
Citation: Ibarra-Pérez, D.; Faba, S.;

Hernández-Muñoz, V.; Smith, C.;

Galotto, M.J.; Garmulewicz, A.

Predicting the Composition and

Mechanical Properties of Seaweed

Bioplastics from the Scientific

Literature: A Machine Learning

Approach for Modeling Sparse Data.

Appl. Sci. 2023, 13, 11841. https://

doi.org/10.3390/app132111841

Academic Editors: Azlin

Fazlina Osman and Zuratul

Ain Abdul Hamid

Received: 20 September 2023

Revised: 2 October 2023

Accepted: 8 October 2023

Published: 30 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Predicting the Composition and Mechanical Properties of
Seaweed Bioplastics from the Scientific Literature: A Machine
Learning Approach for Modeling Sparse Data
Davor Ibarra-Pérez 1,* , Simón Faba 2 , Valentina Hernández-Muñoz 3 , Charlene Smith 4, María José Galotto 2

and Alysia Garmulewicz 5,*

1 Department of Mechanical Engineering, University of Santiago of Chile (USACH), Avenida Libertador
Bernardo O’Higgins 3363, Santiago 9170022, Chile

2 Packaging Innovation Center (LABEN-CHILE), Department of Food Science and Technology,
Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA),
University of Santiago de Chile (USACH), Santiago 9170201, Chile; simon.faba@usach.cl (S.F.);
maria.galotto@usach.cl (M.J.G.)

3 Department of Industrial Engineering, University of Santiago of Chile (USACH), Avenida Libertador
Bernardo O’Higgins 3363, Santiago 9170022, Chile; valentina.hernandezm@usach.cl

4 Materiom C.I.C, Royal College of Art, London E8 4QS, UK; charlene@materiom.org
5 Faculty of Economics and Management, Department of Management, University of Santiago

of Chile (USACH), Avenida Libertador Bernardo O’Higgins 3363, Santiago 9170022, Chile
* Correspondence: davor.ibarra@usach.cl (D.I.-P.); alysia.garmulewicz@usach.cl (A.G.)

Abstract: The design of biodegradable polymeric materials is of increasing scientific interest due to
accelerating levels of plastics pollution. One area of increasing interest is the design of biodegradable
polymer films based on seaweed as a raw material. The goal of the study is to explore whether
machine learning techniques can be used to predict the properties of unknown compositions based on
existing data from the literature. Clustering algorithms are used, which show how some ingredients
components at certain concentration levels alter the mechanical properties of the films. Robust
regression algorithms with three popular models, namely decision tree, random forest, and gradient
boosting. Their predictive capabilities are compared, resulting in the random forest algorithm being
the most stable with the greatest predictive capacity. These analyses offer a decision support system
for biomaterials manufacturing and experimentation. The results and conclusions of the study
indicate that bioplastics made from seaweed have promising potential as a sustainable alternative to
traditional plastics, discovering interesting additives to improve the performance of biopolymers. In
addition, the machine learning approaches used provide effective tools for analyzing and predicting
the properties of these materials in structured but highly sparse data.

Keywords: bioplastics; seaweed bioplastics; film; mechanical properties; machine learning

1. Introduction

The increase in plastics pollution levels across all major ecosystems on the planet
has prompted a large number of countries around the world to change or improve their
public policies for the management of polymer waste generated by human production [1,2].
Experts indicate that one of the main recommendations is to avoid single-use materials,
especially those that are not recyclable [3,4]. Plastic films that are used as bags for food
packaging have proven to be one of the most difficult to recycle given their low recovery
rate that does not even allow a minimum or constant stock for reprocessing, as well as
their high compositional heterogeneity in the market (low-density polyethylene, high-
density polyethylene, polypropylene, polystyrene, and some other mixtures in multilayer
format) [5]. Therefore, the manufacture of biodegradable or compostable films has become
increasingly relevant, and the sustained growth in the last decade of scientific publications
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in this area is in line with the need to improve their performance so that they can replace
traditional polymer films in the various applications in which they are used [6,7].

Biopolymers can be structurally understood as long chains of molecules linked to each
other, where their shape, distribution, and types of bonds between molecular components
determine the properties that they can achieve and therefore the applications in which they
are used [8]. Among the biopolymeric structures that can be found [9], the manufacture of
films based on polysaccharides extracted from seaweed is of high interest since the process
of manufacturing seaweed-based films is relatively low cost [10,11], and the use of seaweed
as a biomass feedstock does not compete with arable land for food or feed compared to
starch polysaccharides extracted from various vegetable sources, such as potatoes, corn,
and soy [12–14].

Among the most common polysaccharide macromolecules extracted from seaweed are
agar, alginate, and carrageenan, components that can be extracted in different proportions
and concentrations depending on the species of seaweed used [15,16]. These biopolymers
are commonly available in powder form for applications in the food and cosmetics in-
dustries. Seaweed biopolymers have also been extracted using low-cost techniques for
the manufacturing of films at a laboratory scale [17–20]. Studies show that these types
of biopolymers have good potential for film development, although they are far from
demonstrating high functional capabilities comparable to petrochemical polymer films on
certain performance dimensions. Therefore, experimentation with the inclusion of other ad-
ditives or variations in the processes are important to improve the performance of seaweed
biopolymer films for a range of application-specific performance specifications [21–24].

