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Abstract: The rapid development of the electric vehicle industry produces large amounts of retired
power lithium-ion batteries, thus resulting in the echelon utilization technology of such retired
batteries becoming a research hotspot in the field of renewable energy. The relationship between the
cycle times and capacity decline of retired batteries performs as a fundamental guideline to determine
the echelon utilization. The cycle conditions can influence the characteristics of the degradation
of battery capacity; especially neglection of the SOC ranges of batteries leads to a large error in
estimating the capacity degradation. Practically, the limited cycle test data of the SOC ranges of the
retired battery cannot support a model to comprehensively describe the characteristics of the capacity
decline. In this background, based on the limited cycle test data of SOC ranges, this paper studies and
establishes a capacity degradation model of retired batteries that considers the factors affecting the
battery cycle more comprehensively. In detail, based on the data-driven method and combined with
the empirical model of retired battery capacity degradation, three semi-empirical modeling methods
of retired battery capacity degradation based on limited test data of SOC ranges are proposed. The
feasibility and accuracy of these methods are verified through the experimental data of retired battery
cycling, and the conclusions are drawn to illustrate their respective scenarios of applicability.

Keywords: retired battery; capacity degradation; battery state of charge; data-driven method; semi-
empirical model

1. Introduction

In the context of today’s increasing attention to sustainable development, renewable
energy has become an important way to solve the energy crisis and environmental pollution.
With the rapid development of the electric vehicle industry and electrochemical energy
storage technology, lithium-ion batteries, as the main power source of electric vehicles,
have entered the stage of large-scale retirement. According to the research of IDTechEx and
TrendForce, by 2030, there will be over 6 million battery packs retiring from electric vehicles
per year, and at the same time, the global power and energy storage battery recycling
scale will exceed 1 TWh, of which the lithium iron phosphate battery recycling scale will
account for more than 58% [1,2]. Large quantities of power batteries continue to retire, and
improper recycling will lead to resource waste and a series of environmental problems,
and hence the sustainable development of energy has brought great challenges. Thus, the
question of the utilization and recovery of retired lithium-ion batteries has been paid more
and more attention [3,4].
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The average remaining capacity of such retired electric vehicle batteries is about
70–80% of their initial capacity, and although they are no longer suitable for high-power-
demand scenarios such as electric vehicles, they still have a considerable energy storage
capacity and good potential for reuse. After reasonable design and control, retired batteries
can be used in other fields with good operating environments and relatively low battery
performance requirements. From this point of view, compared with the new batteries,
retired batteries have better environmental protection and economic value [5].

However, in the process of recycling, the battery will inevitably appear to have a
performance decline and even unreliability and unsafety problems. Compared with new
batteries, retired batteries have poor consistency, high performance dispersion, and a high
security risk. In the process of layer-by-layer integration from battery cells, modules, and
battery clusters to energy systems, the above problems will be superimposed and amplified,
thus resulting in increased uncertainty in the overall performance of the system [6,7].
To realize the safe, reliable, large-scale, and multi-scenario echelon utilization of retired
power batteries, it is necessary to accurately estimate the capacity degradation and life
cycle of batteries. Therefore, it is of great significance to research the health decline law of
retired batteries by studying suitable models and methods for the echelon utilization of
retired batteries.

In the process of using retired power batteries, there are many factors that affect
the decline in battery capacities, such as the number of battery charge/discharge cycles,
operating temperature, depth of discharge (DOD), SOC range, charge, discharge current,
etc. [8]. Most of the existing studies on the capacity degradation of lithium batteries
are based on the accelerated aging test data, which can be mainly divided into three
types: electrochemical mechanism model [9–13], empirical model [14–20], and data-driven
model [21–24]. The method based on the electrochemical mechanism model involves the
physical and chemical process of the battery and then researches the law of the influence
of the aging process on state variables. This method can describe the aging process of the
battery from the point of view of the essential mechanism, but many incentives affect the
aging of the battery, so aging modeling is very difficult. Moreover, this model relies on
the experimental data obtained under strict experimental conditions, which has a large
gap with the actual operation of the battery, thus resulting in a significant error when
applying such a model [25,26]. The basic idea of the method based on an empirical model
is to use battery experimental data to summarize the law of battery parameter change and
model the relationship between battery capacity degradation and battery cycle times or
cumulative ampere-hours, ambient temperature, charge/discharge ratio, and DOD. The
established model is tested under different decline conditions, the decline factor is used
as the parameter of the model, and a large amount of test data are used to fit into the
mathematical expression. Generally speaking, the more complex the expression, the more
decline factors corresponding to the model and the higher the accuracy of the model. Such
methods rely on a large number of offline experiments under different working conditions,
hardly conduct in-depth research on the nature of battery capacity loss in charge/discharge
cycles, and possess poor adaptability to working conditions that cannot be covered by
experiments [20]. The method based on the data-driven model refers to the use of Gaussian
process regression or machine learning methods to deeply explore the life decay behavior
of the battery, by training the battery degradation data set, finding the battery aging factor
as a performance index, and establishing the battery aging model. Although this method
does not require analytical mathematical models, it conducts modeling based on a large
amount of battery experimental test data, extracts external characteristic parameters, learns
the degradation rule from historical information, and realizes the capacity degradation
assessment and the prediction of batteries, which requires a high amount of experimental
data [27].

In summary, the existing battery capacity degradation model and its research mainly
suffer from the following three shortcomings:
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1. Although existing battery capacity degradation models can consider many factors
affecting capacity degradation, these models are mostly suitable for new batteries
until the end of their life, that is, the capacity degradation to about 80%. The capacity
degradation mechanism of new batteries and retired batteries is significantly different,
so these capacity degradation models for new batteries cannot be used to simulate the
capacity degradation of batteries directly. Because most of the model parameters are
either fitted under laboratory conditions or provided by the manufacturer, the perfor-
mance decline mode of the power battery is complicated, which leads to inaccurate
estimates of the capacity of the retired battery.

