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Abstract: The contact between the tool and the workpiece/chip in metal cutting is complex, resulting
in high local temperatures and stresses, which may cause severe tool wear and failure. Developments
in cryogenic-assisted machining have shown an ecological alternative to the classical metal working
fluids, besides tool wear reduction during machining difficult-to-cut materials due to the good ability
to dissipate the heat generated by this process. The objective of this work is to analyze the tribological
conditions and performance of new coatings specially developed for cryogenic-assisted machining in
terms of friction coefficient, volume of build-up material (adhesion) to the tool, and tool temperature.
The results have shown that the sliding speed and cooling/lubrication strategy are two main factors
that affect the friction coefficient and adhesion of Ti–6Al–4V alloy to the pins. These tribological
tests should allow us to select the best coating(s) to be used in cutting tools for further tool wear
analysis. Moreover, the obtained friction coefficients could be further implemented into metal cutting
models to predict the machining outcomes, including the surface integrity of the machined parts and
tool wear.

Keywords: tribology; friction; machining; cryogenic assisted machining; coatings; Ti–6Al–4V

1. Introduction

The contact between the tool and the chip/workpiece has a significant impact on tool
life and the surface integrity. This contact strongly depends on several factors (contact
conditions), including sliding speed, contact pressure, temperature, lubrication/cooling
strategy, etc. [1,2]. The friction coefficient is often used to model this contact to correlate
the shear stress with the normal stress acting at the tool–chip and tool–workpiece inter-
faces. This coefficient should be determined experimentally through specially designed
tribological tests able to reproduce the contact conditions observed in metal cutting [3].
This is essential for the accurate simulation of the metal cutting process. Especially for the
simulations when coated tools and cooling conditions are applied, the knowledge about
the tribological behavior at the workpiece/chip interface is limited.

Unfortunately, classical methods for determining the friction coefficient between two
instances based on pin-on-disc are not suitable to describe the tribological conditions in the
metal cutting process. The standard pin-on-disc tribometer uses a pin to rub repeatedly over
a rotating disc to determine the friction coefficient and the wear volume. However, the pins
rub over the same surface of the disc at lower speed and contact pressure when compared to
metal cutting process [4–6]. Two main approaches to investigate the tribological phenomena
(including the determination of the friction coefficient) at the tool–chip interface can be
found in the literature. One is using the cutting process itself [7–10]; apparently it is the
best way to provide the relevant friction conditions, but this approach is not able to extract
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quantitative results, because it is impossible to have first-hand information about the local
contact pressure, sliding velocity or temperature. Even the approach based on analytical
models linking the local shear strength, temperature or sliding velocity is not suitable,
due to the limitations of these models, and to the large uncertainty in determining their
parameters [11]. The second is based on specially designed tribometers able to reproduce
the contact conditions in metal cutting [5,12,13]. A pin rubs on the refreshed surface
of a workpiece in rotation, and the helical movement of the pin on the bar avoids the
superposing of the scratch on the cylinder. So, the surface of the workpiece in contact with
the pin is always different and never repeated where the contact area of the pin remains
the same (as the cutting tool). Meanwhile, the workpiece needs to be refreshed each time.
As mentioned by Rech et al. [3], such tribometers are able to reproduce the contact pressure,
temperature and velocity between the tool and the chip in metal cutting, thus contributing
to a better understanding of the tribological phenomena in this process.

The apparent friction coefficient is strongly correlated to the sliding speed and the
contact pressure. Many researchers have shown that the friction coefficient drops when
increasing the sliding speed [14–18]. Rech et al. [3] conducted tribological tests on various
work materials with a TiN-coated carbide tool; the friction coefficient dropped significantly
with increasing sliding speeds. Similar results were obtained by other researchers for
other materials and contact conditions [4,11,19,20]. Besides this, the contact pressure
between the pin and workpiece is also a crucial parameter that affects the friction coefficient.
Meier et al. [21] tested the friction coefficient using different normal forces between 5 N and
400 N, under dry and flood conditions. Using lower loads, the friction coefficient increases
with the sliding velocity. However, using higher loads, the friction coefficient decreases
when the sliding speed increases.