In the field of materials science, the use of artificial intelligence (AI) and machine
learning (ML) has been growing in importance, redefining the way scientists approach
the design and discovery of polymeric materials. These technologies have revolutionized
research by enabling the exploration and analysis of large datasets in a systematic and
efficient manner [25]. The intersection between machine learning and polymer chemistry
has proven to be especially fruitful, enabling property prediction and the design of polymers
with specific characteristics [26]. ML algorithms have overcome the limitations of traditional
approaches by identifying patterns and relationships in material property data, enabling
more informed decision making [27,28]. This transformative impact is not limited to the
field of polymers. Materials science research has successfully adopted these tools in the
design and development of advanced materials. ML-assisted simulation and experimental
automation have optimized the discovery process, enabling efficient exploration of various
combinations of materials and conditions [27,29]. In addition, machine learning has been
applied to predict properties in other contexts, such as process optimization and synthesis
of materials with specific properties [30]. This expansive trend highlights the versatility of
ML across diverse scientific disciplines, cementing its pivotal role in accelerating discovery
and innovation [25,28]. This synergy between artificial intelligence and materials science
promises to continue to challenge the boundaries of knowledge and innovation. As ML
algorithms are refined and datasets continue to grow, materials prediction and design are
expected to continue to improve levels of accuracy and efficiency [31].

In this study, we seek to provide a framework to enhance the development of seaweed-
based biopolymer films by modeling a dispersed and highly sparse dataset (over 90%
sparsity coefficient) using machine learning techniques of unsupervised and supervised
algorithms. The main objective of the present study is the development of a methodological
tool that supports decision making for biopolymeric film developers. We offer a useful
visual tool for the exploration of compositional ranges and new fabrications, quantifying
the level of importance of the material components with respect to reported properties.
All formulations extracted in this work use casting as a manufacturing process. The
relationship between the film manufacturing process and film performance is an area of
future research.
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2. Materials and Methods
2.1. Data Selection

The bibliographic citation and abstract database Scopus was used to access peer-
reviewed journals in order to obtain the metadata of 2000 articles containing biopolymeric
data pertaining to seaweed precursors, products, and byproducts. The search and clas-
sification of these journals included a string of keyword inputs associated with seaweed
biopolymers and their corresponding properties. The following query was conducted:
“alginate OR agar OR carrageenan OR seaweed OR macroalgae” and “bioplastic OR bio-
plastic OR biopolymer film OR film OR plastic bag OR packaging OR biocomposites OR
bio-composite”. Then, the following exclusion criteria was applied: only publications from
the last 10 years (minus the present year); publications without abstracts; review papers;
and conference papers. The dataset used a total of 1522 publications.

Initially, forty scientific papers were randomly selected that met the specific criterion
that the biopolymer under study should be manufactured through a casting process. After
meticulous evaluation of these papers, 405 distinct biopolymeric material systems were
identified, along with 146 physicochemical properties categorized into various classes.
This variability represents a major obstacle to systematic comparison and consistent inter-
pretation of data between different biopolymeric material systems. Therefore, the study
focused exclusively on mechanical properties, which were reported in a more uniform
and standardized manner in the works consulted. As a result of this recalibration in the
approach, the data set was reduced to twenty scientific papers for a more rigorous and
specific analysis.

2.2. Data Extraction

Information was extracted from two sections of each scientific article, namely the
methodology and the results. The validation criteria used for the extraction reviewed in
the articles are as follows:

• Criterion 1: The concentrations of the components as a percentage of the total mass or
volume of the manufacture.

• Criterion 2: The existence of no more than 5 components for manufacturing.
• Criterion 3: Method of manufacturing biopolymer films.

In the case of the results, the criteria are as follows:

• Criterion 1: Relevant property report.
• Criterion 2: Values of the results in tabular form and not in graphs.

These criteria are exclusive, so if a criterion is not met, the article should be discarded.
Once the criteria for each section are validated, the information is extracted in tabular
form, documenting in linear form each of the formulations and results obtained, with their
respective units and identification fields. Characterization of the material systems included
an outline of the ingredient precursors, the concentrations and the mechanical properties
as tensile strength and elongation at break (the most commonly reported properties and in
a standardized manner). The characterization of each material system was scripted in a
manner so that the units of each data value was also represented in a separate field (see
Table S1). It should be noted that measurement errors (commonly separated by +/−) are
not considered in the extraction.

2.3. Data Preprocessing

The extraction of properties reported in scientific publications composes a high-
dimensional space. Certain formulations have extremely sparse data, adding considerable
noise to the final prediction matrix. In response, new exclusion criteria were defined to
allow the analysis of the relationships between the components by selecting a dataset with
at least one complete response variable, i.e., without gaps. Standardization of ingredi-
ent concentrations for these formulations was further required, transforming stated units
into mass/mass or volume/volume. The total masses or volumes of the solutions were
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calculated and the concentrations of each of the components were adjusted accordingly.
This step is essential for models that are sensitive to the scale of the variables, allowing a
more accurate and consistent comparison between different formulations (note that those
formulations lacking information needed for their transformation were excluded). The
application of this criteria resulted in a final dataset of 115 seaweed-based biopolymer
formulations and associated mechanical properties. Finally, the extraction table was trans-
formed into a matrix of dependent variables X of size nxm. Let n = columns correspond to
each of the identified ingredients and m = rows correspond to the extracted formulations.
Therefore, the values of each of the positions of the matrix correspond to the concentration
of that component in a given material system.