2. Most of the existing models of retired battery capacity degradation only consider
factors such as the number of battery charge/discharge cycles, operating temperature,
DOD, charge/discharge rate, etc. Few models can consider the influence of the battery
state of charge (SOC) range on capacity degradation, and hence the decline factors
are not fully considered. In most practical applications, charge/discharge cycles are
performed only in an SOC range. A DOD of the battery can correspond to multiple
SOC ranges, the test results under a single DOD experimental condition are not
suitable for all the SOC ranges, and the resulting capacity errors will be amplified in
subsequent applications, thus hindering the research and analysis of retired battery
echelon applications.

3. Most existing empirical models for capacity degradation of retired batteries only
give the fitting model under specific battery operating conditions, and the model is
not flexible. In the echelon utilization scenario of retired batteries, it is necessary to
optimize and control their operating conditions reasonably, and a single operating
parameter of the battery cannot fully meet the requirements of operation optimization.

Therefore, there is an urgent need for a model that can predict the capacity degradation
of retired batteries under multiple operating conditions with different charge/discharge
rates, temperatures, DODs, and SOC ranges to support the research on the echelon utiliza-
tion of retired batteries. Modeling research cannot be separated from data support. After
a large amount of research, it can be found that in the open-source data set of batteries,
there are few test data involving SOC range changes, and the range of test changes is also
very limited, not to mention the multi-range SOC test data for the retired batteries. Because
the battery SOC range needs to be changed repeatedly to test its capacity attenuation, the
detection time is long and the detection cost is high; so, the quite limited test data became a
major constraint in this field of research.

Given the shortcomings of the existing research and related constraints, this paper
focuses on how to use the limited SOC range of retired battery experimental data, fit a high-
precision battery capacity degradation model that can cover different SOC ranges, and fully
consider various operating conditions of batteries. Combining the methods of the empirical
model and data-driven model, three semi-empirical modeling methods are proposed to
obtain the law of retired battery capacity degradation. Firstly, the mathematical concept
of interval number similarity is introduced into the battery capacity degradation model
considering the SOC range. By making full use of the mathematical characteristics of known
test data, the unknown SOC data can be obtained from the limited SOC data set. Two semi-
empirical models of retired battery capacity degradation based on model interval number
similarity and parameter interval number similarity are proposed. Secondly, based on the
curve fitting method of the nonlinear least squares fitting, an improved semi-empirical
model of retired battery capacity degradation is proposed. In this method, the SOC range of
battery operation is involved in the semi-empirical capacity degradation model in terms of
parameters, and a more perfect and realistic capacity degradation model of retired batteries
can be established. Finally, the accuracy of these three methods is compared together, and
the applicable scenarios are clarified.
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2. Empirical Model of Retired Battery Capacity Degradation

The capacity loss of a battery is usually quantified by changes in the state of health
(SOH) of the battery. The SOH of the retired battery can be used to quantify its capacity
decay, that is, the ratio of the current maximum discharge capacity to the initial capacity of
the retired battery [28], as shown in Equation (1):

SOH =
Ci
C0
× 100% (1)

where Ci represents the maximum discharge capacity of the retired battery and C0 denotes
the initial capacity of the new battery, with their unit’s ampere-hours (Ah). SOH reflects
the current aging degree of the battery. According to IEEE Standard 1188-1996 [29], when
the initial capacity of the battery declines to 80%, the battery should be replaced. At the
same time, the percentage of battery capacity loss can be defined as follows:

Qloss =

(
1− Ci

C0

)
× 100% (2)

where Qloss denotes the percentage of capacity loss. The relationship between the Qloss and
SOH is:

SOH + Qloss = 1 (3)

According to the survey report released by Trend Force, with the large-scale decom-
missioning of power and energy storage batteries in the future, it is expected that the global
power and energy storage battery recycling scale will exceed 1 TWh by 2030, of which the
lithium iron phosphate battery recycling scale will account for more than 58% [30]. The
research on the echelon utilization of retired power batteries should focus on lithium iron
phosphate batteries, and this paper will carry out a follow-up analysis of retired lithium
iron phosphate power batteries.

Reference [31] researched the law of capacity degradation of LiFePO4 batteries caused
by cycles through experiments and established an empirical model of battery cycle life
under the influence of temperature, DOD, and charge/discharge ratio. The model uses a
general equation to describe the battery capacity degradation under all conditions, and its
specific function form is available as follows:

Qloss = δ· exp
[
−Ea

R·T

]
(Ah)z (4)

Ah = N·DOD·Qb (5)

where δ is the pre-exponential factor; Ea is the activation energy of the battery at the current
temperature, and it defaults to a fixed value at the standard operating temperature; R is
the molar gas coefficient and its value is 8.314 J/K·mol; T is the absolute temperature; and
z is the power law factor. Ah is the Ah throughput, which is expressed as Equation (5),
in which N is the cycle number of the retired batteries, and is the full cell capacity. The
exponential term z indicates that the temperature obeys the Arrhenius Law.

However, this model is based on the capacity degradation stage of the new battery
from the initial capacity to the battery’s retirement, and it may not be suitable for decom-
missioning batteries. Reference [32] conducted several sets of cyclic aging experiments on
retired 18650 lithium iron phosphate power batteries and established a cycle life model of
retired batteries related to battery charge/discharge rate, DOD, and ambient temperature
based on the measured data. The form of the model is the same as Equation (4), which just
verifies the feasibility and accuracy of Equation (4) for fitting the capacity degradation rule
of a retired 18650 lithium iron phosphate power battery.
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Reference [33] improved the empirical model to overcome the problem of poor fitting
accuracy of the above-mentioned retired battery capacity degradation model because it did
not involve the separate effects of charge/discharge rate and DOD. The inverse power law
model is used to describe the separate effects of charge/discharge rate CRate and DOD on
the cycle life of lithium-ion batteries. The specific expression is as follows:

QC
loss = α1·CRate

β (6)

QDOD
loss = α2·DODγ (7)

Finally, the comprehensive acceleration effect of the temperature, charge/discharge
rate, and DOD on life decline can be expressed as:

Qloss = α· exp
[

a·CRate + b
R·T

]
·CRate

β·DODγ(N·DOD·Qb)
z (8)

where α, β, γ, a, b, and z are all fitting parameters, and α = α1·α2. Combined with
Equation (3), the semi-empirical model of capacity degradation of retired batteries de-
scribed by SOH can be obtained as:

SOH = 0.8− α· exp
[

a·CRate + b
R·T

]
·CRate

β·DODγ(N·DOD·Qb)
z (9)

This model is the basis of the research work in this paper and can be used in the
semi-empirical model of battery capacity degradation.

