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Abstract: Ships serve as crucial transporters of cargo and passengers in substantial volumes and
operate for a long time; therefore, an efficient maintenance system is essential for economical and
stable vessel operation. In this study, a machine learning based approach was developed that
considers the rapidly changing load fluctuations on ships and large variability in normal operation
data to apply predictive maintenance to the propulsion engines of ships. After acquiring propulsion
engine data from the alarm monitoring system of a ship, data and maintenance items were analyzed to
select the data that could determine the anomalistic symptoms of the propulsion engine. Further, the
main engine condition criterion value was defined as the factor for anomalistic symptom prediction.
An engine anomalistic symptom judgment algorithm that can be practically used for ship maintenance
prediction was developed and verified using machine learning.

Keywords: ship propulsion engine; predictive maintenance; alarm monitoring system; machine
learning; anomalistic symptom

1. Introduction

Ships are a means of transporting cargo and passengers in large quantities and gener-
ally operate for a long time, 20–30 years, after construction. And the management costs
(e.g., operating and maintenance costs) required until the ship is abandoned are higher
than the cost of construction [1–3]. Depending on the type of ship, the maintenance costs
for parts such as engines and machinery account for 10–30% of the total management costs
of the ship [1–4]. In addition, the actual financial burden related to maintenance is greater
when considering improper maintenance and unforeseen breakdowns and disruptions to
ship operations due to repairs [4]. Therefore, an efficient maintenance process is essential
for the economical and reliable operation of ships [3–10].

Predictive maintenance (PdM) has been studied for propulsion engines with high
maintenance costs in ships. PdM detects the performance and condition of machines
and systems to plan for cases of machine failure and maintenance, making it possible to
maintain the best operation status and improve economic efficiency along with operational
efficiency [11–14]. PdM has been utilized in public transportation, such as aircraft [15,16].

As shown in Table 1, although previous studies detected frequent load fluctuations,
which rely on the operational characteristics and environmental conditions of ship engines,
they could not detect abnormal operating conditions due to actual engine abnormali-
ties [6,7,9]. Therefore, there are limitations in using the results of existing studies for
PdM. Accordingly, a methodology is required that can intuitively detect any anomalistic
symptoms that cause failures and defects during normal operating conditions, rather than
making predictions immediately before the occurrence of failures, by considering various
and rapidly changing load fluctuations on ships and the variability in their normal opera-
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tion data. Additionally, to implement PdM through real time data acquisition on a ship, a
method is required to efficiently determine the engine status with minimal factors.

Table 1. Literature review (source: own compilation based on the [6,7,9]).

Study Content Limitation

Park et al. [6,9]

— Computed the correlation coefficients of
propulsion engine scavenging and scavenging
receiver temperature, piston cooling oil outlet
temperature, main bearing oil temperature, fuel
viscosity, and temperature sensor data acquired from
the ship and simplified the data based on the data
with high correlation coefficients.
— Thereafter, an algorithm for detecting defect data
was established through regression analysis, and an
algorithm for predicting propulsion engine failure
was proposed and verified through data analysis pre
and post failure.

— The detected defect is a serious defect in the engine
operation owing to piston ring failure and oil leakage
of the propulsion engine, but it is not a defect with a
high frequency of occurrence.
— The sensor data utilized for defect detection cannot be
used to readily assess the causality posed by the defect.

Bae et al. [7]

— Proposed a statistical method to support
maintenance decisions by monitoring the anomalous
status of the engine by classifying parameters that
can cause abnormalities using a bootstrap based T2
multivariate chart of data acquired from the
propulsion engines of ships.
— It classifies the collected engine data into five
groups with similar characteristics through statistical
analysis, prepares normal standards for each group,
sets an upper limit to detect an abnormal state of the
engine, and monitors the engine condition.

— Ship engines bear a wide range of load fluctuations
under various operating characteristics, producing a
wide range of normal operating conditions of related
data. Therefore, the proposed method may classify the
acquired data as abnormal data owing to rapid
temporary load fluctuations. Thus, normal operation
data can be assessed to be abnormal.
— Whether the data are beyond the upper bound of
management cannot be easily determined owing to
the failures or abnormal conditions of the actual
engine through the statistical analysis results of the
collected data.

In this study, propulsion engine data such as revolutions per minute (RPM), power,
engine load, exhaust gas temperature, lubricant and coolant temperature, cylinder pressure,
and scavenge air temperature were acquired from the alarm monitoring system (AMS)
of a ship and preprocessed based on the characteristics of the propulsion engine control
mode. Further, the AMS data and maintenance items related to the propulsion engine
were analyzed to select data that can determine the anomalistic symptoms of a propulsion
engine. Thereafter, the selected cylinder exhaust gas temperature (CET) and maximum
cylinder combustion pressure (CCP) for the intuitive detection of anomalistic symptoms
in the propulsion engine were employed to define the main engine condition criterion
value (MCCV). To improve the efficiency of anomalistic symptom detection, a propulsion
engine anomalistic symptom judgment algorithm was established using the revised MCCV
(RMCCV) reflecting engine operating conditions and average data based on the voyage.
Subsequently, an algorithm for detecting anomalistic symptoms during normal propulsion
engine operation was developed and verified using machine learning, affording a practical
engine anomalistic symptom detection algorithm applicable to ship PdM.

2. Materials and Methods
2.1. Experimental Equipment

In this study, the ship under investigation was a 10,000 ton class training ship equipped
with various technologies, such as a dynamic positioning system that uses a global position-
ing system to maintain the target position of the ship. Additionally, it features a selective
catalytic reactor system to respond to environmental regulations. The ship was equipped
with a controllable pitch propeller (CPP) via the propulsion engine load and the blade angle
of the propeller to control speed, unlike general ships. The ship had a total length of 133 m,
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a mold width of 19.4 m, and a sailing speed of 17.7 knot. The detailed ship specifications
are listed in Table 2.

Table 2. Specifications of the ship used in this study (source: own compilation based on the ship
manual).