2.4. Data Analysis

The following provides a methodology for the evaluation of a material design space
with a high degree of dispersion. In general, machine learning algorithms are divided
into three large families of models: unsupervised algorithms that are usually used for
the clustering and classification of data, supervised algorithms that are generally used for
regression models and data prediction, and finally reinforcement learning algorithms that
are used for modeling dynamic problems. In this study, we focus on the first two families
of models, aiming to test predictive capabilities.

2.4.1. Unsupervised Algorithms

Unsupervised algorithms play a key role in the analysis of complex and unlabeled
data, as they allow the discovery of hidden patterns and relevant relationships without
the need for labels or prior information [32]. These algorithms are especially useful in the
context of highly sparse datasets, where a lack of structure or the presence of rare features
make traditional analysis difficult [33]. By applying clustering techniques, such as the
K-means algorithm or hierarchical clustering, natural clusters and dense regions in the data
can be identified, providing deep insights into intrinsic relationships and underlying struc-
ture. In addition, unsupervised algorithms, such as dimensionality reduction and anomaly
detection, help reduce data complexity and identify unusual patterns or outlier points,
which is essential for sparse and scarce data exploration. In summary, unsupervised algo-
rithms provide a powerful tool for revealing valuable information in challenging datasets,
enabling deeper understanding and decision making based on intrinsic relationships and
meaningful features present in sparse and scarce data [34,35].

Clustering Algorithm

The K-means algorithm is a widely used method in the field of unsupervised machine
learning to identify patterns and clusters in datasets. First, a number K of desired clusters
are selected, and K centroids are randomly initialized in the feature space of the dataset.
Next, each point in the dataset is assigned to the cluster represented by the nearest centroid,
using distance measures such as the Euclidean distance. After the initial assignment,
centroids are updated by recalculating the average of the features of the points assigned
to each cluster. This process of centroid assignment and updating is repeated iteratively
until a converged state is reached. The K-means algorithm is based on minimizing the sum
of the squared distances between each point and the corresponding centroid. This can be
expressed as an objective function J (Equation (1)) that seeks to minimize the intra-cluster
variance. Optimization is performed using the heuristic optimization technique known
as expectation–maximization. For the selection of K clusters, the Jambu elbow criterion
is used to determine the optimal number of K clusters. The sum of the squared distances
from each point to the centroid of its assigned cluster is calculated and these values are
plotted as a function of the number of clusters. The inflection point in the graph, which
resembles an “elbow”, indicates the number of clusters in which increasing the number of
clusters no longer provides a significant improvement in the explained variability [36–38].
In this case, the aim is to identify the different levels existing in the response variables.
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Before applying the clustering algorithm, the concentrations are coded with a 1 if there is a
value and with a 0 if there is no value. The results of the clustering algorithm are visualized
over the principal components vector to observe and interpret the data’s distribution
patterns, gaining valuable insights into the underlying structures and relationships within
the dataset [39]. This dimensionality-reduction technique transforms the original variables
into a new set of variables called principal components. These components are orthogonal
to each other and reflect the maximum variance of the data. Mathematically, the algorithm
searches for the eigenvectors

→
e i and eigenvalues λi of the covariance matrix { of the data

(Equation (2)). Then, the e eigenvectors corresponding to the e largest eigenvalues are

selected (in this case, e = 2) to transform the original data
→
X into a new lower-dimensional

subspace
→
Y (Equation (3)).

J =
n

∑
i=1

K

∑
K=1

wik‖xi − cK‖2 (1)

{
→
e i = λi

→
e i (2)

→
Y =

→
X
→
e i (3)

such that xi represents each data point, cK is the centroid of the group K, and wik is an
indicator variable that is equal to 1 if data point xi belongs to the group K, or 0 otherwise.

2.4.2. Supervised Algorithms

For the analysis of the data, a decision tree model is used, which compares per-
formances with its more robust variants of random forest and gradient boosting for the
prediction of each of the variables alone and together. The data are randomly split into train-
ing (80%) and test (20%) data for the model, and these are optimized by “hyper-parameters
tuning” and “cross validation” techniques. First, the model parameters are adjusted, look-
ing for the range where they reach the lowest errors (based on the root-mean-square error),
and then, through an experimental design “GridSearchCV”, a set of simulations is created
where the model parameters are permuted with different random splits of the data, select-
ing the best model by weighted ranking of the models obtained in each training set. Finally,
multiple metrics are used to evaluate and compare regression models in the fit on both
training and test data, using the coefficient of determination (R2). With respect to the model
errors, the mean square error (MSE), root-mean-square error (RMSE), mean absolute error
(MAE), median absolute error (MedAE), and root-mean-square logarithmic error (RMSLE)
are used as evaluation indicators (see Equations (4)–(9)). Both the RMSE and MSE were
selected because these quadratic errors are sensitive to outliers and penalize larger errors
more. Since the data analyzed are sparse data, the presence of outliers or large errors can
be especially significant. In addition, RMSE and MSE are standard metrics in the machine
learning literature, which facilitates comparison of our results with other studies. Unlike
quadratic errors, MAE and MedAE are robust metrics that are not strongly influenced by
outliers. This is crucial when dealing with sparse data, where a single outlier can have a
significant impact on model performance. MedAE, being the median of absolute errors,
offers an even more robust and focused perspective than MAE. As for RMSLE specifically
used to address the variable scale of the data, it is useful when errors in prediction are not
penalized uniformly across the scale of the target variable, which is relevant in datasets
with a wide range of values, such as those under analysis. The combination of these metrics
allows us to address both the magnitude and distribution of prediction errors, thus provid-
ing a more complete picture of model performance. Each metric was selected to evaluate a
specific aspect of the prediction error, which is critical for a robust and complete assessment.

