example, if an MPI process is dependent on another process for data, a deadlock
may occur if the sender is held up in a parallel OpenMP area. Deadlocks can also occur
due to workload misbalance or the failure of every thread to approach a barrier. In such
cases, the wait time for an MPI process may be infinite.

2.3.2. Livelocks

Livelocks are similar to deadlocks; however, in a livelock, the state of the affected tasks
continues to change but never makes any real progress. In some cases, all the tasks stall
and remain unfinished [25,26]. Nevertheless, in a livelock, a thread will never be caught
in a permanent blockage. As livelocks are plagued by busy–wait cycles, they are not only
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power-consuming but may perform poorly. Furthermore, both deadlocks and livelocks
can cause parallel systems to become unresponsive and may require manual intervention
to resolve.

An example of a livelock would be when two computing processes, A and B, use an
MPI to transfer messages; A relays the message to B and then awaits a response, but B
relays its own different message to A, rather than sending an instantaneous response for
the first message. Therefore, both A and B end up stuck in an endless period of waiting for
a response from the other, creating a livelock.

2.3.3. Race Conditions

Race conditions occur when multiple tasks try to access and modify a shared resource
simultaneously. This can result in unexpected behaviours or errors [27]. An example of a
race condition is when OpenMP threads change data while an MPI is moving data, thereby
creating inconsistencies at the receiver’s end.

2.3.4. Data Races

A data race is a critical race condition that occurs when several tasks attempt to
simultaneously access and modify the same memory location [28]. This can cause the data
to become corrupt or inconsistent, leading to errors or incorrect results.

An example of a data race is when OpenMP uses at least two threads to simultaneously
alter one variable located in a parallel area sans synchronisation, leading to unanticipated
outcomes. Another example is when several threads that are not synchronised or possess
operational atomicity write to one memory location in a CUDA system.

2.3.5. Mismatches

Mismatching is another common problem that can occur under many circumstances,
such as when the wrong type or number of arguments is made, when more than one call is
made simultaneously, when collective calls are made, or when tasks are assigned to the
wrong processors or are not properly synchronised, thereby causing delays, decreasing
performance, and yielding incorrect outputs.

There are multiple mismatch issues in MPI that warrant understanding to fully com-
prehend. For instance, a type mismatch occurs when the type of data sent by the sender
does not match the type of data that the receiver anticipates. Meanwhile, a tag mismatch
occurs when the tag that the sender tags the data with does not match the tag that the
receiver anticipates.

2.4. Testing Techniques

Various techniques, such as static and dynamic testing, to name a few, can be used to
develop testing software. Static testing identifies static errors pre-compilation by analysing
the source code. This facilitates the analysis of the code in detail and fully covering the
application source code without launching the application itself. Unfortunately, due to
the nature of parallel applications, it is more difficult to analyse statically as programmes
behave unpredictably when they are actually running [29,30]. Nevertheless, static analysis
facilitates the identification of run-time defects within the source code, as well as both
potential and existing issues, such as race conditions and deadlocks. Dynamic testing
involves analysing a system while it is running to detect errors that may arise during
run-time. However, such programmes can be affected by the execution environment, which
can cause the application to slow down. Dynamic analysis facilitates the flexible monitoring
and detection of each thread in parallel applications. However, it is difficult to test parallel
code in its entirety as it is not possible to verify whether the errors have actually been
corrected after they were corrected the first time around.

The type and behaviour of an error determines how and which techniques to use as
both static and dynamic techniques cannot detect all errors. As such, this present study
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proposes a hybrid technique that operates parallelly to identify both run-time errors and
examine threads and was tested on a variety of situations and applications.

3. Literature Review

Multiple studies have tested HPC and parallel software for various purposes and
scopes. Testing techniques, namely static, dynamic, and hybrids, are used to detect various
types of errors. Static testing involves examining the source code prior to system execu-
tion [31], while dynamic testing examines a source code while the system is running [24].
Although dynamic techniques have benefits, they also have significant drawbacks, such as
the need for multiple test cases and the possibility of undetected errors when the system
starts up. Hybrid techniques combine both static and dynamic testing [31,32].