Description Specification

Gross tonnage 9196 ton

Length overall (L.O.A) 133.0 m

Breadth (Mlb) 19.4 m

Speed (design draft, 85% MCR with 15% S.M) 17.7 knot

Range of endurance 14,500 n.miles

Number of people on board 239 persons

Controllable pitch propeller WARTSILA D 4000 MM × 4 blades

Ships are equipped with an AMS, loading and unloading systems, and engine room
systems. The AMS collects and stores sensor data from each system. Therefore, ship
operation data were acquired through the AMS.

Two stroke diesel engines are usually used as the propulsion engines of medium sized
and large ships because they are advantageous in terms of output and weight considering
the size of the ship. The ship to be studied was a medium sized ship with a two stroke
diesel engine used as the propulsion engine. The propulsion engine was a six cylinder
engine with a cylinder diameter of 400 mm and a cylinder stroke of 1770 mm, and the rated
output was 6618 kW. The detailed specifications of the propulsion engine are presented in
Table 3.

Table 3. Specifications of the propulsion engine used in this study [17].

Description Specification

Type MAN B&W 6S40ME-B9.5

Rated output 6618 kW

Diameter of the cylinder 400 mm

Stroke 1770 mm

Number of cylinders 6

Mean effective pressure 20 bar

Maximum cylinder pressure 185 bar

Turbo charger HYUNDAI-ABB, 1 × A165L37

The propulsion engine of a ship is operated by an engine telegraph and controlled
according to the engine control mode, as shown in Table 4, based on the RPM of the engine
to control the ship speed. The control modes are divided into two major modes: the
maneuvering mode of dead slow, slow, half, and full, four steps that can quickly control
engine loads, such as arrival and departure, and a constant speed navigation mode (cruising
mode) of navigation full. As described above, the ship was equipped with a CPP; thus, the
pitch of the propeller was simultaneously controlled according to the engine mode.

The AMS installed in the engine room of the ship monitors factors such as temperature
and pressure that can determine the operation status of mechanical systems, such as
engines and pumps. In addition, the AMS is built to control the engine and mechanical
systems. Engine monitoring and alarm items (lists) are composed of factors that directly
and indirectly affect engine combustion and factors that affect mechanical defects.
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Table 4. Engine telegraph control stage (source: own compilation based on the ship manual).

Steps Stop Dead Slow Slow Half Full Navigation Full

Speed
(Knot)

Ahead - 5.5 8.0 10.5 13.5 17.7

Astern 3.6 5.3 7.3 8.7 9.8

RPM
Ahead

0
73 88 97 116 141

Astern 110 121 127 135 141

Pitch
(%)

Ahead - 50 65 75 83 97

Astern −40 −50 −55 −62 −65

In total, 104 types of data were collected by checking numerical data, such as temper-
ature and pressure, that can be analyzed; these data identify the operating condition of
the propulsion engine in the AMS in the engine room. Considering changes in the marine
environment and the influence of weather, data from eight voyages (21071, 21081, 21091,
21101, 21102, 21112, 21121, and 21122) acquired from the hot season (July) to the cold season
(November) were utilized for this research. In addition, anomalistic symptom data (21123)
were established based on the results of a previous study [18] on the implementation of
abnormal symptoms using engine simulation and the analysis of abnormal operation items
and maintenance determination factors of the engine to verify the anomalistic symptom
judgment algorithm.

2.2. Experimental Methods

Machine learning is an artificial intelligence based system that learns from experience
and improves performance through prediction and technology that develops and builds
algorithms for it [19–21]. Therefore, machine learning was used to develop an anomalistic
symptom prediction algorithm for propulsion engines.

The data must be free from abnormal data to ensure the reliability of results during
data analysis and machine learning. The data classification that reflects the characteristics of
the target to be analyzed, such as the engine, must be clear. In addition, the reliability of data
processing is essential because machine learning results are derived in a different direction
from the target if factors that are not related to the abnormal data or the analysis target
are included. Therefore, the data collected by the data processing algorithm, considering
the control characteristics of a propulsion engine constructed in a previous study [3], were
preprocessed and then classified based on the engine telegraph control mode and used in
the study [3]. The data preprocessing process is shown in Figure 1.

Among machine learning methods, the regression technique was used to derive the
main factors and numerical data related to the improvement of the propulsion engine
anomaly detection algorithm. The estimated regression model, through the regression
algorithm, can determine the predicted value of the response variable, the linear relation
between the response and explanatory variables, and the significance and influence of the
explanatory variable correlated with the response variable [22,23]. Therefore, it was used to
develop an anomalistic symptom judgment algorithm to examine the relationship among
the variables of the propulsion engine.

In this study, a linear regression model was used among the regression techniques.
The linear regression model is the most representative analysis method among regression
algorithms, and it optimizes the straight regression line that minimizes the difference
between the predicted and actual values. Using the collected data shown in Figure 2, the
relation between the explanatory variable (feature) and the response variable (value) was
estimated linearly, and the setting of the appropriate weight (W) and bias (b) was the key
to linear regression [22,23].
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Figure 2. Simple linear regression model (source: own elaboration).

The mean absolute error (MAE), R2, and R2
adj of the loss functions were used, consid-

ering the various data scale ranges and normal operating ranges of the propulsion engine
data, to evaluate the efficiency of the machine learning algorithm in implementing the
collected data.

As shown in Equation (1), the MAE averages the errors between the collected and
predicted values and expresses them as absolute values. It is less affected by outliers than
other loss functions and shows the average error. The MAE depends on the data scale and
is used as a regression performance evaluation index [24–29].

R2 is a variance based evaluation index in the range of 0–1, as described in Equation (2).
As it gets closer to 1, the accuracy improves and the influence of the data scale diminishes,
making it possible to determine the relative performance. As the number of explanatory
variables increases, R2 approaches 1 and is affected by the number of data points and
response variables [24,30].

R2
adj is the value obtained by correcting R2 with the number of samples and the

number of independent variables, as shown in Equation (3). It is smaller than or equal to
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R2, and the prediction accuracy improves as it approaches 1. Moreover, if R2
adj is negative,

the regression algorithm cannot be used. When R2
adj is considerably smaller than R2, an

unnecessary explanatory variable exists in the algorithm [24,30].