R2 = 1− ∑n
i=1 (ŷi − yi)

2

∑n
i=1 (yi − yi)

2 (4)
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MSE =
∑n

i=1 (yi − ŷi)
2

n
(5)

RMSE =
√

MSE =

√
∑n

i=1 (yi − ŷi)
2

n
(6)

MAE =
∑n

i=1|yi − ŷi|
n

(7)

MedAE = Median( |y1 − ŷ1|, |y2 − ŷ2|, . . . , |yn − ŷn|) (8)

RMSLE =

√
1
n

n

∑
i=1

(log (yi + 1)− log (ŷi + 1))2 (9)

such that y represents the actual value, ŷ represents the predicted value, y represents the
mean value of the dependent variable, and n represents the number of observations.

Decision Tree Regression

The decision tree is a machine learning algorithm used to make decisions based on
multiple conditions or characteristics. It is based on the idea of dividing a dataset into
smaller, homogeneous subsets according to certain criteria. The algorithm starts with a
single root node that represents the entire dataset. Then, a feature is selected to divide the
set into two subsets, maximizing the homogeneity of the data within each subset. This
process is repeated recursively for each subset until some stopping criterion is met, such as
reaching a maximum depth level or being unable to perform further splits. The decision
tree formulation involves finding the best feature and cutoff point to split the dataset at
each node. This is achieved by applying impurity metrics, such as information gain or
Gini impurity. These metrics evaluate how well the classes or categories are separated into
the generated subsets [40,41]. The tree is built from top to bottom, each time dividing the
dataset into more homogeneous subsets. In the context of regression, a decision tree seeks
to partition the feature space such that the sum of squared errors within each terminal node
is minimized (Equation (10)).

H(X, f ) =
|X|

∑
j=1

(
yj − f (Xj)

)2 (10)

such that X represents the dataset, |X| represents the number of terminal nodes, yj repre-
sents the values observed at the terminal node j, and f (Xj) signifies the model’s prediction
for the data at that node.

Random Forest Regression

Random forest is a machine learning algorithm that combines multiple decision trees
to make decisions. Each tree T in the forest is trained on a random sample of the data
(Equation (11)), and then the predictions of all trees are averaged to obtain a more robust and
accurate final prediction (Equation (12)). The random forest algorithm starts by randomly
selecting a sample of the training data. Then, a decision tree is constructed using this
sample, but at each node, only a random subset of features is considered. This process is
repeated several times to create multiple decision trees. To make predictions, the majority
of votes from all trees are taken. This involves combining individual decision trees using
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the averaging or voting technique. In each tree, techniques such as information gain or
Gini impurity are used to determine the optimal splits at the nodes [41,42].

HT(X, f ) =
|X|T
∑
j=1

(
yj − fT(Xj)

)2 (11)

fRF(X) =
1
N

N

∑
i=1

fTi(X) (12)

such that X represents the dataset, |X|T represents the number of terminal nodes in the tree
T, yj represents the values observed at the terminal node j, fT(Xj) represents the model’s
prediction of tree T for the data at that node, N represents the total number of trees in the
forest, and i is used to iterate through each of the N trees in the forest. Thus, fTi(X) is the
prediction of the i-th tree for the dataset X.

Gradient Boosting Regression

Gradient boosting is a machine learning algorithm that combines multiple weak
learning models to create a stronger and more accurate model. Unlike random forest,
gradient boosting focuses on iteratively improving the errors of the previous model rather
than working with different data samples. The gradient boosting algorithm builds an initial
model, such as a simple decision tree, and then focuses on iteratively improving the model
predictions. At each iteration, new models are fitted to the residual of the previous model’s
errors, attempting to reduce the overall error. The models are combined by weighted
summation to obtain a final prediction. The gradient boosting formulation involves fitting
these new models using the downward gradient. The gradient represents the direction and
magnitude of the largest error growth, so the objective is to reduce it at each iteration by
means of the mean square error or cross-entropy [43]. As with the previous methods, the
objective is to minimize a loss function G (Equation (13)); therefore, g(yi, F(Xi)) is called
the individual loss function, and this is the difference between the true labels yi and the
predictions of the model F(Xi) for each sample i. In this case, F(X) represents the sum of
the predictions of all trees hm(X) up to that stage m (Equation (14)).

G(y, F(X)) =
n

∑
i=1

g(yi, F(Xi)) (13)

F(X) = Fm−1(X) + ρmhm(X) (14)

such that ρm is the learning rate that controls the impact of each tree on the final model.