Studies conducted on several metallic and non-metallic work materials using different
gases and liquids as cooling/lubricant strategies have shown that the friction coefficient is
the lowest when liquid nitrogen (LN2) is used, followed by gaseous nitrogen and finally
air [22–24]. But there are also contradictory studies showing that the low temperature
induced by LN2 will increase friction coefficient and wear rate [25,26]. It is also revealed
that for some metallic materials, like aluminium, brass–lead pairs and self-mating niobium,
the reduction in the friction coefficient and wear rate is significant [26]. Gradt et al. [23]
found that the friction coefficient and wear rate decreased significantly in 8 K and 77 K He
gas compared to in air at an ambient temperature (300 K) for polymer materials. In contrary,
the modeling of the tribological behavior of titanium alloys [27] under cryogenic conditions
using high loads and speeds shows that the friction coefficient of Ti6Al4V is higher than
in air, as well as in the CFRP drilling procedure [28]. LN2 and CO2 are the two most
frequently used very-low-temperature cooling methods in machining operations. Jerold
and Kumar [29] reported that both LN2 and CO2 resulted in lower cutting temperatures
compared to conventional flood MWF, but LN2 (reduction of 47%) is more effective in
reducing the temperature than CO2 (reduction of 36%). Pahlitzsch [30] reported that
LN2 and CO2 resulted in 240% and 150% longer tool lives compared to dry machining,
respectively. Klocke et al. [31] reported that in turning Ti–6Al–4V titanium alloys, the use
of LN2 and CO2 significantly improves the tool life compared to conventional flood MWF;
in particular, the LN2 increases the tool life five-fold. LN2 can extend the tool life in the
machining of titanium alloys at higher cutting speeds [32–38]. A comparison of the main
advantages is shown in Table 1.
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Table 1. Comparison of effectiveness and applications of various cooling and lubricant methods [39].

Effects of Cooling and Lubrication Method CO2 LN2

Pr
im

ar
y Cooling Good Excellent

Lubrication Marginal Marginal
Chip removal Good Good

Tool life Good Excellent

Se
co

nd
ar

y Machine cooling Marginal Marginal
Workpiece cooling Good Good

Spray control Marginal Marginal
Surface integrity Good Excellent

Gupta [40] reviewed various more environment-friendly cutting fluids, including
cryogenic cooling, MQL, solid lubricants, etc. Pereira et al. [41] employed a combination
of MQL + CO2 in milling Inconel 718. Although conventional cutting fluids (mixtures
oil–water) exhibited the best performance, from the ecological perspective MQL + CO2
significantly reduces the amount of mineral oil by 90% in comparison with conventional
cutting fluids.

The objective of this work is to investigate the tribological behaviors of several new
multilayer coatings specially developed for the cryogenic-assisted machining of Ti–6Al–4V
alloy. The coatings are CrN and AlCrN monolayers, as well as CrN/AlCrN-based multi-
layers with two different architectures. The choice of Cr-based coatings instead of the most
common Ti-based coatings is justified by the higher corrosion resistance and, more impor-
tantly, good thermal properties of Cr-based ones. Rech et al. [42] investigated the tribological
and thermal functions of various cutting tools coated by TiAlN, TiN and TiAlN + MoS2. The
results show that these coatings do not have a significant influence on heat transmission on
the substrate. Sadik et al. [43] reported that no contribution of the TiAlN coating was found
to tool life in milling Ti–6Al–4V under cryogenic cooling conditions.

Firstly, the tribological tests were performed to analyze the capability of the new
coatings for the selection of coatings and for further tool wear tests; besides this, they
can also provide information relevant to simulation jobs. Secondly, works on tribological
tests relevant to cryogenic-assisted machining are few, and those addressing coatings are
even fewer; as such, it is necessary to perform full-scale experiments to fill up the blank
page in this field, especially for the Ti–6Al–4V alloy. Finally, it is important to effectively
understand the tribological behaviors of the coatings and the workpiece, and particularly
when cryogenic-assisted machining is being used. The lack of a state-of-art summary means
this report contributes in this field.