Many tools, such as Intel® Trace Analyzer and Collector [33] and MPI-Checker [34],
underutilise static testing to detect run-time errors in MPI. Dynamic testing, however, is
widely used by other tools, such as MEMCHECKER [35], Umpire [36], the Marmot Umpire
Scalable Tool (MUST) [37–39], MAD [40], MOPPER [41], and run-time error detection
(RTED) [42], to detect run-time errors in MPI. Meanwhile, other tools test different run-time
errors. These tools use hybrid techniques [43] to detect deadlocks. The ACC_TEST [44] was
specifically designed to swiftly identify and precisely locate any run-time errors, including,
but not limited to, deadlocks, race conditions, or mismatches.

Various OpenMP testing tools use multiple techniques to detect run-time errors. For
instance, GPUVerify [45], OmpVerify [46], and DRACO [47] use static techniques, while
Helgrind [48], RTED [42], Valgrind [49], ROMP [50], Intel® Thread Checker [51,52], and Sun
Studio® Thread Analyzer [51,53] use dynamic techniques. Meanwhile, AddressSanitizer
(ASan) and ThreadSanitizer (TSan) [54,55] can be used to detect run-time errors in systems
with OpenMP directives. ARCHER [56], on the other hand, uses a hybrid technique to
detect data races in large OpenMP applications. Dynamic techniques are also used to test
dual systems that combine MPI + OpenMP, such as Marmot [57,58].

GPUVerify [45], and PolyOMP [59] use static techniques to detect data race errors in
systems that contain CUDA. GUARD [60], RaceTM [61], and KUDA [62] are examples of
dynamic testing tools, while GMRace [63], GRace [64], Grace [65,66], and SESA [67] are
examples of hybrid testing tools that test run-time errors in systems that contain CUDA.
The literature review reveals a significant gap in the market in terms of testing tools for tri-
level programming models. As such, this present study creates a highly specialised testing
tool that incorporates MPI, OpenMP, and CUDA specifically for this unique programming
model. Although debugging tools are a vital part of testing, their testing techniques
often require clarification. Some debugging tools are commercial, while others, such as
such as AutomaDeD [68], ALLINEA DDT [69,70], TotalView [71,72], MPVisualizer [73],
Intel®Inspector [74], PDT [75], and Arm DDT [76,77], are not. However, as these non-
commercial debugging tools pinpoint the causes of errors instead of testing or detecting
errors, they cannot be categorised according to their testing techniques.

The literature review also reveals that there is no testing tool with which to detect
run-time errors in MPI + OpenMP + CUDA tri-level programming models. As such, this
present study develops a hybrid technique to identify many actual and potential errors in
the C++ source code beforehand.

Although multiple extant studies have developed and proposed software testing tools
for parallel applications, the detection of static and dynamic errors in tri-programming
models warrants further examination. Furthermore, in the case of heterogeneous systems,
tri-programming models still require significant improvement. Therefore, it is imperative
to address the lack of testing tools with which to detect run-time errors in applications
that have been developed using MPI + OpenMP + CUDA tri-level programming models,
and it must be resolved immediately to ensure the efficiency and effectiveness of these
applications. Table 1 lists the techniques, targeted programming models, errors targeted,
and limitations of the tools that previous studies have developed, while Table 2 compares
them to the architecture of the proposed tool, which primarily targets programming models
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and more errors and categorises them according to the types of errors that they address,
i.e., real, potential, or both.

Table 1. A list of comparable extant studies.

References Technique Error(s) Detected Programme Model Limitation(s)

[34] Static Mismatches MPI Works with single-level programming models.
Only identifies mismatches in MPI.

[45] Static Data Races CUDA, and OpenCL™ Works with single-level programming models.

[59] Static Data Races OpenMP Works with single-level programming models.