3. Semi-Empirical Model of Retired Battery Capacity Degradation Based on Interval
Number Similarity

The state of charge (SOC) of the battery represents the ratio of the remaining capacity
to the rated capacity of the battery, which reflects the remaining available capacity of the
power battery and is one of the important indicators of the performance of the power battery.
In most practical applications, the batteries only undergo charge/discharge cycles within a
partial range of the full SOC range (0~100%), and the temperature, charge/discharge rate,
and DOD of each cycle are not the same. To derive the retired battery capacity degradation
model with multiple operating conditions in an SOC range from the data of the known
SOC range, two semi-empirical models of the retired battery capacity degradation based on
model interval number similarity and parameter interval number similarity are proposed
in this paper. Note that the SOC range is defined as ∆SOC herein.

3.1. Interval Number Similarity Degree Computing Model

The ∆SOC is a concept of interval. To obtain the retired battery capacity degradation
model of the required ∆SOC based on the test data of the limited ∆SOC, it is necessary
to know the interval relationship between the ∆SOC and the known ∆SOC. For this
reason, this paper introduces the concept of interval number similarity to describe the
relationship between them [34]. Based on the concept of interval number similarity, the
interval measurement model is established and applied to the empirical model of retired
battery capacity degradation.

Let m = [m−, m+] and n = [n−, n+], while pj(j = 1, 2, 3, 4) is the j-th largest in m−,
m+, n−, and n+, and then the similarity between interval number m and n is defined as [35].

Sm,n =
(p2 − p3)[1− sgn(n− −m+)][1− sgn(m− − n+)]/4

(p1 − p4)− (p2 − p3)|sgn(n− −m+)− sgn(m− − n+)|/2
(10)

sgn(x) =


1,
0,
−1,

x > 0
x = 0
x < 0

(11)
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If we decompose Equation (6), that is:

Sm,n =



0, n+ ≤ m− or m+ ≤ n−
n+−m−
m+−n− , n− < m− ≤ n+ < m+

m+−n−
n+−m− , m− < n− ≤ m+ < n+

lml−1
n , n− ≤ m− < m+ ≤ n+

lnl−1
m , m− ≤ n− < n+ ≤ m+

(12)

where lm = m+ −m−, ln = n+ − n−.
The interval number similarity model is applied to the retired battery capacity degra-

dation model, we take the interval number similarity between the unknown ∆SOC and
the known ∆SOC as the weight, adopting different assignment methods combined with
the semi-empirical model. Because of the nonlinearity of the semi-empirical model, the
corresponding methods of retired battery capacity degradation based on interval number
similarity can be further divided into two types: the method based on parameter interval
number similarity and the method based on model interval number similarity.

3.2. Semi-Empirical Model of Capacity Degradation of Retired Battery Based on Model Interval
Number Similarity

The method of the capacity degradation model based on the interval number sim-
ilarity is to normalize the interval similarity as the weight of the semi-empirical model
of each known ∆SOC, calculate the sum of the weights of the semi-empirical model of
each known ∆SOC, and obtain the model of the ∆SOC to be determined, as shown in
Equations (13) and (14):

First of all, the known interval number similarity can be normalized by Equation (12):

S′m,ni
=

Sm,ni

Sm,n1 + Sm,n2 + · · ·+ Sm,nk

(13)

where m represents the ∆SOC to be simulated, ni (i = 1, 2, . . . , k) represents k ∆SOCs
with known capacity degradation, Sm,ni represents the similarity between the ∆SOC to be
simulated and the i-th known ∆SOC, while S′m,ni

represents the weight of the i-th expression.
The capacity degradation model based on the similarity method of model interval numbers
is as follows:

SOHmodel = S′m,n1
× SOH1 + S′m,n2

× SOH2 + · · ·+ S′m,nk
× SOHk (14)

where SOHi(i = 1, 2, . . . , k) denotes the retired batteries capacity degradation model
obtained by Equation (9) fitting from the known ∆SOC data, and SOHmodel is the result of
the similarity method based on the interval number of the model.

The flow chart of the semi-empirical model of the capacity degradation of retired
batteries based on model interval number similarity is shown in Figure 1:

3.3. Semi-Empirical Model of Capacity Degradation of Retired Batteries Based on Parameter
Interval Number Similarity

The method of the capacity degradation model based on the parameter interval num-
ber similarity is to take the interval similarity as the weight of each fitting parameter in
the semi-empirical model, and the fitting parameter of the model to be solved is deter-
mined by the weight of each known parameter. Finally, the semi-empirical model of the
∆SOC based on the parameter interval number similarity method is obtained, as shown in
Equations (12) and (13).
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Figure 1. Flow chart of semi-empirical model of capacity degradation of retired batteries based on
model interval number similarity.

First of all, the semi-empirical model with parameters in the known ∆SOC can be
obtained from Equation (9) as follows:

SOH1 = 1− α1· exp
[

a1·CRate 1+b1
R·T1

]
·CRate 1

β1 ·DOD1
γ1(N·DOD1·Qb)

z1

SOH2 = 1− α2· exp
[

a2·CRate 2+b2
R·T2

]
·CRate 2

β2 ·DOD2
γ2(N·DOD2·Qb)

z2

...
SOHk = 1− αk· exp

[
ak ·CRate k+bk

R·Tk

]
·CRate k

βk ·DODk
γk (N·DODk·Qb)

zk

(15)

Then, the interval number similarity is assigned to each fitting parameter as a weight,
and the new fitting parameters can be obtained as follows:

cj = S′m,n1
× c1,j + S′m,n2

× c2,j + · · ·+ S′m,nk
× ck,j (j = 1, 2, · · · nc) (16)

where cj denotes the fitting parameter of the semi-empirical model and nc is the number of
fitting parameters. Finally, the semi-empirical model of the capacity degradation of retired
batteries based on the parameter interval number similarity method is obtained by the
following Equation (17):

SOHparm = 1− αj· exp
[ aj·CRate + bj

R·T

]
·CRate

β j ·DODj
γj(N·DODj·Qb)

zj (17)

where αj, β j, γj, aj, bj, zj denote the new parameters calculated by the interval number
similarity model, and SOHparm is the result of the similarity method based on the parameter
interval number.