A previous study [44] has shown the need to develop new tool materials, includ-
ing coatings, to take full advantage of this cooling solution. Moreover, little is known
about the tribological conditions at the tool–workpiece/chip interface when coated tools
are used under cryogenic cooling conditions. This analysis will be performed on two
cooling/lubrication strategies—LN2, and traditional MWF consisting of an oil–water
mixture—using both coated and uncoated pins in contact with a workpiece in Ti–6Al–4V ti-
tanium alloy, under several contact conditions. The instrument introduced by Rech et al. [3]
is used as a specially designed tribometer to conduct the tribological tests, which leads to
more reliable results compared to the classic pin-on-disk setup.

This study aims to expand the knowledge and understand the tribological conditions
pertaining at the workpiece/chip interface when coated tools are used under cryogenic
cooling conditions, so as to develop and select the most effective coatings (as confirmed by
tribological tests) for machining Ti–6Al–4V alloys under cryogenic cooling conditions.

2. Materials and Experimental Set-Up
2.1. Materials

The pins were made of tungsten carbide with a cobalt content of 7 wt. % and a grain
size of 0.8 µm. The hardness and the elastic modulus were determined using an MTS XP
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Nanoindenter, and the corresponding values equalled 24.77 GPa and 839.07 GPa, respec-
tively. The thermal conductivity of 41 W·m−1·K−1 was determined by MPTR (Modulated
photothermal radiometry). The curvature and roughness of the pins were measured using
the vertical profile projector Delta METROLOGIE VB12 series and a dynamic focusing
microscope Alicona InfiniteFocus, respectively. The SEM images were taken by a high-
resolution HRSEM (JEOL JSM 7610F). The work materials were Ti–6Al–4V bars, with an
average microhardness of 3.4 GPa. The coatings CrN, AlCrN, M2 and M4 were prepared
by an industrial deposition system KENOSISTEC-KS40V-113K12. CrN and AlCrN were
the optimized monolayers, M2 and M4 were the multilayers made by the aforementioned
monolayers with different numbers of interfaces and thicknesses. Additional information
can be found in the reference [45].

2.2. Experimental Set-Up

The experimental set-up used in the tribological tests is shown in Figure 1. These
tests, also called pi-on-bar tests, were conducted on a SOMAB T500 CNC lathe machine. A
pin was mounted on the tribometer, and this tribometer was mounted on a piezoelectric
dynamometer Kistler 9121 to measure the Fx, Fz and Fy forces (see Figure 1) acting in the pin.
Then, a dynamometer was mounted in a VDI attachment connected to the turret of the CNC
machine. The force signals were acquired by a NI cDAQ-9174 card at a sampling frequency
of 2 kHz. Two cooling/lubrication strategies were used: LN2 and traditional metal working
fluid (MWF) consisting of an oil–water mixture, also called flood. This MWF was used
since it is the reference MWF used in the industry. The mixture was prepared by diluting
7% of mineral oil from Blaser, reference B-Cool 755, in 93% of water (in volume). This
lubricant is qualified for machining heat-resistant alloys such as titanium and nickel-based
alloys. The LN2 tank was placed on a balance to estimate the flow rate based on the weight
variation. The tank was connected to an insulated flexible pipe to deliver the LN2 to the
nozzle. The pressure of LN2 in the tank was 4 bar and the estimated flow rate was 2 L/min.
Axial force generated by pressurized CO2 gas inside a cylinder was used to generate the
contact pressure between the pin and the bar. This precludes the low temperatures of the
LN2 affecting the forces signals; the dynamometer was covered in an insulation material.
The nozzle was placed behind the pin in the direction of sliding, in order to reproduce the
cooling/lubricant conditions applied in machining. The details of the LN2 nozzle diameter
and position are shown in Figure 2. They were optimized by Lequien [44], and correspond
to the following: nozzle outlet diameter equal to 3 mm; distance between the nozzle and the
pin equal to 2 mm; distance from nozzle to workpiece equal to 2 mm; the angle between the
pin axes and the workpiece equal to 75◦. The Ti–6Al–4V bar was pre-machined to generate
a surface roughness similar to that of the chip surface in contact with the tool, which was
considered to be equal to 0.1 µm.

The apparent friction coefficient was determined using Equation (1):

µapp =
Ft

Fn
(1)

where µapp is the apparent friction coefficient, Ft is tangential force, and Fn is the normal force.