[36] Dynamic

Deadlocks
Mismatched Collective

Operations
Resource Exhaustion

MPI Works with single-level programming models.

[37–39] Dynamic
Deadlocks
Data Races
Mismatches

MPI Works with single-level programming models
and MPI only.

[66] Dynamic Deadlocks, Data Races CUDA Works with single-level programming models.

[43] Hybrid Deadlocks MPI Works with single-level programming models.
Only identifies deadlocks.

[44] Hybrid

Deadlocks
Mismatches

Livelocks
Data Races/Race

Conditions

MPI Work with single-level programming models.

[57] Hybrid Data Races OpenMP Work with single-level programming models.

Table 2. A comparison of the proposed tool and extant tools.

Programming Model Tool Name Run-Time Errors Error Type

CUDA only GPUVerify [45] Data Races Real

MPI only MPI-Checker [34] Mismatches Potential

MPI only MUST [37–39] Deadlocks, Data Races,
and Mismatches Real

OpenMP only
• Intel® Thread Checker [51,52]
• Sun Studio® Thread Analyzer [51,53]

Deadlocks and Data Races Real

CUDA only GUARD [60] Data Races Real

Dual: MPI + OpenMP Marmot [57,58] Deadlocks, Race Conditions,
and Mismatches Real

Tri: MPI + OpenMP + CUDA Proposed Tool
Deadlocks, Race Conditions,

Data Races, Mismatches,
and Livelocks

Both

The literature review provides a detailed analysis of the different testing tools currently
available (Tables 1 and 2). It is noteworthy that, at present, a parallel testing tool that can
detect run-time errors in applications created using a tri-level MPI + OpenMP + CUDA
programming model does not exist.

4. Architecture of the Proposed Tri-Level Programming Model

Figures 1 and 2 illustrate the construction of a hybrid testing tool for MPI + OpenMP +
CUDA and C++. The design comprises two parts. The first part identifies any run-time
issues and notifies the developer during the static phase, while the second part uses
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assertion statements to automatically detect errors in a dynamic manner. Therefore, the
proposed hybrid architecture combines static and dynamic testing.
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After the first static testing phase, the developer is provided a list of actual and po-
tential run-time errors (Figure 1), which can then be input into an assertion process to
automatically detect and avoid these potential errors during the second dynamic testing
phase. Furthermore, if any errors occur while the programme is operating, the developers
are sent an immediate notification to efficiently resolve the issues. Apart from this, iden-
tifying these run-time errors and fixing them prior to the second dynamic testing phase
decreases the testing time and improves performance. The first static testing phase of the
proposed architecture includes the following.

• A lexical analyser that reads the source code, which includes C++, MPI, OpenMP, and
CUDA, line by line and then understands the source code before generating a token
table containing at least two columns: the token name and token type.

• A parser or syntax analyser that checks the syntax of each statement and detects
syntax errors. More specifically, it analyses the syntactical structure of the inputs and
determines whether they are in the correct syntax for the programming language used.

• A generator that produces a dependable state transit graph for a code that comprises
MPI, C++, OpenMP, and CUDA. An appropriate data structure is employed to build a
suitable state graph.

• A state graph comparator that compares the user programme graph with the state
graphs of all the programming languages and models. The grammar of each pro-
gramming language is included in the state graph library, which is available via this
comparator. As the static architecture may identify both potential and actual run-time
errors, the outcomes of the comparisons are presented in a list. The actual run-time
faults are sent to the developer to correct them as these errors will definitely occur
if they are not corrected. In the second dynamic testing phase of the proposed archi-
tecture, assertions are injected into the sources and then instrumented to examine
potential run-time errors.

As seen in Figure 2, in the second dynamic testing phase, the input for the instrumen-
tation process is a combination of the source code and assertion statements. The output of
the instrumentor consists of user codes and testing codes written in the C++ programming
language. However, the following must be built to produce a dynamic testing tool that
detects run-time errors.

1. Assertion language: the testing language that helps to detect and monitor the variables
and behaviour of a system during run-time. It is combined with the user code to
create a new code as part of the dynamic test.