4. An Improved Semi-Empirical Model of Retired Battery Capacity Degradation Based
on Least Square Curve Fitting

The previous part proposed two semi-empirical models based on interval number
similarity for the capacity degradation of retired batteries, which are divided into two
types: the model interval number method and parameter interval number method. Because
the interval number similarity-based semi-empirical modeling method can only obtain a
capacity degradation model under a certain operating condition, it is impossible to obtain
a general semi-empirical model to simulate the capacity decline of retired batteries under
various working conditions. Therefore, to directly obtain the degradation of retired battery
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capacity in different ∆SOCs through the empirical models, it is necessary to improve the
empirical models based on the data-driven methods.

4.1. Improvement of Empirical Model

Reference [36] tested the capacity degradation performance of lithium iron phosphate
batteries under various influencing factors through aging experiments and proposed a
holistic aging model for lithium battery life estimation. In this model, the effect of average
voltage on the decline in battery capacity is considered. The test results indicate that the
decline factor has a linear relationship with DOD and a quadratic relationship with the
average voltage. When the SOC is between 45% and 55%, the capacity degradation is
minimal, and higher or lower ∆SOCs will exacerbate the cyclic aging of the battery. The
disadvantage lies in that this conclusion is obtained from the aging experiment results of
new batteries and may not apply to the retired batteries.

Most of the battery aging experiments conducted in research institutes are conducted
on new batteries, but some experiments include part of the battery decommissioning phase.
Combining the experimental cycle life test results of Li(NiMnCo)O2 (NMC) batteries with
different average SOC values from Ecker et al. [37] and the experimental test results of
LiFePO4 (LFP) batteries from Jiang et al. [38], it can be concluded that the cycle life of a
battery with an average SOC of close to 50% is the longest, and the cycle life decreases with
the development of the average SOC towards both ends. Based on the experimental test
data of NMC batteries [37], reference [39] adopted a piecewise Gaussian model to fit the
stress factors caused by the mean value of SOC on capacity degradation. The downside
is that none of the above references have improved and perfected their empirical models
based on test data, and hence under different working conditions, it is impossible to use
the general model to generate more capacity degradation models of retired batteries.

Therefore, the empirical model of the retired battery shown in Equation (9) is improved
and perfected in this paper. The ∆SOC of the battery can be uniquely determined by DOD
and average SOC, and the battery cycle aging factor ∆SOC can be applied to the retired
battery empirical model in the form of an aging factor cage; thus, the improved empirical
model can be expressed as follows:

SOH = 0.8− cage·α· exp
[

a·CRate + b
RT

]
·CRate

β·DODγ(N·DOD·Qb)
z (18)

Based on the above research results and conclusions, the quadratic function relation-
ship is proposed in this paper to fit the relationship among the aging factor in the ∆SOC
and the average SOC and DOD, as follows:

cage = λ1 + λ2·(SOCavg − SOC0)
2 + λ3·SOCavg·DOD + λ4·DOD + λ5·DOD2 (19)

where λ1, λ2, λ3, λ4, and λ5 denote the fitting parameter and SOCavg is the average SOC.
SOC0 is the median SOC value in the battery model, and the range is the interval [0, 100],
which is obtained by repeated iterative solutions. At this point, the empirical model of
retired batteries has been improved and the ∆SOC is integrated into the retired battery
model in the form of variables.

4.2. An Improved Semi-Empirical Model Fitting Method Based on the Data-Driven Method

To fit the capacity degradation model of retired batteries as accurately as possible
based on the limited ∆SOC data, and at the same time accurately simulate the cycle aging
effect of ∆SOC on batteries, this paper proposes a data-driven improved semi-empirical
model fitting method. The flow chart of method is shown in Figure 2:
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Figure 2. Flow chart of improved semi-empirical model fitting method based on data-driven method.

The empirical model of the battery usually obeys the nonlinear relationship, such as
exponential functions, quadratic functions, and so on. Moreover, the data-driven method
has high requirements for the accuracy of function fitting. Thus, this paper adopts the
nonlinear least squares algorithm for data fitting of the above problems [40].

It is known that the sample number of a set of measured data (x, y) is nt, and it
approximately obeys the nonlinear function f (s, x, t) with undetermined parameter vector
s; accordingly, the sum of squares of the fitting error, that is, the sum of squares of residuals,
can be calculated as:

Z =
nt

∑
t=1

wt(yt − ŷt)
2 =

nt

∑
t=1

wt(yt − f (s, xt, t))2 (20)

where wt is the weight of the t-th sample; if the importance of each sample is identical,
then wt = 1/n; and ŷt is the estimated value of the t-th sample. To ensure the best effect of
fitting the curve, it is necessary to minimize Z as below:

minZ = min
nt

∑
t=1

wt(yt − f (s, xt, t))2 (21)

Considering that f (s, x, t) is a nonlinear function, a set of nonlinear equations will be
obtained when solving the partial derivative of the undetermined parameter vector based
on Equation (21), so the iterative method is used for the solution [40].

First, set the initial value of the undetermined parameter vector to s0, and the vector
Ŷ(s) composed of the sample estimate ŷt performs Taylor series expansion around s0, as
shown in the following formula:

Ŷ(s) ≈ Ŷ
(

s0
)
+

[
∂Ŷ(s)
∂sT

]
s=s0

×
(

s− s0
)

(22)

Next, update s with ∂Z/∂sT = 0 as a known condition, that is:

∂Z
∂sT = −2

[
∂Ŷ(s)
∂sT

]T

×
[
Y− Ŷ

]
≈ −2J0

[
Y− Ŷ

(
s0
)
− J0 ×

(
s1 − s0

)]
= 0 (23)
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where Y is the vector formed by the sample value yt. J0 is the Jacobian matrix corresponding
to the initial value, which can be calculated according to:

J0 =

[
∂Ŷ(s)
∂sT

]
s=s0

(24)

Combine Equation (23) with Equation (24), that is:

s1 = s0 +
(

JT
0 J0

)−1
JT

0

[
Y− Ŷ

(
s0
)]

(25)

Similarly, the Jacobian matrix Jp under the p-th iteration can be obtained by updating
the above Equations (22)–(25), that is:

Jp =

[
∂Ŷ(s)
∂sT

]
s=sp

(26)

In addition, the corresponding correction is:{
sp+1 = sp + ∆sp

∆sp =
(

JT
p Jp

)−1
JT

p
[
Y− Ŷ(sp)

] (27)

Finally, Equation (28) can be used to judge whether the iteration is convergent or not:

max
∣∣∣∆sp

i

∣∣∣
i=1,2,...,ns

≤ σ (28)

where ns denotes the number of parameters to be determined; σ is the given allowable error.
When the number of samples of the measured data is equal to the number of undetermined
parameters ns, the above nonlinear least squares fitting process is simplified to solve the
simple nonlinear equations.