The tangential force Ft is equal to
√

F2
z + F2

y , and the normal force Fn is equal to
Fx. The term “apparent friction coefficient” used here differs from “interfacial friction
coefficient”, which includes the adhesion at the pin–work material interface. Challen and
Oxley [46] proposed a simple decomposition for the apparent friction coefficient, shown by
Equation (2):

µapp = µloc + µplast (2)

where µloc and µplast are the local adhesive and macroscopic parts, respectively.
Temperature was measured using a thermocouple type K inserted in a drilled hole

from the bottom of the cylindrical body of the pin. The distance between the thermocouple
and the contact surface between the workpiece and the pin was 1.53 mm [45].
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The adhesion volume of the Ti–6Al–4V material to the pins was observed using optical
microscope Keyence VHX 1000, then quantified using a dynamic focusing microscope
Alicona InfiniteFocus [45].
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2.3. Determination of Contact Conditions in Machining of Ti–6Al–4V Alloy

As already mentioned above, the tribological tests should be conducted under the
same contact conditions as those observed in metal cutting. Therefore, the chip sliding
speed over the tool rake face and the tool–chip contact pressure should be calculated using
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machining tests. Then, similar conditions should be applied between the pin and the
Ti–6Al–4V in the tribological tests.

2.3.1. Determination of the Sliding Speeds between the Pin and the Ti–6Al–4V Bar

The sliding speed of the chip against the tool rake face is different from the cutting
speed. As shown in Figure 3, a layer of material was separated from the workpiece by the
action of the tool to form the chip. The ratio between the chip thickness and the uncut chip
thickness, which is equal to the ratio between the cutting speed and the chip velocity, is
called chip compression ratio (CCR), ζ, and it is given by Equation (3) [47]:

ζ =
h1

h
=

Vc

V1
(3)

where h and h1 are uncut chip thickness (mm) and chip thickness, respectively. Vc and V1
are the cutting speed and chip velocity (m/min), respectively. This equation shows that the
chip velocity, V1, depends on both cutting speed and CCR. Since the CCR is usually greater
that 1 (chips are generally thicker than the uncut chip thickness), the chip velocity is lower
than the cutting speed.
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By analogy to the machining tests, in pin-on-bar tribological tests, the sliding velocity,
Vs, is equal to the chip velocity, V1, in machining. Considering that the average CCR during
the orthogonal cutting of Ti–6Al–4V alloy using uncoated cemented carbide tools is about
1.5 (Figure 4) [49], the sliding speeds can be determined for various cutting speeds using
Equation (3), as listed in Table 2. The large range of cutting speeds can be used to determine
the influence of this parameter on the tribological behaviour of coatings. It is noteworthy
that the upper value of the cutting speed is a bit higher for machining Ti–6Al–4V alloy
using commercial cemented carbide cutting tools. The main reason for using this value is
to evaluate the tribological performance of the new coatings under more aggressive cutting
conditions than those used today for commercial coated tools.

Table 2. Sliding velocities and correlated cutting speeds determined in tribological tests.

Cutting speed, Vc (m/min) 15 30 60 90 120 150
Sliding velocity, V1 (m/min) 10 20 40 60 80 100
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2.3.2. Determination of the Normal Force Acting in the Pins

Figure 5 shows the procedure used for determining the normal force to be applied
into the pins in the tribological tests. The first step of this procedure consists of gathering
the forces, CCR and the tool–chip contact lengths generated by the orthogonal cutting tests
of Ti–6Al–4V alloy using cemented carbide tools. Based on the measured cutting (Fc) and
thrust (Ft) forces, the normal force (Fnγ) to the tool rake face was calculated using the forces
diagram for orthogonal cutting, shown in many publications [47,48]. Then, the average
contact pressure (Pnγ) between the tool and the chip is calculated by dividing the normal
force by the tool–chip contact area. The next step consists of calculating the normal force
necessary to be applied to the pins (Fn,pin) to reach a contact pressure at the pin–workpiece
interface (Ppob) equal to the contact pressure calculated in the cutting tests (Pnγ).
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Figure 5. Flowchart of the procedure to determine the normal force to be applied to the pins.