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (1)

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − yi)

2
, (2)

R2
adj = 1− (n− 1)

(n− p)(1− R2)
, (3)

where n is the sampling number, yi is the collected value, ŷi is the predicted value, yi is the
collected value average, and p is the explanatory variable number.

The machine learning algorithm was developed using PythonTM 3. Python is designed
to easily use various libraries necessary for data loading and visualization, image process-
ing, and statistics. Few errors occur due to complex code configurations with a simple
grammar configuration, and library linkage with other programming languages is easy;
thus, the efficiency of the developed algorithm is high [19,31,32].

The utilization of the entire dataset collected by the AMS for detecting anomalistic
symptoms and determining maintenance requires considerable time and effort, from
algorithm processing to the drawing of results. Moreover, unnecessary data are included in
the data used to determine anomalistic symptoms. Therefore, the factors used to determine
anomalistic symptoms and maintenance must be identified by considering propulsion
engine characteristics.

Abnormal operation issues that may occur during engine operation were analyzed
by referring to propulsion engine related alarms and monitoring factors in the AMS, the
propulsion engine related maintenance items of the planned management system, and the
engine manual. Therefore, the item commonly considered to be the cause of abnormal
operation was determined to be an exhaust system problem. An increase in the exhaust gas
temperature is a major issue in abnormal engine operations, and the CET was selected for
determining anomalistic symptoms of propulsion engines as the index that could directly
determine the combustion state of the engine. In addition, the CCP was used to directly
determine the combustion state in medium sized or large ships. Therefore, the CCP was
also selected as a factor for determining the anomalistic symptoms of the propulsion engine.

The CET and CCP were derived as the criteria for determining anomalistic symptoms.
The maintenance of the propulsion engine tends to increase CET and decrease CCP during
abnormal combustion due to problems related to fuel systems and exhaust valves. There-
fore, a reference factor capable of easily confirming the tendency of variation in the two
factors is required [17,33,34]. The increase in reference factors for determining anomalistic
symptoms makes the machine learning algorithm complicated, reducing the effectiveness
of predicting anomalistic symptoms for ships in real time. Therefore, one factor that can
intuitively grasp the trends of the two factors was defined to reflect the engine’s status, and
an anomalistic symptom judgment algorithm was constructed.

The MCCV that can determine the fluctuation trends of the two factors by analyzing
the collected CET and maximum CCP data is described in Equation (4).

MCCV = CET − CCP, (4)

The MCCV is the difference between the CET and the maximum CCP. The MCCV
increases because of the increase in the CET or decrease in the maximum CCP or their
simultaneous occurrence owing to an abnormal exhaust or fuel valve. After setting the
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MCCV range in the normal operation state, it is possible to determine the anomalistic
symptoms of the engine by understanding the trend of the MCCV.

The data on repetitive and continuous driving conditions are required for setting
the MCCV for normal driving conditions to determine the anomalistic symptoms of the
propulsion engine. Therefore, a normal operation status database was constructed by
setting the conditions shown in Table 5 through engine data analysis.

Table 5. Criteria for constructing the normal operation state database for the propulsion engine
(source: own elaboration).

Classification Criterion Selection Reason

Navigation full mode The section where the engine is controlled at a
constant target RPM, and the load fluctuation is small.

(ME ORDER RPM > 135 RPM)

Avoids the 135 RPM section, which is the set standard
for full astern in the maneuvering mode.

The section where constant speed navigation is
performed at the target RPM, not the section where
RPM increases to reach the target speed during the

navigation full mode.

CPP PITCH FEEDBACK ≥ 93 CPP pitch is >93% when ORDER RPM > 135 RPM in
the navigation full mode.

As shown in Table 6, the criteria for determining engine anomalistic symptoms with
the MCCV were set to concern (1) and abnormal (2) levels. The MCCV range of the normal
operation state for each cylinder was set to the maximum value of the MCCV. The normal
range of the MCCV was set to below the maximum value of the MCCV without a minimum
standard because no minimum limit existed for the alarm and operating standard of the
exhaust gas temperature in the AMS and engine manual.

Table 6. Criteria for MCCV abnormality judgment for the propulsion engine (source: own elaboration).

Level Criterion

Concern (1) Maximum MCCV value during normal operation < (1) < maximum
MCCV value + 10

Abnormal (2) Maximum MCCV value + 10 < (2)

The concern level involves the section from the time when the engine is out of the
normal operation state to the time when it is determined to be in an abnormal operation
state. It is a step to monitor whether abnormal operations are caused by temporary factors,
such as emergency operations or marine environments, or actual exhaust valve problems.
As shown in Table 6, the concern level was set for each cylinder from the maximum MCCV
value in normal operation to the maximum MCCV value plus 10.

The abnormal level is a stage in which the cause of abnormal operation is diagnosed,
and maintenance is deemed necessary by judging that the engine is operating abnormally
beyond the concern level and showing anomalistic symptoms. As shown in Table 6, the
interval exceeding the concern level was set as the abnormal level.

The algorithm for determining the anomalistic symptoms of the propulsion engine
was established and verified based on the MCCV constructed as described above and the
database of normal operating conditions.

The operating conditions of the propulsion engine rapidly change in real time based
on the environment, such as sea routes and conditions. Accordingly, the MCCV changes
rapidly. Therefore, MCCV correction for setting the normal range of a constant MCCV
and data simplification for noise minimization were performed to determine anomalistic
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symptoms. An improvement algorithm was constructed by deriving a revised MCCV for
improving the performance of the anomalistic symptom determination algorithm.

A correlation analysis of the acquired data was conducted to select the main factors
necessary for MCCV correction. The Pearson correlation coefficient used in the correlation
analysis is a quantification of the linear correlation between variables X and Y. It is obtained
covariance of two variables divided by the product of each standard deviation, and it is a
correlation coefficient commonly used in various categories [35,36]. Figure 3a shows the
result of a repeated correlation analysis of the data acquired in all sections of the engine
control telegraph based on cylinder 1, excluding factors that are not related to or have little
correlation with engine combustion. The factors necessary for the MCCV correction were
first selected by analyzing the correlation between the CET and the maximum CCP, which
are the calculation factors for the MCCV, and other data. Then, a secondary correlation
analysis was performed using only the data of the navigation full mode section, which is
the criterion for determining anomalistic symptoms; the results are shown in Figure 3b.
In the results of the correlation analysis in all operation modes, as a factor that drastically
affects CET in the case of propulsion engine scavenging air temperature and pressure, the
correlation coefficient of the scavenging air pressure was high at 0.85, and the correlation
coefficient of the scavenging air temperature was low at 0.56. However, in the navigation
full mode, the scavenging air temperature showed a high correlation of 0.82, and the
scavenging air pressure was 0.76, which is lower than the result of the correlation analysis
under all operation modes.