3. Results

Machine learning techniques provide a comprehensive framework for the discovery
of relationships between all types of data. For this analysis, we obtained a matrix (X) with
44 components (columns) and 115 combinations of them (rows) with which the tensile
strength and elongation at break are predicted (Y) from twenty-one articles [44–64]. It is
interesting for the scientific field to identify the components that favor certain material
properties; for this, the Pearson correlation can be used for level identification of propor-
tionality respect to property (see Table S2 to observe the table of Pearson correlations of
the raw data), but given the high presence of combinations and few variations, results are
not completely valid due to the high noise, making it difficult to select materials. In fact,
if the distribution and sparsity of the data are evaluated numerically, i.e., the difference
of one with the amount of non-zero data divided by the data size, a coefficient of 91.4%
is obtained. In addition, they can lead to model bias, as certain groups or characteristics
may be underrepresented or absent (Figure S1 shows the number of values for each of
the components (a) with their respective standard deviation (b)). The problem with the
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analysis of this type of data is that it becomes complex to measure the relationship of each
of the variables in terms of the observed properties.

Given the above, below are developed some classical techniques of ML for the identifi-
cation of the relationships between data and the development of models that complement
the course and knowledge for the development of scientific research with small datasets
and high level of sparsity.

3.1. Clustering Analysis

Clustering techniques are useful in identifying subgroups in all spatial dimensions.
Its ability to group points into compact and separate clusters can help reveal underlying
structures in the data and identify groups of similar points in a multidimensional space.
Thus, the K-means algorithm is a valuable tool in the exploration and analysis of unlabeled
data, facilitating pattern understanding and decision making based on the intrinsic structure
of the data. For the choice of the number of clusters, the Jambu elbow technique is used (see
Figure S2), where it is observed that there are four clusters before the inertia of the cluster
decreases considerably [38]. Figure 1 shows the distribution of each of the clusters using
principal component analysis (PCA), which projects each of the dimensions on the principal
planes of the data. In general, orthogonal behavior formed between the four groups of
points is observed, indicating that the data are distributed heterogeneously among each
dependent variable, i.e., some formulations favor only tensile stress or elongation at break
(purple and blue) and others favor in between (green and red). In addition, the figure
allows the agglomerability of the groups to be evaluated, and good agglomeration of the
data is observed, with the exception of some points that escape the average of the rest of
the group.
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Figure 1. Principal component visualization of clusters; it shows how each formulation is represented
in the two principal components.

Now, a relevant point of study for materials developers is to identify components that
allow desirable properties in terms of their specific application. As shown in Figure 2a–d,
the formulations are represented in each of the clusters in these heat maps, where each
combination (row) of the described components is presented on the x-axis (columns), and
the intensity of the color represents the relative value between 0 and 1 of the concentration of
the corresponding component (normalization is only for visualization). It can be observed
that the last two columns are reserved for the dependent variables’ tensile stress and
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elongation at break. That is, the heat map is like a large table where each row represents a
different formula for making the bioplastic film and each column represents the specific
ingredients one is using. The cells in the table indicate the concentration of the ingredient,
except for the last two columns as mentioned. If we analyze the intensity levels with respect
to the other clusters, they can be classified as follows:

• Cluster a: High elongation at break, low tensile strength (Figure 2a).
• Cluster b: Low elongation at break, medium tensile strength (Figure 2b).
• Cluster c: Low elongation at break, high tensile strength (Figure 2c).
• Cluster d: Medium elongation at break, low tensile strength (Figure 2d)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19 
 

 
Figure 2. Components and composition of normalized data distribution of (a) cluster containing 
formulations with high elongation at break capacity and low tensile strength, (b) cluster b contain-
ing formulations with low elongation at break capacity and medium tensile strength, (c) cluster c 
containing formulations with low elongation at break capacity and high tensile strength, and (d) 
cluster d containing formulations with medium elongation at break capacity and low tensile 
strength. 

From this analysis, it is interesting to observe how the components and level of con-
centrations are distributed according to each of the clusters, making it possible to identify 
the components and combinations that are most conducive to improving material perfor-
mance on both tensile strength and elongation at break. For example, if one wanted to 
improve the properties of elongation at break, cluster a or d shows the highest perfor-
mance. If one views rice starch, which is centrally located in both clusters a and d, one can 
understand how the film behaves at the same concentrations of agar, glycerol, and hy-
droxypropyl cassava starch powder, but with varying concentrations of rice starch, given 
that the color intensity is similar in the concentration of the constant ingredients (agar, 
glycerol, and hydroxypropyl cassava starch powder) but not in the case of rice starch, and 
it seems that at low concentrations of rice starch in this mixture, a greater elongation at 

Figure 2. Components and composition of normalized data distribution of (a) cluster containing
formulations with high elongation at break capacity and low tensile strength, (b) cluster b containing
formulations with low elongation at break capacity and medium tensile strength, (c) cluster c contain-
ing formulations with low elongation at break capacity and high tensile strength, and (d) cluster d
containing formulations with medium elongation at break capacity and low tensile strength.

From this analysis, it is interesting to observe how the components and level of concen-
trations are distributed according to each of the clusters, making it possible to identify the
components and combinations that are most conducive to improving material performance
on both tensile strength and elongation at break. For example, if one wanted to improve
the properties of elongation at break, cluster a or d shows the highest performance. If one
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views rice starch, which is centrally located in both clusters a and d, one can understand
how the film behaves at the same concentrations of agar, glycerol, and hydroxypropyl
cassava starch powder, but with varying concentrations of rice starch, given that the color
intensity is similar in the concentration of the constant ingredients (agar, glycerol, and
hydroxypropyl cassava starch powder) but not in the case of rice starch, and it seems that
at low concentrations of rice starch in this mixture, a greater elongation at break is obtained,
which is why they are in cluster a. In addition, it is possible to quantify this numerically
using the Pearson correlation tables for each of the clusters (Tables S3–S6).