Determination of the Contact Pressure in Machining of Ti–6Al–4V Alloy

Data from orthogonal cutting tests conducted by Outeiro et al. [50] were used in the
procedure described above to calculate the normal forces acting on the pins during the
tribological tests. This data are presented in Table 3, corresponding to two tests conducted
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for two cutting speeds, keeping the other cutting regime parameters constant. The force
diagram shown in Figure 6 was used to calculate the normal force applied to the tool rake
face, Fnγ, using the measured cutting and thrust forces and the equations derived from this
figure (Equations (4)–(6)) [48]. Then, the contact pressure was calculated by dividing the
normal force Fnγ by the tool–chip contact area (Equation (8)). This area is the product of
the contact length lc (Equation (7), taken from [48]) multiplied by the width of cut b.

R =
√

F2
c + F2

t (4)

Fnγ = R · sin[
π

4
+ (φ − γ)] (5)

φ = tan−1(
cos γ

ζ − sin γ
) (6)

lc = h · ζ1.5 (7)

Pnγ =
Fnγ

lcb
(8)

Under the cutting conditions listed in Table 3, the average contact pressure during the
orthogonal cutting of the Ti–6Al–4V alloy for the selected cutting conditions is 1188 MPa.
Therefore, a reference contact pressure of 1000 MPa is used in the tribological tests.

Table 3. Experimental data taken from the work of Outeiro et al. [50].

Test No.
Cutting

Speed, Vc
(m/min)

Uncut Layer
Thickness, h

(mm)

Width of
Cut, b
(mm)

Rake
Angle, γn

(◦)

Flank
Angle, αn

(◦)

Edge
Radius rn

(µm)

Cutting
Force, Fc

(N)

Thrust
Force, Ft

(N)

Chip
Compression
Ratio (CCR), ζ

1 55 0.15 4 6 7 30 1125 650 1.5
2 90 0.15 4 6 7 30 1100 630 1.4
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Figure 6. Force diagram of orthogonal cutting [48] (reproduced with permission from the author).

Determination of the Normal Force Acting in the Pins

Since the geometries of cutting tools and pins are different, the values of the normal
forces presented in Table 4 are not the same as those to be applied in tribological tests for the
same contact pressures. Therefore, the normal force acting in the pins should be calculated.
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Table 4. Contact forces and pressures used in the pin-on-bar model [51].

Test No. Resultant Force
R (N)

Contact Length,
lc (mm)

Normal Force,
Fnγ (N)

Contact Pressure, P
(MPa)

Test 1 1299 0.276 1252 1136
Test 2 1268 0.248 1233 1240

Initially, two analytical models of the pin-on-bar test were developed using the Hertz
theory for both elastic and elastoplastic contact. However, these models considered only
the indentation in a static contact between two spheres, so the sliding was neglected,
which does not exactly represent the physical phenomenon occurring in the pin-on-bar
test. Therefore, an inverse approach consisting of conducting numerical simulations of
the pin-on-bar tests was applied by varying the normal force until the contact pressure at
the pin-workpiece interface (Ppob) was equal to the pressure calculated from the cutting
tests (Pnγ).

A model of the pin-on-bar test was developed and simulated using the Abaqus FEA
(implicit) software (Abaqus 2022). This model is shown in Figure 7, where the pin comprises
uncoated cemented carbide with a radius of 6 mm sliding over a flat workpiece made of
Ti–6Al–4V, with a rectangular shape of 10 mm length and 4 mm height. The workpiece
was fixed at its bottom side and the pin was allowed to slide over the top surface of the
workpiece in the X-direction at a constant speed (the sliding speed). Amongst the sliding
speeds shown in Figure 4, five of them were used in the simulations of pin-on-bar: 10,
20, 40, 60 and 80 m/min. Due to the convergence issues, the application of a force to the
pin was replaced with a displacement imposed on the pin in the direction normal to the
workpiece surface until reaching the desired normal force.
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The materials of the workpiece and pin were considered as isotropic. The elastic
properties of the Ti–6Al–4V alloy were taken from Cheng et al. [52], while the elastic
properties of the pin were obtained from several studies found in the literature [53–55]. The
Johnson–Cook constitutive model [56] without the temperature term is used to represent
the plastic behavior of the Ti–6Al–4V alloy, as described by Equation (9):