The scavenging air temperature (ME SCAV. AIR RECEIVER TEMP.) of the ship engine
is configured to maintain a constant temperature through the air cooler. In general, an
air cooler is used to reduce the high scavenging air temperature because the air supplied
through the supercharger increases as the engine load increases. Therefore, because the
temperature change in the engine is not large, the correlation of the scavenging air tem-
perature is low, and the correlation of the scavenging air pressure is high in the analysis
results of the operation modes.

The data in this study were acquired from a summer voyage in July to a winter voyage
in December. In addition, navigation full is the mode in which engine load fluctuations
are small, and constant speed navigation is performed at a high load above a certain level.
There was no device that could increase the scavenging air temperature beyond a certain
temperature, although the outside air temperature continued to decrease from July to
December due to seasonal factors. Therefore, it is determined that the correlation between
the CET and scavenging air temperature increases when the temperature of the scavenging
air supplied to the engine decreases as the voyage progresses in the navigation full mode.

The engine load (ME LOAD), scavenging air pressure (ME SCAV. AIR RECEIVER
TEMP.), and scavenging air temperature (ME SCAV. AIR RECEIVER IN PRESS.) were
selected as factors for improving the MCCV correction anomalistic symptom judgment
algorithm considering the correlation analysis results of all modes and the navigation full
mode and their influence on engine combustion. Each correction factor was determined
through the regression analysis of CET and the maximum CCP as the MCCV component
factors and the correction factor selected as above, and the regression coefficient of each
correction factor was derived for each cylinder and used for MCCV correction.

Data simplification and MCCV correction criteria of steady state databases were set
through data row frequency analysis under the same conditions based on ME ORDER
RPM and VOYAGE considering propulsion engine control and operation characteristics
and used to improve the MCCV algorithm.
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The correction equation for calculating RMCCV, which is the correction value of the
MCCV, is described in Equation (5) using the regression coefficient and correction standard
coefficient of each correction factor derived. An improvement algorithm was built, and the
results were analyzed.

RMCCV =


CET

+


(ELR ∗ (LC− CL))

+(ESTR ∗ (STC− CST))

+(ESPR ∗ (SPC− CSP))




− {CCP + [CPLR ∗ (LC− CL)]} (5)
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where LC is the load criterion, STC is the scavenge temperature criterion, SPC is the
scavenge pressure criterion, CPLR is the combustion pressure/load regression coeffi-
cient, ELR is the exhaust temperature/load regression coefficient, ESTR is the exhaust
temperature/scavenge temperature regression coefficient, ESPR is the exhaust tempera-
ture/scavenge pressure regression coefficient, CL is the collected load, CST is the collected
scavenge temperature, and CSP is the collected scavenge pressure.

The RMCCV is calculated as the difference between the CET correction value and
the maximum CCP correction value. The CET correction value multiplies the difference
between the correction reference coefficient (LC, STC, and SPC) of each of the three selected
correction factors (engine load, scavenging air pressure, and scavenging air temperature)
and the collected correction factors (CL, CST, and CSP) by the calculated correction factor
regression coefficient (ELR, ESTR, and ESPR). The three derived correction values are
calculated by combining them with the CET. The maximum CCP correction value is
calculated by multiplying the difference between the LC and the CL by the CPLR and then
combining it with the obtained CCP.

The propulsion engine anomalistic symptom judgment algorithm built based on the
MCCV and the RMCCV was verified using the entire dataset and average data, and the
validity of the algorithm was confirmed by comparison.

3. Results

Figure 4 shows the exhaust gas temperature and maximum combustion pressure in all
voyages, including the anomaly data of cylinder 1. It increases with increasing RPM of the
engine, and the exhaust gas temperature and combustion pressure in the same RPM section
change considerably depending on the operating environment, such as the engine load.
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Figure 4. Conditions of cylinder 1. (a) EXH: exhaust gas temperature; (b) MAX: cylinder pressure
(source: own elaboration, Python 3.8.3).

In addition, the high temperature alarm standard of the propulsion engine cylinder
exhaust gas in the AMS is 450 ◦C (yellow dotted line in Figure 4a, the standard temperature
for propulsion engine SHUT DOWN or SLOW DOWN is 470 ◦C (red dashed line in
Figure 4a)). Therefore, if the temperature of the cylinder exhaust gas is less than 450 ◦C,
it is determined as a normal operation state. As shown in Table 7, the average exhaust
gas temperature of cylinder 1 during the voyages was 323.9 ◦C. The temperature range
is from a minimum of 40.1 ◦C to a maximum of 378.6 ◦C. There is a big difference from
the high temperature alarm standard, and the normal operating condition range is wide.
Therefore, the data of VOYAGE (21123) with anomalistic symptoms are also included in
the normal operating range, and criteria and algorithms for determining abnormal signs
are required. Thus, a propulsion engine anomalistic symptom judgment algorithm was
constructed using the MCCV via Equation (4).
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Table 7. Condition data of cylinder 1 (source: own elaboration).

CYL1 EXH. Gas Temp. (◦C) CYL1 MAX. PRESS. (kgf/cm2)

Mean 323.9 153.6
Std. 50.3 31.2
Min. 40.1 43.8
Max. 378.6 198.4

Tables 8 and 9 present the results of the CET and maximum CCP from the normal
operating state database of the propulsion engine. When the propulsion engine is operated
at a constant speed of 133 RPM or higher, the minimum/maximum difference in the CET
is ~60 ◦C, depending on the operating environment of the engine, and the average exhaust
gas temperature of each cylinder is different. The maximum CCP varies from cylinder
to cylinder, with a minimum/maximum difference of ~60 kgf/cm2; the average pressure
differs from cylinder to cylinder. Therefore, it is necessary to set the standard operating
range of the MCCV for each cylinder.