To better evaluate the goodness of fit of the model, two statistical indicators, R-squared
(R2) and root mean square error (RMSE) [41], were used to quantify the fitting effect of
the model.

R2 = 1−

nt
∑

i=1
(ŷi − yi)

2

nt
∑

i=1
(yi − yi)

2
(29)

RMSE =

√
1
nt

nt

∑
i=1

(yi − ŷi)
2 (30)

where R2 is the coefficient of determination, and the value of R2 100% means perfect fit.
RMSE is the standard deviation of residuals, with smaller RMSE representing a better fit.

5. Case Study

In this case, the experimental data of the retired 18650 lithium iron phosphate battery
in reference [42] are selected for theoretical verification and analysis. The basic parameters
and experimental parameters of the battery sample are available in Table 1. According to the
relevant standards and specifications [43], the life of the retired LFP cells was tested using
charge/discharge equipment, a high-accuracy battery performance tester, and a constant
temperature and humidity box. In the course of the experiment, the charge/discharge ratio
is 1 C, the experimental temperature is 30 ◦C, and the cut-off voltage is 4.2 V. To obtain
the test data of the decay of retired LFP single cells in different ∆SOCs, six conditions are
selected as provided in Table 2. The experimental data after processing and the fourth-order
polynomial fitting curves given in reference [42] are shown in Figure 3.
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Table 1. Basic parameters of LFP battery samples.

Parameter Type Parameter Value

Battery type 18650 LFP battery
Rated capacity (mAh) 1600
Actual capacity (mAh) 1280 (80%)
Nominal voltage (V) 3.70

Charging cutoff voltage (V) 4.20 ± 0.05
Shape Cylindrical

Table 2. Experimental condition of ∆SOC.

Condition DOD (%) Average SOC (%) ∆SOC (%)

Condition 1 20 90 100~80
Condition 2 20 50 60~40
Condition 3 20 10 20~0
Condition 4 80 60 100~20
Condition 5 80 50 90~10
Condition 6 100 50 100~0
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The parts of the case study in this paper are generally arranged as follows: first, the
fitting of the empirical model under six working conditions is carried out; secondly, the
results of three semi-empirical modeling methods for retired batteries are presented in two
sections, and then their fitting accuracy and advantages are analyzed through a comparison
with the traditional methods; finally, the fitting effects of the three semi-empirical modeling
methods are compared comprehensively, and the data scenarios applicable to each method
are discussed.

5.1. Fitting of Empirical Model

The measured data in different ∆SOCs are based on the same charge/discharge rate,
temperature, and cut-off voltage. To determine the temperature-dependent fitting parame-
ter z, we logarithmically process and rearrange the items of Equation (8), that is:

ln(Qloss) = ln(α)−
(

Ea

R·T

)
+ z ln(Ah) (31)

Draw ln(Qloss)− ln(α) +
(

Ea
R·T

)
as a function of ln(Ah), and apply Equation (31) for

single-step fitting optimization. The best linear regression curve is as follows.
The power law factor z in the empirical model can be determined from the linear

fitting slope shown in Figure 4, whose value is equal to 0.8121. Next, the retired battery
empirical model shown in Equation (9) is used to nonlinearly fit the measured data of the
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battery under six conditions, and the fitting parameters and goodness of fit can be found in
Table 3.
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Table 3. Fitting parameters and goodness of fit of the empirical model under six working conditions.

Condition
Fitting Parameters Statistical Measure

α β γ a b z R2 RMSE

Condition 1 2.1280 × 10−3 0.1622 0.8661 0.3167 0.5340 0.8121 0.9931 0.0008
Condition 2 6.4090 × 10−4 0.4505 0.6615 0.2334 0.9178 0.8121 0.9185 0.0009
Condition 3 2.2680 × 10−3 0.1067 1.1760 0.1053 0.8756 0.8121 0.9792 0.0009
Condition 4 4.3810 × 10−4 0.4314 1.0530 0.1552 0.2371 0.8121 0.9906 0.0020
Condition 5 3.3450 × 10−4 0.8530 0.8922 0.2951 0.4574 0.8121 0.9838 0.0022
Condition 6 4.5930 × 10−4 0.4893 0.3377 0.9000 0.3692 0.8121 0.9812 0.0048

From the value of R2 and RMSE in Table 3, it can be seen that the fitting accuracy
of the empirical model is high. The fitting results and measured data obtained from the
empirical model of Equation (9) under six conditions are shown in Figure 5.
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5.2. Fitting of Semi-Empirical Model Based on Interval Number Similarity

Based on the semi-empirical modeling method of interval number similarity proposed
in this paper, the empirical models of six conditions obtained from known data are analyzed
below. For the six ∆SOCs of [80, 100]%, [40, 60]%, [0, 20]%, [20, 100]%, [10, 90]%, and
[0, 100]%, calculate the similarity matrix between any two intervals, as shown in Figure 6.
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To verify the effectiveness of the semi-empirical model of retired battery capacity
degradation based on interval number similarity proposed in this paper, the measured data
under six sets of test cases are used to verify one another, as shown in Table 4.

Table 4. Known ∆SOC and unknown ∆SOCs for six sets of test cases.