2. Instrumentor: this is responsible for converting the assertion statement into its equiv-
alent C++ code.

3. Run-time analyser subsystem: this includes a detecting and debugging module.

As seen in Figures 1 and 2, the proposed architecture is a hybrid testing tool that
consists of dynamic and static testing to detect both actual and potential run-time errors.
The proposed architecture was implemented in C++ to test applications that were built
in a tri-level OpenMP + CUDA + MPI programming model. The first static testing phase
will detect and display errors from the beginning at the compilation stage, as well as
detecting common parallel errors during run-time as part of its second dynamic testing
phase by adding assertion statements to the source code. The primary purpose of using
an instrumentor is to convert the assertion statements to their C++ code equivalents and
analyse the system during run-time. The instrumented codes become EXE codes upon
compilation and linking, and they include user executables and run-time subsystems.
Lastly, a list of run-time errors is displayed after the EXE codes are executed.

The proposed architecture is implemented in the first static testing phase using Algo-
rithm 1 and in the second dynamic testing phase using Algorithm 2, as seen below.
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Algorithm 1 Static Testing Phase

1: Inputting the source code
source_code = input (“Enter the source code containing the (C++) + tri-level
programming (MPI + OpenMP + CUDA):”)
2: Lexical analysis
tokens = perform_lexical_analysis(source_code)
3: Parsing
parsed_output = perform_parsing(tokens)
4: Generating the state transition graph for the user code
user_stg = generate_state_transition_graph(parsed_output)
5: Generating the state transition graphs for the MPI, OpenMP, CUDA, and C++
libraries
mpi_stg = generate_mpi_state_transition_graph ()
openmp_stg = generate_openmp_state_transition_graph ()
cuda_stg = generate_cuda_state_transition_graph ()
cpp_stg = generate_cpp_state_transition_graph ()
6: Comparing the state transition graphs
Actual_errors = []
if not compare_state_transition_graphs (user_stg, mpi_stg):
Actual _errors. append (“MPI run-time error”)
if not compare_state_transition_graphs (user_stg, openmp_stg):
Actual _errors. append (“OpenMP run-time error”)
if not compare_state_transition_graphs (user_stg, cuda_stg):
Actual _errors. append (“CUDA run-time error”)
if not compare_state_transition_graphs (user_stg, cpp_stg):
Actual _errors. append (“C++ run-time error”)
7: Listing the actual run-time errors
if (Actual _errors) > 0:
print (“Actual run-time errors found: “)
if else:
print (“No Actual run-time errors found.”)
else:
print (“Potential run-time errors found: “)

A hybrid testing programme, which has been developed precisely for parallel pro-
gramming systems that are based on a tri-level programming architecture comprising MPI,
OpenMP, and CUDA within C++, would be a detailed evaluation system that integrates
static (pre-execution) and dynamic (during execution) testing to provide comprehensive
information. It would be able to pinpoint and process the integrated OpenMP, MPI, and
CUDA interactions, thereby elucidating the synergy of the framework. During the static
testing phase, the programme completes a comprehensive evaluation of the code to as-
certain specific concerns or pitfalls that might be triggered during run-time, specifically
related to using several models. Meanwhile, in the dynamic testing phase, the programme
evaluates real-time programme execution as well as recording critical data concerning
threads, memory use, communications, and other aspects.

A hybrid tool is a comprehensive evaluation approach that integrates the benefits of
dynamic and static testing. As such, it offers detailed verification and application-based
evaluations that are specific to the sophisticated tri-level programming framework, thereby
improving dependability and performance.