Table 8. Cylinder exhaust gas temperature data (source: own elaboration).

Cylinder 1 2 3 4 5 6

Mean (◦C) 347.6 359.3 356.6 361.1 362.4 370.0
Std. (◦C) 5.7 6.8 7.9 7.1 7.9 6.1
Min. (◦C) 328.7 332.1 329.0 335.9 335.5 346.3
Max. (◦C) 374.4 391.7 385.6 393.1 397.9 401.9

Table 9. Cylinder combustion pressure data (source: own elaboration).

Cylinder 1 2 3 4 5 6

Mean (kgf/cm2) 172.6 173.4 174.5 174.1 174.8 175.0
Std. (kgf/cm2) 8.8 8.7 8.5 8.7 9.0 8.7
Min. (kgf/cm2) 142.1 143.0 144.9 144.3 143.8 144.8
Max. (kgf/cm2) 198.4 198.4 198.1 200.4 200.2 201.2

Figure 5 shows the MCCV data of cylinder 1 in a normal operating state for each voy-
age based on the running time and RPM. The MCCV tended to decrease owing to changes
in the navigating environment, such as changes in ME ORDER RPM and the lowering of
the scavenge air temperature with the progression of the voyage. The yellow dotted line in
Figure 5 is the Concern (1) level, and the red dashed line is the Abnormal (2) level.
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Table 10 lists the MCCV data of cylinder 1 for all normal driving conditions. The
average MCCV is 175.0, the minimum MCCV is 142.2, and the maximum MCCV is 211.5;
thus, the maximum/minimum difference in the MCCV is 69.3, and the standard deviation
is 11.6. The deviation resulted from the characteristics of engine control, where the load
fluctuates in real time.

Table 10. MCCV data under the normal operating conditions of cylinder 1 (source: own elaboration).

Mean Std. Min. 25% 50% 75% Max

175.0 11.6 142.2 166.2 174.7 182.5 211.5

Figure 6 shows the results of applying the entire dataset containing voyage 21123 data
with anomalies to the MCCV based anomalistic symptom determination algorithm. Because
the maximum MCCV for cylinder 1 was 211.5, the concern level was set to 212–222, and the
abnormal level was set to more than 222. Figure 6a shows the results based on the running
time of the propulsion engine. The MCCV of voyage 21123 with abnormalities tends to
increase with the operating time. However, the abnormalities could not be determined
from the results of this algorithm, as they tend to appear in the range below the concern
level of the MCCV. Figure 6b shows the results based on RPM; the data of voyage 21123
with anomalies were located at the bottom of the steady state data group. In addition,
determining anomalistic symptoms was impossible because of the difference between the
concern level criteria of the MCCV. Anomalistic symptoms cannot be detected based on
the MCCV set owing to changes in the normal operating range of the MCCV caused by
major factors, such as weather conditions, the marine environment, and constant speed
navigation target RPM, which differ for each voyage.
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The following presents the results of algorithm verification conducted using RMCCV,
a correction value for MCCV that considers changes in the engine operating environment
and conditions to improve the abnormality detection performance of the MCCV based
algorithm. The data index frequency count analysis revealed the requirement for the
RMCCV based algorithm under the same operating conditions, and the regression analysis
presented the results for deriving the MCCV correction factor and its coefficient. The
correction standard coefficients were set accordingly.

To minimize noise data in the steady state database, simplify the data, and set revision
standards, temporary driving data before reaching the target RPM were excluded from
the navigation full mode steady state driving data. Additionally, only the data with a
data index (row) frequency count of ≥1000 EA based on the same ME ORDER RPM
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and VOYAGE were extracted to ensure reliable machine learning results and anomaly
detection for continuous and repetitive driving conditions. Table 10 shows the division
into 12 ME ORDER RPMs, with partial overlapping existing for ME ORDER RPMs for each
voyage, confirming their operation under the changing conditions of each voyage. Marine
propulsion engines experience frequent load fluctuations depending on sea conditions,
even at the same ME ORDER RPM, resulting in large fluctuations in the engine load, CET,
CCP, and other data. However, determining anomalistic symptoms in real time using all
voyage data has limitations, necessitating improved algorithm reliability through reduced
algorithm processing time and minimized noise data. Therefore, the average values of
data with a frequency count of >1000 EA based on ME ORDER RPM and VOYAGE were
derived (Table 11) and set as the steady state reference data. Furthermore, data analysis
and correction were performed to set the normal range of consistent MCCVs according to
factor changes.

Table 11. Average data of cylinder 1 for normal operating conditions (source: own elaboration).

ME Order
RPM Voyage RPM Load

(%)

Scav. Air
Temp.
(◦C)

Scav. Air
Press.

(kgf/cm2)

Exh. Gas
Temp.
(◦C)

Cyl. Max.
Press.

(kgf/cm2)

Cyl. Comp.
Press.

(kgf/cm2)

136.1 21081 136.0 72.7 44.5 2.1 350.2 163.2 119.6
136.8 21091 136.7 74.1 43.3 2.2 347.1 168.8 126.1
136.9 21071 136.8 71.8 44.4 2.1 354.0 159.2 115.9
136.9 21101 136.8 76.2 42.5 2.4 345.5 176.4 138.2
137 21071 136.9 72.8 44.3 2.1 352.4 163.3 120.0
137 21101 136.9 76.3 42.7 2.4 346.9 176.7 138.7
137 21102 136.9 77.1 40.6 2.4 345.2 182.1 144.0

137.1 21081 137.0 74.0 45.5 2.2 349.2 168.1 124.9
137.1 21101 137.0 77.3 43.4 2.4 350.2 180.0 145.1
137.1 21122 137.0 76.9 34.6 2.2 339.5 179.0 143.3
137.3 21081 137.2 73.9 43.9 2.2 348.2 167.9 124.7
137.4 21081 137.3 73.8 43.8 2.2 348.0 167.3 124.2
137.5 21081 137.4 74.9 44.1 2.2 350.2 171.2 128.1
137.5 21101 137.4 78.3 43.0 2.5 350.7 181.3 147.0
137.5 21112 137.4 76.7 34.7 2.4 338.6 177.6 141.6
137.6 21071 137.5 75.2 45.3 2.2 353.4 171.9 128.3
137.8 21071 137.7 75.5 45.0 2.2 353.3 173.1 129.7
138.6 21122 138.5 79.0 35.7 2.5 343.9 183.6 148.5
138.8 21071 138.7 75.9 44.6 2.2 355.6 175.3 131.7
138.8 21122 138.7 79.3 36.4 2.5 346.2 183.7 149.4

The obtained results of the regression analysis of the CET and maximum CCP, which
are the components of the MCCV and the selected MCCV correction factor, are as follows.