It is important to note that the predictions and observations that can be made from
the literature synthesis are not inherently biased (especially on a small scale) since there
are a variety of reasons why a component might be advantageous for a certain type of
mixture and not for others, or even intrinsic variations in materials testing. To validate the
results obtained, the most relevant components that favor each property were compiled
in Table 1, together with the background information reported in publications other than
those used for the extraction described. This provides a point of reference regarding other
investigations of ingredient components and their impact on material performance. Table 1
identifies some of the additives used in combination with seaweed polysaccharide and
summarizes their impact on material performance with respect to the other sources. For
example, if calcium chloride is used, other sources listed in the table indicate that calcium
chloride is associated with improved mechanical strength. This is supported by the data
in cluster b in Figure 2b, where the combination of calcium chloride with alginate in the
presence of citric acid and gum ghatti demonstrates high tensile strength. In general,
we find that the results in the table are consistent with the clustering identified in the
extracted data.

Table 1. Identifies some of the complementary components to the seaweed polysaccharide base and
interprets their results with respect to property materials.

Property Ingredient Description References

Elongation at Break

Calcium chloride

The addition of calcium chloride of 0.08 g (1.6 wt.%) improves mechanical
properties of membranes due to the network that is formed between

calcium ions and carboxyl groups of alginate, but this is not necessarily
the case in the elongation at break.

[65,66]

Gelatin
Intermolecular interaction of gelatin–agar strengthened the film, showing

an increase in elongation at break due to the intermolecular forces
between two polymer chains.

[67,68]

Rice and cassava starch
Carrageenan films blended with rice or cassava starch showed

significantly higher elongation at break due to strong binding forces in the
compact crystalline region formed as a result of starch retrogradation.

[69,70]

Essential oil of cinnamon

The incorporation of essential oil of cinnamon into poly-ε-caprolactone
led to a reduction in the stretching ability of the film. Cinnamon agents

tend to slightly lower values of elongation at break in
polysaccharide films.

[71,72]

Corn oil
The addition of corn oil improved mechanical properties of films based

on protein isolate, gelatin, and sodium alginate, but this is not necessarily
the case in the elongation at break.

[73,74]

Polyvinyl alcohol (PVA) Alginate-based films shown an increase in elongation at break due to the
addition of PVA. [75,76]

Jaboticaba peel The addition of jaboticaba peel in the polymeric matrix film based on
carrageenan promoted a reduction in elongation at break. [77]

Sunflower oil
The addition of sunflower oil did not change the mechanical properties of
alginate films. The highest concentration of Syzygium cumini seeds extract
caused lower values of elongation at break in alginate/gum arabic films.

[78,79]

Olive oil The addition of plant oils to the formulation substantially increased
elongation at break. [62,80]

Virgin coconut oil Coconut oil provided films with higher flexibility and higher elongation
at break values of gelatin-based films. [81]
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Table 1. Cont.

Property Ingredient Description References

Tensile Strength

Gum ghatti The addition of gum ghatti in biodegradable sodium alginate edible films
increased the tensile strength. [50]

Citric acid The addition of citric acid significantly decreased the TS of the casing of
alginate films. [82,83]

Soybean oil The tensile strength decreased with increasing oil concentrations due to
the plasticizing effect from oil of alginate films. [84]

PolyethyleneGlycol
(PEG)

PEG is used as a plasticizer, improving the mechanical properties of
bioplastic film from seaweeds. [85,86]

Shikonin

Shikonin is used as a reinforcement. The gelatin/carrageenan film’s
mechanical properties did not change significantly by shikonin. But the
incorporation into carboxymetyl cellulose/agar films slightly improved

tensile strength, showing a reinforcing effect.

[49,87]

Anthocyanin
Addition of roselle anthocyanin showed a plasticizing effect in

polyvinylidene fluoride films. However, Kadsura coccinea extract added
to a chitosan, gelatin, and sodium alginate film increased tensile strength.

[88,89]

Starch extract A decrease in tensile strength was observed in starch/agar
composite films. [19,47]

Barbatimao extract
(Stryphnodendron

adstringens)

The incorporation of Stryphnodendron adstringens extract improved
mechanical properties of gelatin membranes. [90]

Cellulose extract The chitosan-sodium alginate-ethyl cellulose polyelectrolyte films
showed high tensile strength. [91]

Cottonni extract Eucheuma cottonii extract was incorporated as a biofiller to improve tensile
strength values of starch/agar composite films. [19]

3.2. Regressions Analysis

The regression models used are able to identify the relationships between the compo-
nents despite their high sparsity and the level of interaction between them, while tree-based
regression models have good flexibility in the design of prediction models. The results
obtained are shown in Table 2, which shows the performance indicators of the models for
the prediction of the tensile strength variables and elongation at break at the same time.
In general, it is observed that in all cases, the model is able to fit the training data (which
even occurs after overfitting in the case of gradient boosting), which does not imply a good
performance (R2) in the test data as in the case of elongation at break, but in terms of tensile
strength, most models are able to explain over 60% of the variance in the test data. In the
context of the predictor variables, it is clear that tensile strength is the best modeled, with
the highest test R2 for random forest (0.821), followed by gradient boosting (0.778), and
decision tree (0.661). However, for elongation at break, all models show a substantially
lower performance, with the test R2 for random forest being the highest with a value of
0.421. When both variables are considered together (tensile strength–elongation at break),
the decision tree model has a test R2 of 0.555, which is more acceptable than that of gradient
boosting, which has a test R2 of 0.467. Therefore, it is possible to indicate that the tensile
strength variable is more homogeneous than the elongation at break since the algorithms
have greater predictive capacity.