Building a testing tool that was suitable for a sophisticated hybrid architecture com-
prising MPI + OpenMP + CUDA was challenging. The combination of the dynamic and
static evaluation techniques was thoroughly planned to yield adequate performance. Sys-
tematic proposals were also developed to better understand how the two approaches might
converge. Nevertheless, despite our best efforts, combining CUDA, OpenMP, and MPI
still created unforeseen issues. These issues were adequately addressed by simulating
different scenarios and building issue categories. Apart from this, the language dynamics



Appl. Sci. 2023, 13, 11960 11 of 16

and complexity increased the challenges in terms of the compatibility of the different C++
codebases. It is presumed that continuous integration, beta tests, and real-time feedback
systems may be used to address these challenges. Meanwhile, errors were rectified in a
timely manner using continuous monitoring and real-time analytics. It was also critical to
keep the hybrid tool updated due to the dynamically evolving nature of OpenMP, MPI, and
CUDA. A modular approach was used to update the individual modules without affecting
others. These updates increased the adaptability and significance of the hybrid tool.

This present study was able to use pioneering approaches and new technologies, as
well as addressing the issues that it faced, to successfully build a flexible and productive
hybrid testing tool.

Algorithm 2 Dynamic Testing Phase

1: Reading the source code containing the (C++) + tri-level programming MPI +
OpenMP + CUDA and the assert statement as inputted, the potential run-time errors.
2: Applying instrumentation to the source code, the potential run-time errors, to insert
run-time checks for the run-time errors.
if (MPI is used in the code)

insert MPI run-time checks
if (OpenMP is used in the code)

insert OpenMP run-time checks
if (CUDA is used in the code)

insert CUDA run-time checks
if (assert statements are used in the code)

insert assert statement checks
Saving the instrumented source code.

3: Compiling the instrumented source code and linking it with the relevant libraries.
if (MPI is used in the code)

link with MPI library
if (OpenMP is used in the code)

link with OpenMP library
if (CUDA is used in the code)

link with CUDA library
Compiling and linking the code.

4: Executing the instrumented executable code on the target system.
if (MPI is used in the code)

execute with MPI run-time
if (OpenMP is used in the code)

execute with OpenMP run-time
if (CUDA is used in the code)

execute with CUDA run-time
5: Monitoring the execution of the instrumented code for any run-time errors.

while (the code is executing)
if (a run-time error occurs)

log the error)
6: Sending a list of the run-time errors to the developer for further analysis and
correction.
7: Displaying a list of run-time errors.

5. Discussion

Multiple studies have examined the use of MPI, CUDA, and OpenMP in parallel
systems, as well as developing many tools with which to identify run-time errors. Different
programming models can be integrated to obtain features that facilitate the creation of
highly parallel systems with heterogeneous architectures that function in exascale systems.
OpenMP is the standardised solution for shared-memory platforms and architectures. It can
implement coarse- and fine-grained parallelisms in various hardware, systems, platforms,
and programming languages. Meanwhile, MPI supports all HPC platforms and implements
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them entirely with multiple programming models and diverse networks. Compute unified
device architecture (CUDA) programming models represent an extensively used type of
programming model and parallel platform that utilises GPUs. Furthermore, as CUDA
enables codes to access memory addresses at a low level, it provides developers with
some details, such as the kernel boot time mapping of threads, the memory transferred
from the host to the device, parallelisms, and the temporary storage of data. Nevertheless,
no testing techniques or tools have examined the detection of run-time errors in tri-level
programming models, nor have their potential errors been identified or categorised, which
presents a challenge in developing such techniques or tools. The present study entailed an
in-depth analysis of tri-level MPI + OpenMP + CUDA programming models, performing
a series of experiments and simulating various scenarios to gain insights into the diverse
run-time error patterns of these models.

The proposed hybrid technique comprises dynamic and static testing. C++ was
used to develop this technique for programming models developed using a tri-level
OpenMP + CUDA + MPI architecture. It evaluates the source code to identify static
errors prior to compilation. Coders should pinpoint likely run-time issues related to the
code. It is critical to rectify these issues promptly while executing the code to deliver ade-
quate performance and its intended functionality. Therefore, developers should proactively
pinpoint and address run-time issues to ensure that the applications work correctly and
sans errors. As run-time errors can arise post-compilation, during execution, or at run-
time, static tests were conducted to evaluate the code pre-compilation to identify potential
sources of errors. Hence, it is critical to inform coders about such errors so that undetected
issues can be addressed at run-time.