Figure 7a shows the results of the regression analysis of the exhaust gas temperature
and MCCV correction factor of cylinder 1. The engine load (ME LOAD), scavenging
air temperature (ME SCAV. AIR RECEIVER TEMP.), and scavenging air pressure (ME
SCAV. AIR RECEIVER IN PRESS.) were determined as correction factors considering the
explanatory power with CET and the influence of engine combustion. The R2

adj of CET
and three correction factors was 0.757, showing significant explanatory power. In addition,
the p-value (p > |t|), which is used to evaluate the effect of each correction factor on the
CET, is <0.05 for all three correction factors. In addition, MAE, which is a predictive index
of CET according to the correction factor, was 4.685, and the selected correction factor was
found to be significant.
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Figure 7. Results of the regression analysis of correction factor of cylinder 1 based on (a) exhaust gas
temperature and (b) maximum combustion pressure (source: own elaboration, Python 3.8.3).

Figure 7b shows the results of the regression analysis of the maximum combustion
pressure of cylinder No. 1 and the MCCV correction factor. Based on the analysis of the
relationship with engine combustion and the explanatory power with the maximum CCP,
R2

adj showed a very high explanatory power of 0.968 only with the engine load (ME LOAD).
In addition, the p-value (p > |t|) was analyzed as a significant factor at 0.00, and the engine
load was selected as a correction factor for the maximum CCP. Also, the MAE of the CCP
with the engine load was 1.375, showing excellent predictive performance.

The correction standard for calculating a constant MCCV in response to changes in
factors such as engine load had the highest data frequency count of 13,470 EA among the
classified data presented in Table 11, and considering engine operability, the 137RPM data
of the 21101 voyage were selected as MCCV correction criteria. The MCCV correction
criterion data are shown in Table 12.

Table 12. Correction criteria for the MCCV of cylinder 1 (source: own elaboration).

ME Order
RPM Voyage Load

(%)

Scav. Air
Temp.
(◦C)

Scav. Air
Press.

(kgf/cm2)

Exh. Gas
Temp.
(◦C)

Cyl. Max.
Press.

(kgf/cm2)

137 21101 76.3 42.7 2.4 346.9 176.7

Table 13 shows the regression coefficient of each correction factor derived via the
regression analysis of the CET, maximum CCP, and correction factor.

Table 13. Regression coefficient of the revision factor of cylinder 1 (source: own elaboration).

Cylinder exhaust gas temperature

Load Scav. air temp, Scav. air press.

1.8185 0.9095 −27.9974

Cylinder combustion pressure

Load

3.3900
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Using the MCCV correction factor regression coefficient, the correction criteria, and
Equation (5), an RMCCV based anomalistic symptom judgment algorithm was constructed
and verified as follows.

The results of the MCCV and RMCCV based on all normal operation status data of
cylinder 1 are shown in Figure 8.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 23 
 

The results of the MCCV and RMCCV based on all normal operation status data of 

cylinder 1 are shown in Figure 8. 

  

(a) (b) 

Figure 8. Comparison of MCCV and RMCCV of normal operating data of cylinder 1. (a) MCCV and 

(b) RMCCV (source: own elaboration, Python 3.8.3). 

The MCCV showed a decreasing trend as the voyage progressed according to 

changes in the engine operating environment, such as target RPM. However, the RMCCV 

was corrected to respond to changes in engine operating conditions, and it remained rel-

atively constant as the voyage progressed. However, some RMCCV data were overcor-

rected, resulting in abnormalities in noise data and the main data group, which are the 

criteria for determining the anomalistic symptoms of the MCCV. 

Table 14 shows the MCCV and RMCCV results during normal operation. The mean 

value is the same, whereas the standard deviation improved to 11.6 for the MCCV and 6.1 

for the RMCCV. However, the distribution range of the data was from 142.2 to 211.5 (69.3) 

in the case of the MCCV and from 146.5 to 223.3 (76.8) for the RMCCV owing to the noise 

data caused by overcorrection. 

Table 14. Comparison of the MCCV and RMCCV analysis data of cylinder 1 for all normal operating 

data (source: own elaboration). 

Item MCCV RMCCV 

Mean 175.0 175.0 

Std. 11.6 6.1 

Min. 142.2 146.5 

Max 211.5 223.3 

Figure 9 shows the RMCCV and MCCV using the data average calculated based on 

the same ME ORDER RPM and VOYAGE to reduce the impact of noise data and improve 

the detection of anomalies. When the average values of the data are applied, the trends 

according to the voyage are similar for the MCCV and RMCCV (Figure 8), where all data 

are applied. However, the noise data of the RMCCV are confirmed to be reduced. 

Figure 8. Comparison of MCCV and RMCCV of normal operating data of cylinder 1. (a) MCCV and
(b) RMCCV (source: own elaboration, Python 3.8.3).

The MCCV showed a decreasing trend as the voyage progressed according to changes
in the engine operating environment, such as target RPM. However, the RMCCV was
corrected to respond to changes in engine operating conditions, and it remained relatively
constant as the voyage progressed. However, some RMCCV data were overcorrected,
resulting in abnormalities in noise data and the main data group, which are the criteria for
determining the anomalistic symptoms of the MCCV.

Table 14 shows the MCCV and RMCCV results during normal operation. The mean
value is the same, whereas the standard deviation improved to 11.6 for the MCCV and 6.1
for the RMCCV. However, the distribution range of the data was from 142.2 to 211.5 (69.3)
in the case of the MCCV and from 146.5 to 223.3 (76.8) for the RMCCV owing to the noise
data caused by overcorrection.