σ̃ = (A + B·εn)

[
1 + C·ln

( .
ε
.
ε0

)]
(9)
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where the first term represents the strain hardening effects, and the second term the strain-
rate effect. εp and

.
ε (equal to 0.05 s−1) are the plastic strain and strain-rate, respectively. The

coefficients A, B, C and n of this plasticity model were determined by Cheng et al. [52] via
quasi-static and dynamic (different strain-rates) compression tests conducted over samples
from the same bar used in the tribological tests. The mechanical properties of both the
workpiece and pin are listed in Table 5.

Table 5. Mechanical properties used in the pin-on-bar model taken from Cheng at al [52].

Ti–6Al–4V WC

Density (Kg/m3) 4420 13,967
Elastic modulus (GPa) 114 627.5

Poisson’s ratio 0.31 0.25

Coefficients of the constitutive model A = 812; B = 844
C = 0.015; n = 0.261 -----

The friction coefficient in relation to the sliding speed was taken from the work of
Courbon et al. [57], obtained for the same pin and workpiece materials using similar
tribological tests. This friction coefficient can be represented by the following equation:

µ = 0.359 − 0.042 · ln(Vs) (10)

where Vs is the sliding speed.
The simulation was divided into two steps: indentation and sliding. In the indentation

step, the pin penetrated to a given depth in the workpiece to establish the suitable average
contact pressure. Then, in the sliding step, the pin slid 10 mm over the workpiece’s top
surface in the X-direction at a constant sliding speed. After the simulation, the contact pres-
sure was extracted from the model and compared with that obtained by orthogonal cutting
(see procedure in Figure 5). If they were different, the penetration depth was modified, and
a new simulation was performed. This procedure was applied until both contact pressures
were similar, and consequently the normal force acting in the pin was obtained.

Both pin and workpiece were meshed with a four-node plane stress element type
(CPS4R). A thin layer of 0.2 mm was placed on top of the workpiece to refine the mesh.
Maximum element sizes of 1 mm and 0.5 mm were used for the pin and workpiece,
respectively. To determine the minimum element size, the influence of element size on
the results was studied. In addition, since the model is a simplification of the pin-on-bar
geometry (initial bar diameter is equal to 80 mm), the influence of the equivalent radius
used in the Hertz theory [58,59] is also presented below. After this, the simulations were
conducted for the five sliding speeds mentioned above.

Furthermore, the minimum element size, the equivalent radius and the different
sliding speeds were consulted to determine their influences on the determination of the
normal force.

The tested minimum element sizes are presented in Table 6, and the results are depicted
in Figures 8 and 9. The largest combination of minimum element sizes for the pin and
workpiece, depicted as Pin (P)-Workpiece (W) (200 µm for the pin and 40 µm for the
workpiece), manifested the largest discrepancy in normal force and contact stress compared
to the other three element sizes. The average contact stresses are 1059 MPa, 1003 MPa,
907 MPa and 781 MPa for the mesh sizes 25P-5W, 50P-10W, 100P-20W and 200P-40W,
respectively. The two finest combinations of minimum element size, 25P-5W and 50P-10W,
generated similar normal forces of 439 N and 436 N, respectively. Considering the accuracy
of the results and the computational time, the combination of minimum element sizes
50P-10W was chosen for the simulations to calculate the normal force acting in the pins for
different sliding speeds.
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Table 6. Minimum element sizes of the tested pins and workpieces.

Minimum Element Size (µm)

Mesh
200P-40W

Mesh
100P-20W

Mesh
50P-10W

Mesh
25P-5W

Pin 200 100 50 25
Workpiece 40 20 10 5
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The equivalent radius (Req) was calculated using Equation (11), where Rpin and Rwork
are the radius of the pin and workpiece, respectively. The equivalent radius (Req) values
calculated considering a bar with an initial diameter of 80 mm and a final one of 56 mm are
listed in Table 7. The normal force and the contact pressure distribution calculated based
on Req are illustrated in Figures 10 and 11, respectively. The normal forces for these three
different radii corresponding to the original pin radius of 6 mm, and the equivalent pin
radii of 5.2 mm and 5 mm, are 436 N, 414 N and 406 N, respectively. The distributions of
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the contact stresses are almost the same. Since the error did not exceed 7%, we could use
the original radius of 6 mm to simulate a real pin-on-bar test.