Case Unknown ∆SOC
(%) Known ∆SOCs (%)

Case 1 [80, 100] [40, 60] [0, 20] [20, 100] [10, 90] [0, 100]
Case 2 [40, 60] [80, 100] [0, 20] [20, 100] [10, 90] [0, 100]
Case 3 [0, 20] [80, 100] [40, 60] [20, 100] [10, 90] [0, 100]
Case 4 [20, 100] [80, 100] [40, 60] [0, 20] [10, 90] [0, 100]
Case 5 [10, 90] [80, 100] [40, 60] [0, 20] [20, 100] [0, 100]
Case 6 [0, 100] [80, 100] [40, 60] [0, 20] [20, 100] [10, 90]

To verify the advantages of the proposed method, the data-driven method based on
interval number similarity proposed in reference [34] is used as the comparison method. We
test the two interval number similarity-based semi-empirical modeling methods proposed
in this paper, which are the model interval number method and the parameter interval
number method. The results of six cases obtained by these two semi-empirical modeling
methods and their comparison are shown in Figure 7. Among them, the original fitting
curve is defined as the theoretical value of SOH for reference.

It is not difficult to see from the results shown in Figure 7 that although the comparison
method is close to the measured fitting data within 500 cycle times, the deviation of the
results between the comparison method and the original fitting curve becomes larger
and larger as the number of cycle times increases, and they gradually deviate far from
the theoretical value. In contrast, the semi-empirical modeling method based on interval
number similarity presented in this paper shows the same capacity degradation trend as
the original fitting curve and can be more similar to the measured fitting curve in Case 4,
Case 5, Case 6, and other examples. To quantify this degree of similarity, the values of R2

and RMSE between the two interval number similarity-based semi-empirical modeling
methods and the measured fitting curves are shown in Table 5.
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Table 5. The values of R2 and RMSE between the two interval number similarity-based semi-empirical
modeling methods and the measured fitting curves.

Case

Parameter Interval Number
Similarity Method

Model Interval Number
Similarity Method

R2 RMSE R2 RMSE

Case 1 0 0.0464 0 0.0806
Case 2 0.0896 0.0111 0 0.1088
Case 3 0.0235 0.0178 0 0.1153
Case 4 0 0.0760 0.9998 0.0007
Case 5 0 0.1047 0.5816 0.0287
Case 6 0.8890 0.0297 0.1414 0.0827

Notes: R2 = 0 means that the fitting effect of the function is worse than the average value.

From the values of the goodness of fit in Table 5, we can see that in Case 2, Case 3,
and Case 6, the parameter interval number similarity method performs better than the
model interval number method; in Case 4 and Case 5, the model interval number similarity
method performs better than the parameter interval number method. Combined with
the interval number similarity matrix in Figure 6, it can be found that the model interval
number similarity method has more advantages when the known ∆SOC can fully cover the
unknown ∆SOC; instead, when the known ∆SOC can not adequately cover the unknown
∆SOC, the parameter interval number similarity method is more superior. In particular,
in Case 6, when ∆SOC = [0, 100]%, the known ∆SOC is not fully covered by the unknown
∆SOC, thus the parameter interval number method performs better than the modes. This
is because the parameter interval number method approach requires fewer known data
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and is more adaptable, while the model interval number method approach relies more on
the known data.

Compared to the two interval number similarity-based semi-empirical modeling
methods of parameter and model herein, the model-based method can only obtain the
change in battery capacity degradation in the same ∆SOC of the charge/discharge rate
and temperature; it is not practical. The parameter-based method can obtain the change
in battery capacity degradation in the desired ∆SOC under different charge/discharge
rates and temperatures of the working conditions. Taking Case 6 as an example, based on
Equation (9), the semi-empirical model of ∆SOC = [0, 100]% obtained by the parameter
interval number similarity method is shown as follows:

SOH = 0.8− 7.3885× 104 × exp
[

0.9702·CRate + 0.9568
8.314·T

]
·CRate

0.9·DOD0.1756(N·DOD·Qb)
0.8121 (32)

Equation (32) can be used to estimate the change of battery capacity degradation under
other operating conditions in ∆SOC = [0, 100]%.

5.3. Fitting of Improved Semi-Empirical Model Based on the Least Square Fitting Method

In the battery charge/discharge cycle aging, not only the ∆SOC will be changed, but
also the charge/discharge rate, temperature, and other working conditions will be changed.
Therefore, the semi-empirical model is expected to simulate performance degradation
under various working conditions. The improved semi-empirical modeling method based
on the least square method can meet the above application requirements.

Based on the improved semi-empirical model fitting method proposed in this paper,
Case 4 in Table 4 is taken as an example to solve the improved semi-empirical model.
The known ∆SOCs are [80, 100]%, [40, 60]%, [0, 20]%, [10, 90]%, and [0, 100]%, while the
unknown ∆SOC is [20, 100]%. The known data of Case 4 have the same DOD and different
∆SOCs at the same time and two types of data of the same ∆SOC and different DODs,
which can more comprehensively fit the aging factor.

First of all, the empirical model of Equation (9) is used for nonlinear least squares
fitting, and then the empirical model fitting results are as follows:

SOH = 0.8− 4.5750× 10−4 × exp
[

0.0355·CRate + 0.8489
8.314·T

]
·CRate

0.9595·DOD2.2140(N·DOD·Qb)
0.8121 (33)

Based on the empirical model of Equation (33), the decline in battery capacity under
various DODs, charge/discharge rates, and the temperature working conditions can be
obtained correspondingly.

The five conditions of the known measured data can be divided into two groups: the
same DOD but different average SOCs and the same average SOC but different DODs.
The aging factors of the two groups are calculated, and the relationship between the aging
factor and the ∆SOC is studied deeply. The results of aging factors obtained are shown in
Figure 8 as follows.
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It can be seen from the figure above that the relationship between the aging factor
of the experimental data and the average SOC and DOD is approximately a quadratic
function, which accords with the aging factor model in the improved semi-empirical model
established in this paper.

Based on five groups of measured data, the improved semi-empirical model of
Equations (18) and (19) was fitted by the nonlinear least square method, and the fitting
results of each unknown parameter were obtained, as shown in Table 6.

Table 6. Parameter fitting results of improved semi-empirical model based on the least square
method.