Table 14. Comparison of the MCCV and RMCCV analysis data of cylinder 1 for all normal operating
data (source: own elaboration).

Item MCCV RMCCV

Mean 175.0 175.0
Std. 11.6 6.1
Min. 142.2 146.5
Max 211.5 223.3

Figure 9 shows the RMCCV and MCCV using the data average calculated based on
the same ME ORDER RPM and VOYAGE to reduce the impact of noise data and improve
the detection of anomalies. When the average values of the data are applied, the trends
according to the voyage are similar for the MCCV and RMCCV (Figure 8), where all data
are applied. However, the noise data of the RMCCV are confirmed to be reduced.
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Table 15 shows the MCCV and RMCCV data in the normal operating state of the ME
ORDER RPM and VOYAGE standard average values. The MCCV and RMCCV averages
were lower than the overall results presented in Table 13. The data distribution range was
also narrowed to 45.6 for the MCCV and 22.1 for the RMCCV, which was reduced by about
70%. As for the standard deviation, the MCCV increased by 0.8 compared to the total data.
However, by reducing the RMCCV by 2.3, it was possible to reduce the range of normal
operating conditions and the impact of noise data by utilizing the average data based on
ME ORDER RPM and VOYAGE.

Table 15. Comparison of MCCV and RMCCV using the average normal operation data based on ME
ORDER RPM and VOYAGE of cylinder 1 (source: own elaboration).

Item MCCV RMCCV

Mean 174.1 172.3
Std. 12.4 3.8
Min. 153.2 164.0
Max 198.8 186.1

Based on the RMCCV of the mean values of ME ORDER RPM and VOYAGE for
determining anomalistic symptoms, the concern level was set to 187–197, and the abnormal
level was set to a section exceeding 197.

Figure 10 shows the RMCCV results of all data, including voyage 21123 data with
anomalies. The RMCCV of voyage 21123 increases over time. However, clearly determining
anomalistic symptoms is difficult due to the noise data.

Figure 11 shows the comparison results of the RMCCV of the average value data
based on ME ORDER RPM and VOYAGE. Identifying anomalistic symptom trends with
the MCCV in Figure 11a is difficult. In addition, the data of the concern level were included
in the normal range, making it impossible to detect anomalistic symptoms. The RMCCV,
as shown in Figure 11b, can detect anomalistic symptoms by confirming that the data of
voyage 21123 rose beyond the normal data group to the concern level.
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The verification results of the RMCCV algorithm using the average data of each
VOYAGE were obtained to improve the detection of anomalistic symptoms. Table 16
presents the RMCCV results of the average normal operating data based on VOYAGE. The
mean, standard deviation, and data distribution range improved compared to the average
data analysis results based on ME ORDER RPM and VOYAGE. The concern level was set
to 176–186, and the abnormal level was set to a section exceeding 186 based on the RMCCV
of the VOYAGE averaged data for determining anomalistic symptoms.

Table 16. Comparison of MCCV and RMCCV data of average normal operating conditions based on
VOYAGE of cylinder 1 (source: own elaboration).

Item MCCV RMCCV

Mean 173 172.2
Std. 11.2 2.2
Min. 160.5 169.3
Max 190.4 175.4

Figure 12 shows the results of anomalistic symptom detection using the average data
based on the VOYAGE. The MCCV was unable to detect anomalies, as indicated by the
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results presented in Figures 6 and 11. However, the RMCCV could detect anomalistic
symptoms in the engine more clearly than the results using the mean data based on ME
ORDER RPM, VOYAGE, and all data.
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Table 17 summarizes the MCCV correction factor analysis results and revised coeffi-
cients of each cylinder for calculating the RMCCVs of the cylinders.

Table 17. Revision factors and results of all cylinder MCCV correction factors for the abnormal
symptom prediction of the propulsion engine (source: own elaboration).

Cylinder 1 2 3 4 5 6

Cylinder exhaust temperature

R2 0.795 0.867 0.793 0.880 0.845 0.869
Adj. R2. 0.757 0.842 0.754 0.857 0.817 0.844

p > |t|
Load 0.03 0.014 0.260 0.555 0.234 0.001

Scav. temp, 0.001 0.000 0.001 0.000 0.000 0.000
Scav. press. 0.053 0.127 0.259 0.581 0.220 0.013

MAE 4.685 5.541 7.411 4.946 5.332 4.095

Regression (revision) coefficient

ELR 1.8184 2.1837 1.2959 0.4746 1.1577 2.7299
ESTR 0.9095 1.5505 1.3895 1.5084 1.4077 1.1866
ESPR −27.9974 −22.3134 −22.8538 −7.8111 −21.0387 −32.8586

Cylinder MAX combustion pressure

R2 0.970 0.961 0.955 0.959 0.964 0.966
Adj. R2. 0.968 0.959 0.952 0.957 0.962 0.965

p > |t| Load 0.000 0.000 0.000 0.000 0.000 0.000
MAE 1.375 1.721 1.867 1.688 1.756 1.188

Regression (revision) coefficient

CPLR 3.3900 3.3459 3.1987 3.3506 3.4613 3.3541

R2
adj between CET and the correction factor showed a high explanatory power of

0.754–0.857, depending on the cylinder. Moreover, R2
adj between the CCP and the correc-

tion factor showed a very high explanatory power as the range of 0.952–0.968.
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The p-values between the CET and the engine load and scavenging air pressure
correction factors are relatively high for cylinders 3, 4, and 5. This is due to the high
correlation between the engine load and scavenging air pressure. R2

adj and p-value are
indicators that identify the relation between the explanatory and response variables [19,37].
Therefore, the reference data used for determining anomalistic symptoms affected the
p-value owing to the use of a database with a limited data range of ≥135 RPM based on
ME ORDER RPM [19,37].

The MAE of the CET according to the correction factor was in the range of 4.095–7.411,
exhibiting good prediction performance compared to the exhaust gas temperature scale.
The correction coefficients (ELR, ESTR, and ESPR) of each CET were effectively derived
considering R2

adj, p-value, and MAE. The MAE range of the entire CCP was 1.188–1.867,
and the prediction result was highly reliable. In addition, considering R2

adj and the p-value,
the CCP correction factor (CPLR) was highly reliable, and a valid RMCCV was calculated.