Req =
1

1
Rpin

+ 1
Rwork

(11)

Table 7. Equivalent radius (Req) values calculated considering a bar with an initial diameter of 80 mm
and a final one of 58 mm.

Workpiece Radius, Rwork (mm) 40 (Initial) 28 (Final)

Pin radius, Rpin (mm) 6 6
Equivalent pin radius, Req (mm) 5.2 5
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The influence of sliding speeds was studied by using five sliding speeds to deter-
mine the normal forces able to reproduce a reference average contact pressure of around
1000 MPa, as determined by orthogonal cutting. The results are shown in Figures 12 and 13.
the maximum contact pressures are closed to 1260 MPa, with an average pressure of
989 MPa. These figures also show that the sliding speed had a small effect on the normal
force and contact pressure. The normal force varied from 423 N for the lowest speed of
10 m/min to 437 N for the highest speed of 100 m/min, corresponding to a variation of
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14 N. The average contact pressure varied from 975 MPa for the lowest speed of 10 m/min
to 1006 MPa for the highest speed of 100 m/min, corresponding to a variation of 31 MPa.
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Based on these analyses, it was decided to apply a normal force of 300 N during the
tribological tests, corresponding to an average contact pressure of 872 MPa.

2.4. Surface Roughness of the Pins

The roughness of the pins was measured after the depositions using the dynamic
focusing microscope Alicona InfiniteFocus. The results are shown in Figures 14–16. The
average roughness of uncoated and coated pins varied from 0.5 to 0.71 µm, the root mean
square roughness varied from 0.63 to 0.91 µm, and the maximum height varied from
3.64 to 6.21 µm. The coatings slightly increased the roughness of the pins according to Ra
and Rq; although the coatings followed the surface topography of the substrate, this may
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be due to the triangular tips of the coatings. The roughness values of the AlCrN monolayer
and the M2 and M4 multilayers were almost the same, because their top layers were both
an AlCrN monolayer. The maximum height values reveal that AlCrN was rougher than
the other coated pins. The SEM images of the coated pins are presented in Figure 17.
The EHT (extra high tension) was 15 kV for CrN, M2 and M4, and 5 kV for AlCrN; the
WD (working distance) was 35 mm for CrN, M2 and M4, and 15.3 mm for AlCrN; the
magnification was ×500 for all. This figure shows that the AlCrN monolayer had more
random small particles on its surface compared to the other coatings. Indeed, the M2
and M4 multilayers contained fewer particles than the AlCrN and CrN monolayers; the
particles relatively homogenous among all the coatings. This may be due to the unstable
micro-arc phenomenon that occurred during the deposition of the AlCrN monolayer. The
quantity and distribution of these small particles justifies the surface roughness values
observed between different coatings.
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-coated pins.

2.5. Design of Experiments

The Design of Experiments (DoE) comprised the three factors (sliding speed, coating
type and type of MWF) and several levels listed in Table 8. The contact pressure was not
included in this DoE, since at this stage we assumed a constant contact pressure equal
to 872 MPa. Each condition was tested twice (one repetition), corresponding to a total
of 120 tests. The outputs were the normal and tangential forces, the friction coefficient,
and the volume of the layer of build-up of Ti–6Al–4V alloy in the pins. Temperature
was also measured (twice), but only for the sliding speed of 60 m/min. The measured
average normal force applied on these tests was 316 N, with an average contact pressure
of 877 MPa. The maximum normal force applied was 393 N, with an average contact



Appl. Sci. 2023, 13, 11743 16 of 28

pressure of 971 MPa. The minimum normal force applied was 266 N, with an average
contact pressure of 839 MPa.

Table 8. Factors and levels used in the multilevel factorial DoE.