When looking all the error metrics in Table 2, it is clear that the variable “Tensile
strength” shows considerably lower error values compared to “Elongation at break” in
all models. For example, considering the random forest model, the MSE, RMSE, MAE,
MedAE, and RMSLE metrics for “Tensile strength” are 64.310, 8.019, 5.003, 2.632, and 0.468
respectively. These are notably lower than the corresponding values for “Elongation at
break”, which are 470.787, 21.698, 11.035, 4.590, and 0.474, respectively. This difference
becomes even more evident when we consider the MedAE, a metric that is especially robust
to outliers. Here, the MedAE for “Tensile strength” with random forest is 2.632, much
lower than that of 4.590 for “Elongation at break”. This indicates again that the model



Appl. Sci. 2023, 13, 11841 12 of 18

is more accurate and less affected by extreme values when predicting tensile strength.
Furthermore, if we look at the RMSLE, which is sensitive to the scale of the target variable,
we find that although the values are comparable, they are still slightly lower for “Tensile
strength” (0.468 for random forest) compared to “Elongation at break” (0.474 for random
forest). This suggests that the model is not only more accurate in absolute terms, but
that it also maintains this accuracy over different scales of the target variable. Therefore,
a detailed comparison of errors between the predictor variables reveals that the models
perform considerably better in predicting tensile strength, both in terms of error magnitude
and robustness to outliers and scale variability of the target variable. This observation
underscores the importance of data quality in developing and evaluating regression models
in sparse data contexts.

Table 2. Errors and predictive capability of the proposed regression models.

Predicted
Variable (s) Model Predictive R2 Train R2 Test MSE RMSE MAE MedAE RMSLE

Tensile strength
Decision tree 0.961 0.661 121.998 11.045 4.626 2.491 0.559
Random forest 0.939 0.821 64.310 8.019 5.003 2.632 0.468
Gradient boosting 0.999 0.778 79.891 8.938 5.201 2.162 0.465

Elongation at break
Decision tree 0.506 0.276 588.675 24.263 17.973 13.945 0.764
Random forest 0.931 0.421 470.787 21.698 11.035 4.590 0.474
Gradient boosting 0.997 0.156 686.075 26.193 11.886 3.881 0.490

Tensile
strength–elongation

at break

Decision tree 0.536 0.555 281.606 16.086 11.333 6.950 0.609
Random forest 0.930 0.650 232.919 14.324 8.540 3.801 0.555
Gradient boosting 0.996 0.467 408.516 17.086 8.341 2.428 0.433

It is essential to note that a higher test R2 generally suggests a more accurate model,
but its interpretation becomes more nuanced when considered in conjunction with other
error metrics. In the case of tensile strength, random forest has the highest test R2 (0.821),
and this correlates well with lower errors in all metrics (MSE of 64.310, RMSE of 8.019,
MAE of 5.003, MedAE of 2.632, and RMSLE of 0.468). Here, the test R2 and error metrics
show a consistent proportional relationship, where higher R2 means lower errors. However,
this relationship is not uniform across all predictor variables nor across all models. For
example, in the case of “Elongation at break”, random forest has a test R2 of 0.421, which
is significantly higher than the R2 of gradient boosting, which is 0.156. Despite this large
difference in R2, the MedAE for gradient boosting is 3.881, which is lower than the MedAE
of 4.590 for random forest. This is a clear case in which a higher test R2 does not necessarily
imply a lower error in all metrics, underscoring the importance of not relying exclusively
on R2 to assess model performance. Furthermore, the RMSLE metric, which is sensitive
to the scale of the target variable, provides unique insight into this relationship. Despite
having a lower test R2 in “Elongation at break”, gradient boosting shows an RMSLE of
0.490, which is comparable to the RMSLE of 0.474 for Random Forest. This indicates
that although Gradient Boosting may not capture all the variability of the variables, it is
relatively accurate at different scales, which is an aspect that the test R2 alone could not
reveal. Therefore, although there is a general trend in which a higher test R2 suggests
lower errors, this relationship is neither strictly linear nor uniform. Each error metric brings
an additional layer of complexity to this relationship, which makes the interpretation of
R2 richer and more contextual. It is crucial to consider these metrics together for a more
complete and nuanced assessment of model performance, especially in a sparse dataset.

Then, for simplicity Figure 3 shows (a, b, c) the tensile strength prediction graphs
for each of the models used. If we use the decision tree model as a reference, the random
forest model has an effect on decreasing the variance of the model [92], while the gradient
boosting model puts more emphasis on the reduction in bias [43,93].



Appl. Sci. 2023, 13, 11841 13 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19 
 

dicates that although Gradient Boosting may not capture all the variability of the varia-
bles, it is relatively accurate at different scales, which is an aspect that the test 𝑅𝑅2 alone 
could not reveal. Therefore, although there is a general trend in which a higher test 𝑅𝑅2 
suggests lower errors, this relationship is neither strictly linear nor uniform. Each error 
metric brings an additional layer of complexity to this relationship, which makes the in-
terpretation of 𝑅𝑅2 richer and more contextual. It is crucial to consider these metrics to-
gether for a more complete and nuanced assessment of model performance, especially in 
a sparse dataset. 