Table 18 presents the RMCCV results of each cylinder using the average data based on
ORDER RPM and VOYAGE. Table 19 lists the RMCCV results of each cylinder using the
average data based on VOYAGE.

Table 18. RMCCV of average data based on ME ORDER RPM and VOYAGE (source: own elaboration).

Cylinder 1 2 3 4 5 6

Mean 172.3 183.9 179.2 183.8 184.3 193.1
Std. 3.8 4.1 4.8 4.0 4.3 4.4
Min. 164.0 174.4 171.8 176.6 175.5 185.0
Max. 186.0 194.8 191.7 202.4 206.8 204.5

Table 19. RMCCV of average data based on VOYAGE (source: own elaboration).

Cylinder 1 2 3 4 5 6

Mean 172.2 183.5 178.8 183.6 183.9 192.8
Std. 2.2 2.7 2.7 2.6 2.9 2.5
Min. 169.3 179.1 175.4 179.1 179.0 189.7
Max. 175.4 186.4 183.7 185.8 187.4 196.9

As a result of analyzing the RMCCV of the VOYAGE based average data, the RM-
CCV standard deviation of each cylinder was improved by about 38% on average com-
pared to the VOYAGE and ME ORDER RPM based average data. In addition, the data
distribution range was reduced by 68% on average, making it possible to detect clear
anomalistic symptoms.

Table 20 lists the criteria for determining the anomalistic symptoms of the propulsion
engine established by the RMCCV analysis in the normal operating state of the VOYAGE
based average data for each cylinder.

Table 20. RMCCV criteria for the abnormality determination of the propulsion engine (source: own
elaboration).

Cylinder 1 2 3 4 5 6

Concern (1) 176 < (1) < 186 187 < (1) < 197 184 < (1) < 194 186 < (1) < 196 188 < (1) < 198 197 < (1) < 207
Abnormal (2) 186 < (2) 197 < (2) 194 < (2) 196 < (2) 198 < (2) 207 < (2)

Figure 13 presents the detection results of anomalistic symptoms in all cylinders based
on VOYAGE averaged data. Voyage 21123 data displayed anomalistic symptoms in all
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cylinders. This confirms the efficacy of the RMCCV based algorithm in determining engine
anomalistic symptoms and validates the effectiveness of the constructed algorithm.
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4. Discussion

The CET and maximum CCP were identified as anomaly determination factors
through the analysis of engine data and manuals. Thereafter, to intuitively determine
the engine abnormalities, the MCCV was defined as a judgment factor of abnormality
symptoms. However, the indicators of engine abnormalities could not be clearly detected
owing to the frequently varying driving environment. Thus, to ensure the detection of
engine abnormalities, the RMCCV was constructed to reflect the fluctuating conditions
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of engine operations. The RMCCV corrected based on the varying engine load condi-
tions, scavenging air temperature, and the operating environment was derived using the
CET and maximum CCP of the engine cylinder. In summary, a reliable algorithm for
detecting propulsion engine anomalistic symptoms was developed using average data for
each voyage to improve anomalistic symptom detection by minimizing noise data and
shortening the algorithm operation. Therefore, a foundation that can be used for ship PdM
was established.

The established PdM algorithm intuitively assesses the operating state of the engine
with factors related to its combustion state. Consequently, abnormal operating conditions
can be preemptively identified by detecting anomalistic symptoms. However, the detailed
maintenance items responsible for the anomalistic symptoms are difficult to determine;
e.g., it is difficult to identify whether they originate from an issue related to the exhaust gas
system or the fuel system. Furthermore, the practical real time application of the constructed
PdM algorithm to operational ships requires careful evaluation. Accordingly, the developed
PdM algorithm can be effectively applied to operational ships for improvement research,
such as algorithm verification, reliability improvement, and developing functionalities to
identify detailed maintenance items.

5. Conclusions

In this study, the following conclusions were inferred by developing and verifying an
engine anomalistic symptom judgment algorithm using operational ship data and machine
learning to employ PdM to ship propulsion engines.

1. The CET and maximum CCP of the cylinder were selected as the data that can directly
determine the engine condition by analyzing troubleshooting data, maintenance items,
and collected data of the engine.

2. To intuitively detect the anomalistic symptoms of the propulsion engine, the MCCV
was defined based on the CET and maximum CCP data.

3. The MCCV based anomalistic symptom judgment algorithm failed to determine
anomalistic symptoms due to changing operating conditions, such as RPM and the
marine environment.

4. To improve anomalistic symptom detection, the RMCCV, which reflects changing
operating conditions and environments, was established.

5. R2
adj between the CET of the RMCCV and correction factors was in the range of

0.754–0.857 in all cylinders. R2
adj between the maximum CCP and correction factors

was found to be in the range of 0.952–0.968, showing high explanatory power.
6. The MAE range of the CET according to the correction factor was 4.095–7.411, and

the MAE of the maximum CCP was in the range of 1.188–1.867, showing excellent
predictive performance compared to the data scale. Therefore, the developed RMCCV
based anomalistic symptom prediction algorithm was reliable.

7. To reduce the impact of noise data and improve the predictability of anomalistic
symptoms, the average data based on the VOYAGE were applied to the RMCCV
based anomalistic symptom judgment algorithm, resulting in the effective anomalistic
symptom determination of the propulsion engine.

As described above, an algorithm for effectively determining propulsion engine
anomalistic symptoms, suitable for ship PdM, was successfully developed. Given the
diverse voyage standards for different routes and operational characteristics of ships, it is
crucial to set a certain period, considering the operating characteristics of the target ship
and engine, and integrate it into the RMCCV based algorithm.

The future plan involves validating the developed anomalistic symptom judgment
algorithm by applying it to operational ships to ensure its reliability. In addition, there are
intentions to develop a PdM platform capable of real time anomaly detection in the engine
and a function to identify corresponding maintenance items based on detected anomal-
istic symptoms. These initiatives will contribute to further improving ship maintenance
practices and optimizing the PdM system for engines.
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