Fitting Parameters Value Fitting Parameters Value

α 4.5750 × 10−4 SOC0 37.2600
β 0.9595 λ1 26.0100
γ 2.2140 λ2 0.0103
a 0.0355 λ3 −0.4247
b 0.8489 λ4 −38.9300
z 0.8121 λ5 33.4900

Therefore, the improved semi-empirical model based on the least square fitting is built
as follows:

cage = 26.01 + 0.0103·(SOCavg − 37.26)2 − 0.4247·SOCavg·DOD− 38.93·DOD + 33.49·DOD2

SOH = 0.8− cage × 4.5750× 10−4 × exp
[

0.0355·CRate+0.8489
8.314·T

]
·CRate

0.9595·DOD2.2140(N·DOD·Qb)
0.8121 (34)

Among them, SOCavg, DOD, CRate, and T can constitute the working conditions of
the retired battery. The capacity degradation of the retired battery under various working
conditions can be obtained from the above model.

Figure 9 shows the capacity degradation of retired batteries in three different ∆SOCs
obtained by the method in this paper when DOD = 20%, and it compares the original
empirical model with the original data. It can be seen that compared with the original
empirical model, which cannot distinguish the capacity decline of different ∆SOCs under
the same DOD, the improved semi-empirical model in this paper improves the operation
scenario of the empirical model and is more in line with the practical application.
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In order to verify the feasibility of the improved semi-empirical modeling method
proposed in this paper, Case 4 in Table 4 is used for analysis. The known ∆SOCs include
[80, 100]%, [40, 60]%, [0, 20]%, [10, 90]%, and [0, 100]%, and the unknown ∆SOC is
[20, 100]%. Based on the improved semi-empirical model of Equation (34), the comparison
between the improved semi-empirical model and the original fitting curve under six ∆SOCs
corresponding to the original data point is shown in the figure below.

In Figure 10d is the fitting result of the unknown ∆SOC, and the Figure 10a–f are
the fitting results of the known ∆SOCs. It can be seen that the improved semi-empirical
modeling method performs well in both the known ∆SOCs and the unknown ∆SOC, and
it maintains a high degree of agreement with the original fitting curve. Similarly, the
goodness of fit of the improved semi-empirical models under six working conditions can
be calculated as follows.
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Combined with the results in Figure 10 and Table 7, we can see that the improved semi-
empirical modeling method based on the least square method performs well under various
working conditions. For the goodness of fit under all working conditions, R2 is greater than
0.999 and RMSE is less than 1.0 × 10−3, indicating that the fitting accuracy of this method
to the measured data is very high. In particular, for the unknown ∆SOC, [20, 100]%, it
also shows almost as high accuracy as for other conditions. The results indicate that the
improved semi-empirical modeling method proposed in this paper can well predict and fit
the capacity degradation of retired batteries under various working conditions.
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Table 7. The goodness of fit of the improved semi-empirical model.

∆SOC (%) R2 RMSE

[80, 100] 1.0000 1.1353 × 10−5

[40, 60] 1.0000 1.8958 × 10−7

[0, 20] 0.9999 1.6002 × 10−4

[20, 100] 1.0000 3.7004 × 10−5

[10, 90] 1.0000 2.0161 × 10−4

[0, 100] 1.0000 5.5489 × 10−4

5.4. Comparison of Three Semi-Empirical Modeling Methods

The feasibility of the three semi-empirical modeling methods proposed in this paper is
verified above, and the accuracy of the same set of measured data under various methods
is calculated at the same time. The following gives a comprehensive comparison of the
results of six cases.

From Figure 11, it can be seen that in the six cases above, the fitting curve obtained
by the improved semi-empirical modeling method is closest to the original fitting curve,
and the fitting accuracy is higher compared to the two interval number similarity-based
semi-empirical modeling methods of parameter and model. Especially for Case 1, Case 3,
and Case 4, the improved semi-empirical model performs the same as the original fitting
curve. This is because in these three cases, it is known that the ∆SOC includes two sets
of cyclic data with the same DOD and different ∆SOCs and the same ∆SOC and different
DODs. Under this data premise, the improved semi-empirical modeling method can
obtain more accurate fitting models for retired battery capacity degradation under different
operating conditions.

The above results can indicate that when the ∆SOC data are relatively comprehensive,
the improved semi-empirical model has better accuracy than the interval number method in
all cases. To verify the applicability of different methods in data scenarios, the following is
a fitting prediction of battery capacity degradation for the above three methods in extreme
cases with limited measured data. Thus, the following scenarios in Table 8 are covered.

Table 8. Scenario combination for a comprehensive comparison of three methods.

Scenario Unknown ∆SOC (%) Known ∆SOC (%)

Scenario 1 [20, 100] [10, 90] [0, 100] [80, 100] [40, 60] [0, 20]
Scenario 2 [80, 100] [40, 60] [0, 20] [20, 100] [10, 90] [0, 100]

In the above three scenarios, the measured data are fitted and analyzed based on the
three methods proposed in this paper, and the results are as follows: In the above two
scenarios, the measured data are fit and analyzed based on the three methods proposed
in this article. Among them, due to the limited known data, it is not sufficient to meet the
fitting conditions for the aging factor proposed in Equation (16). Therefore, in the improved
semi-empirical model below, the optimal polynomial is used to fit the aging factor. The
final numerical results of goodness of fit for the two scenarios are shown in the table below.

From the goodness of fit values in Table 9, it can be seen that in both scenarios, the R2

values of the interval number similarity-based semi-empirical modeling method are not
all equal to 0. However, the R2 values of the improved semi-empirical modeling method
are all equal to 0, and their fitting accuracy is completely inferior to the interval number
similarity-based semi-empirical modeling method. Therefore, under the premise that the
∆SOC of the known data is very limited, the method based on interval number similarity
has better fitting performance than the method based on improved semi-empirical models.
Comparing the two types of methods, it can be found that the method based on interval
number similarity has low dependence on data and can perform with high accuracy when
known data are limited. For example, the unknown intervals of Scenario 1 and Scenario 2
can be accurately fitted through parameters or modeling methods. The method based on an
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improved semi-empirical model has high experimental data requirements and requires the
calculation of the aging factor based on measured data with the same DOD but different
average SOCs. At the same time, the more comprehensive the experimental data, the higher
the fitting accuracy and applicability of this method.
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Table 9. The goodness of fit of three methods in two scenarios with very limited data.