Then, for simplicity Figure 3 shows (a, b, c) the tensile strength prediction graphs for 
each of the models used. If we use the decision tree model as a reference, the random 
forest model has an effect on decreasing the variance of the model [92], while the gradient 
boosting model puts more emphasis on the reduction in bias [43,93]. 

   a   b   c 

   
Figure 3. Tensile stress evaluations for (a) decision tree prediction, (b) random forest prediction, 
and (c) gradient boosting prediction. 

Therefore, the level of fit is usually good with this type of model. For the results ob-
tained independently of whether both dependent variables are predicted or each one is 
predicted separately, or the use of different models, the outliers are the most responsible 
for the increase in bias and the variance of the models. For example, it is no coincidence 
that the values farthest from the prediction line in Figure 3 are the values with the highest 
prediction error since they are in the last quintile. Finally, it is important to point out that 
the most stable model with the extracted data was the random forest model, so its use is 
recommended for the analysis of scarce and highly dispersed data. This model can be 
used to optimize the design of biodegradable polymeric materials and to support decision 
making in the biomaterials manufacturing industry. However, it is important to note that 
the study was conducted on a small scale and with a limited number of formulations and 
properties, so further research is needed to validate the results and extend the analysis to 
a larger dataset. 

4. Conclusions 
In the present study, we address the analytical challenge of synthesizing biopolymer 

films from a sparse data matrix. Through the application of advanced clustering algo-
rithms, we sought to explore latent structures within the data, allowing a deeper under-
standing of the underlying relationships in the synthesis process. In addition, the effec-
tiveness of predictive regression models based on decision trees to predict key properties 
of the resulting movies is evaluated. In this context, it is important to highlight the rele-
vance of analyzing a limited and sparse dataset. If predictive machine learning techniques 
are shown to be effective in this type of environment, they could be of great use to entre-
preneurs and scientists working with limited amounts of data. These results could pro-
vide valuable guidance for their innovation research and development (I + D) efforts in 

Figure 3. Tensile stress evaluations for (a) decision tree prediction, (b) random forest prediction, and
(c) gradient boosting prediction.

Therefore, the level of fit is usually good with this type of model. For the results
obtained independently of whether both dependent variables are predicted or each one is
predicted separately, or the use of different models, the outliers are the most responsible
for the increase in bias and the variance of the models. For example, it is no coincidence
that the values farthest from the prediction line in Figure 3 are the values with the highest
prediction error since they are in the last quintile. Finally, it is important to point out that
the most stable model with the extracted data was the random forest model, so its use
is recommended for the analysis of scarce and highly dispersed data. This model can be
used to optimize the design of biodegradable polymeric materials and to support decision
making in the biomaterials manufacturing industry. However, it is important to note that
the study was conducted on a small scale and with a limited number of formulations and
properties, so further research is needed to validate the results and extend the analysis to a
larger dataset.

4. Conclusions

In the present study, we address the analytical challenge of synthesizing biopolymer
films from a sparse data matrix. Through the application of advanced clustering algorithms,
we sought to explore latent structures within the data, allowing a deeper understanding
of the underlying relationships in the synthesis process. In addition, the effectiveness
of predictive regression models based on decision trees to predict key properties of the
resulting movies is evaluated. In this context, it is important to highlight the relevance of
analyzing a limited and sparse dataset. If predictive machine learning techniques are shown
to be effective in this type of environment, they could be of great use to entrepreneurs and
scientists working with limited amounts of data. These results could provide valuable
guidance for their innovation research and development (I + D) efforts in the absence of
access to extensive datasets, promoting significant advances in the synthesis of biopolymer
films and related fields.

The proposed algorithms are able to handle noisy data and scarce variables, which
is crucial when working with complex and heterogeneous datasets. In addition, they can
capture nonlinear relationships and handle large datasets, which provides the ability to
scale these types of studies and thus achieve more accurate and reliable predictions.

The study identified tensile stress and elongation at break properties as the most recur-
rent and relevant properties in the analysis of seaweed biopolymer film formulations. This
highlights the importance of these properties in the evaluation and design of biodegradable
polymeric films. With the help of these predictive models, component concentrations can
be obtained, and properties can be predicted efficiently. This enables the acceleration of
the development of new biodegradable polymeric materials. The use of machine learning
algorithms can significantly improve the efficiency and sustainability of the biopolymer
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industry by enabling more accurate and reliable predictions of the properties of biopolymer
films made from seaweed. Furthermore, the proposed methodology can be extended
to other types of biomaterials and can be used to optimize the design of biodegradable
polymeric materials for various applications.
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Structure of data extraction in table form. Table S2: Pearson correlation for raw data with respect
to mechanical properties. Table S3: Pearson correlation for cluster a containing formulations with
high elongation at break capacity and low tensile strength. Table S4: Pearson correlation cluster b
containing formulations with low elongation at break capacity and medium tensile strength. Table S5:
Pearson correlation for cluster c containing formulations with low elongation at break capacity and
high tensile strength. Table S6: Pearson correlation for cluster d containing formulations with medium
elongation at break capacity and low tensile strength.
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