As parallel programmes are complex and several scenarios can lead to errors, a second
dynamic testing phase was also included to identify errors by instrumenting and assessing
the environment at run-time. However, including every feasible test case and data combina-
tion can overload a testing tool and raise its workload. The execution time of such dynamic
approaches may also be impacted by the underlying environment. Furthermore, as static
and other similar tests may not pinpoint particular run-time errors, a suitable approach
should be selected only after categorising the run-time issues that have manifested.

The parallel hybrid evaluation approach is a detailed method that leverages sophisti-
cated C++ programmes that are based on the OpenMP, MPI, and CUDA frameworks to
pinpoint, diagnose, and rectify run-time issues. More specifically, it integrates aspects of
dynamic and static evaluation to offer real-time feedback based on the data from the two
testing phases. This provides developers with information that they can use to identify the
causes of errors with greater precision compared to using only one approach.

The proposed tool was devised to process and address the complexities associated
with heterogeneous systems. As it comprises a wide variety of hardware, specifically
CPUs for OpenMP and MPI and GPUs for CUDA, it facilitates precise evaluation and code
assessment for several computing elements.

In summary, the proposed parallel hybrid testing tool is an effective instrument with
which to identify and address run-time issues that may arise in complex C++ programmes
that are based on the OpenMP, MPI, and CUDA frameworks. It accomplishes this by using
the pre-run-time code assessment and real-time information of a programme’s behaviour
when executed to properly identify, analyse, and fix issues.

6. Environment Required to Implement the Proposed Architecture

Two devices will be used to conduct the experiments. The first is the Aziz super-
computer Aziz Supercomputer is located at King Abdulaziz University in Jeddah, Saudi
Arabia. It was launched in June 2015 and is operated by the High-Performance Computing
Center, which comprises 496 computing nodes and approximately 12,000 Intel® CPU cores.
It also has two nodes with NVIDIA Tesla K20® GPUs and two more nodes with Intel®

Xeon-Phi accelerators. The second device is a laptop equipped with an 11th Generation
Intel® Core i7-10750H @ 2.660 GHz × 12 CPU, 16 GB of random-access memory (RAM),
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and an NVIDIA® GeForce GTX 1650 GPU. Both devices will run Ubuntu 20.04.4 LTS for
development purposes.

7. Conclusions and Recommendations for Future Studies

Exascale supercomputers have become more feasible as the need for powerful com-
puting has increased. Therefore, it has become crucial to construct significant parallel
supercomputing systems that possess diverse architectures. Although hybrid program-
ming models offer many benefits when used to construct parallel systems, they also make
the resulting code more complex as they merge multiple parallel models into a single
application. As this makes it more difficult to test, new methods are needed to detect
run-time errors in these sophisticated programmes.

As such, this present study proposed a hybrid tool that can identify run-time errors
in C++ and MPI + OpenMP + CUDA systems in parallel to address this issue. Static and
dynamic testing methods were combined to develop a hybrid parallel system testing tool
and yield a thorough testing process with reliable results. This combination also enhanced
the system execution time, detected dynamic errors from the source code, and improved
the performance of the application’s system. Apart from this, the proposed tool is also
flexible and can be integrated with systems that have been built using various programming
models at different levels.

Although software testing and error detection in parallel programming models are
important, most studies have focused on other aspects, such as power consumption,
the processor architecture, system resiliency, and memory management, in the exascale
environment. Therefore, the objective of this present study was to use code execution and
other relevant assessment methods to ascertain the efficacy of the proposed method and the
suggested hybrid framework, as well as to compare it to other non-hybrid approaches. The
outcomes of these comparisons and tests will be reported in an upcoming paper that will
also include specific information and potential contributions. The proposed method will
also be used in a practical scenario, as well as requiring guidelines, time, and government
approval to use the necessary hardware, such as the Aziz supercomputer.
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