Scenario
Unknown ∆SOC

(%)

Parameter Interval Number
Similarity Method

Model Interval Number
Similarity Method

Improved Semi-Empirical
Modeling Method

R2 RMSE R2 RMSE R2 RMSE

Scenario 1
[20, 100] 0 0.0121 0.7472 0.0045 0 0.0185
[10, 90] 0.8989 0.0012 0 0.0142 0 0.0079
[0, 100] 0.8974 0.0019 0 0.0137 0 0.0135

Scenario 2
[80, 100] 0 0.0213 0.8322 0.0075 0 0.0249
[40, 60] 0 0.0275 0.9137 0.0042 0 0.0197
[0, 20] 0.8469 0.0113 0 0.0329 0 0.0504

Notes: R2 = 0 means that the fitting effect of the function is worse than the average value.

To sum up, the three methods have their respective suitable application scenarios:
When the ∆SOC is known to be very limited, it is more suitable to use the interval number
similarity-based semi-empirical modeling method to approximate the capacity degradation
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of retired batteries. When the known ∆SOC can cover the unknown ∆SOC more fully, we
can choose the model interval number similarity method, and when the known ∆SOC
cannot adequately cover the unknown ∆SOC, we can choose the parameter interval number
similarity method. When the ∆SOC of the measured data is more comprehensive, that
is, two types of measured data with the same average SOC but different DODs and the
same DOD but different average SOCs are known, a more accurate retired battery capacity
degradation model can be obtained by means of the improved semi-empirical model.

6. Conclusions

The existing retired power battery capacity degradation model makes it difficult to
consider the impact of various cycle conditions on battery capacity degradation, espe-
cially because there are few studies on retired power battery capacity degradation models
involving different ∆SOCs. In addition, due to the long and costly cycle tests of retired
batteries, test data for different ∆SOCs are very limited. In view of the inadequacies and
data limitations of existing studies, this paper puts forward three semi-empirical model-
ing methods to obtain the law of capacity degradation of retired batteries under various
working conditions. The above content verifies the feasibility and accuracy of the proposed
methods in this paper and then summarizes the practical applicability of the three methods
according to the advantages and disadvantages of their respective case studies.

1. The method based on model interval number similarity is suitable for situations
where the known test data contain limited ∆SOC but the coverage of unknown ∆SOC
is relatively comprehensive. In detail, the ∆SOC of the known data contains two
types of measured data, the same average SOC but different DODs and the same
DOD but different average SOCs. The accuracy of this method is moderate, but it
can ensure that the capacity degradation of retired batteries can be predicted within a
reasonable range under the circumstances of very limited data. Therefore, in practical
application scenarios, this method is suitable for a preliminary assessment of the
capacity degradation of retired batteries with unknown ∆SOC;

2. The method based on parameter interval number similarity is suitable for situations
where the known test data contain limited ∆SOC and the coverage of the unknown
∆SOC is not comprehensive enough. In detail, the ∆SOC of the known data contains
two types of measured data, the same average SOC but different DODs and the same
DOD but different average SOCs. This method has good accuracy and can predict the
capacity degradation of retired batteries under various cycle conditions. Therefore, in
practical application scenarios, this method is suitable for further evaluation of the
capacity degradation of retired batteries with unknown ∆SOC and for estimating the
capacity decline of retired batteries under other cycle conditions in the same ∆SOC;

3. The improved semi-empirical modeling method based on the least square fitting
method is suitable for situations where the ∆SOC contained in the known test data is
relatively comprehensive. In detail, the ∆SOC of known data would contain both the
same average SOC but different DODs and the same DOD but different average SOCs.
This method has the highest accuracy and can accurately predict the capacity decline
of retired batteries under various cycle conditions. Therefore, in the actual application
scenario, this method is suitable for the accurate assessment of the capacity decline
of retired batteries in an unknown ∆SOC and has great significance for the cascade
utilization analysis of retired batteries.
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41. Piotrowski, P.; Baczyński, D.; Kopyt, M. Medium-Term Forecasts of Load Profiles in Polish Power System including E-Mobility
Development. Energies 2022, 15, 5578. [CrossRef]

42. Yang, Y. Investigation on Cascade Utilization, Capacity Attenuation and Recovery Process of Retired Lithium Power Batteries.
Ph.D. Thesis, Hunan University, Changsha, China, 2019.

43. GB/T 31484-2015; Cycle Life Requirements and Test Methods of Power Batteries for Electric Vehicles. China Standard Press:
Beijing, China, 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ijepes.2012.04.050
https://doi.org/10.1016/j.jpowsour.2005.02.033
https://doi.org/10.1016/j.jpowsour.2014.06.111
https://doi.org/10.1109/TTE.2019.2944802
https://doi.org/10.1016/j.jpowsour.2016.07.065
https://doi.org/10.1109/IEEESTD.1996.81039
https://www.trendforce.cn/presscenter/news/20221024-11435.html
https://www.trendforce.cn/presscenter/news/20221024-11435.html
https://doi.org/10.1016/j.jpowsour.2010.11.134
https://doi.org/10.3969/j.issn.1000-0984.2007.24.001
https://doi.org/10.1016/j.jpowsour.2014.02.012
https://doi.org/10.1016/j.jpowsour.2013.09.143
https://doi.org/10.1149/2.052403jes
https://doi.org/10.1016/j.est.2023.107232
https://doi.org/10.1016/j.measurement.2017.02.023
https://doi.org/10.3390/en15155578

	Introduction 
	Empirical Model of Retired Battery Capacity Degradation 
	Semi-Empirical Model of Retired Battery Capacity Degradation Based on Interval Number Similarity 
	Interval Number Similarity Degree Computing Model 
	Semi-Empirical Model of Capacity Degradation of Retired Battery Based on Model Interval Number Similarity 
	Semi-Empirical Model of Capacity Degradation of Retired Batteries Based on Parameter Interval Number Similarity 

	An Improved Semi-Empirical Model of Retired Battery Capacity Degradation Based on Least Square Curve Fitting 
	Improvement of Empirical Model 
	An Improved Semi-Empirical Model Fitting Method Based on the Data-Driven Method 

	Case Study 
	Fitting of Empirical Model 
	Fitting of Semi-Empirical Model Based on Interval Number Similarity 
	Fitting of Improved Semi-Empirical Model Based on the Least Square Fitting Method 
	Comparison of Three Semi-Empirical Modeling Methods 

	Conclusions 
	References