Factors Levels

Sliding speed (m/min) 10, 20, 40, 60, 80 and 100
Coating Type No coating (uncoated pin), CrN, AlCrN, M2 and M4

MWF Type LN2 and mixture of oil–water

To evaluate the influence of the contact pressure, 12 additional tests were performed
by applying a normal force of 1400 N to the pins, corresponding to an average contact
pressure of 1329 MPa, calculated using the numerical model presented previously. These
additional tests are shown in Table 9. The sliding distance for each tribological test was
equal to 4 m.

Table 9. Additional tests for an average contact pressure of 1329 MPa.

No. Sliding Speed (m/min) Coating Type

1 10 Uncoated
2 20 Uncoated
3 40 Uncoated
4 60 Uncoated
5 80 Uncoated
6 100 Uncoated
7 20 Uncoated
8 60 Uncoated
9 100 Uncoated
10 20 M2
11 60 M2
12 100 M2

3. Results and Discussion
3.1. Results of the Tribological Tests

Based on the tangential and normal forces obtained from the tribological tests, the
apparent friction coefficient was determined. Figure 18 shows the friction coefficient
as a function of the sliding speed for different coatings, for both MWF (flood and LN2)
and for an average contact pressure of 872 MPa. This figure shows that the apparent
friction coefficient decreased as the sliding speed increased until about 60–80 m/min, then
it increased as the sliding speed increased up to 100 m/min. Similar results were also
obtained by Meier et al. [21] using an in-process (cutting) open tribometer to determine
the friction coefficient between the Ti–6Al–4V alloy and 6 mm-diameter pins coated with
an AlTiN coating, using several pin axial (normal) forces (between 5 N and 400 N), and
under dry and lubricated (oil) conditions. Similar to the present work, they also found that
the apparent friction coefficient showed a minimum value for intermediate sliding speeds
when 100 N of normal force was applied. According to Meier et al. [21], the increase in
the friction coefficient with higher sliding speeds may be due to the higher shear forces at
higher relative speeds, and a stronger adhesion of the workpiece material to the pins. This
strong adhesion at higher speeds was observed in the present tribological tests, as shown
in Figure 19. This figure shows a strong increase in the volume of the layer of build-up of
the Ti–6Al–4V alloy in the pins with sliding speeds greater than 60–80 m/min, under both
flood and LN2 coolant/lubricant conditions. Nevertheless, the uncoated pin seemed to
present a lower adhesion of Ti–6Al–4V alloy under LN2 cooling conditions (Figure 19b),
which can be explained by its lower surface roughness (Figure 14). This volume was higher
when LN2 was applied, compared to the flood, due to the non-existent lubricant action
of LN2 compared to the flood. The coating type does not have a significant influence on
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the friction coefficient, as for each sliding speed, the variance in the friction coefficient was
within about 0.05 for coated and uncoated pins under the flood condition, regardless of
the coating type. The low variance may originate from the different roughnesses of the
pins, but the relevance of this is low (Figures 14–16). Under the LN2 condition, relatively
higher variances in both the friction coefficient and the adhesion volume were presented
for different coating types; these may be due to the different tribological mechanisms for
each coating type. The contact conditions and the degrees of delamination of the coating
from the pins are different, both of which need to be studied further.

As far as the average contact pressure is concerned, increasing the pressure from
872 MPa to 1329 MPa reduces the apparent friction coefficient, as shown in Figure 20
for uncoated and coated pins (M2) and both MWF. In particular, the apparent friction
coefficient decreased monotonically with the sliding speed when a higher pressure was
used and for both MWFs. Similar results were also obtained by Meier et al. [21]. However,
this reduction in the apparent friction coefficient was not followed by a reduction in the
volume of the layer of build-up of Ti–6Al–4V alloy in the pins; in fact, the opposite was
observed, as shown in Figure 21.
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Figure 20. Apparent friction coefficient according to the sliding speed for two average contact
pressures (872 MPa and 1329 MPa), for (a) flood conditions using coated (M2) and uncoated pins,
and (b) for LN2 conditions using uncoated pins.

Figure 21. Volume of layer of build-up of Ti–6Al–4V alloy in the pins as a function of the sliding
speed for two average contact pressures (872 MPa and 1329 MPa), for (a) flood conditions using
coated (M2) and uncoated pins and (b) for LN2 conditions using uncoated pins.
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The apparent friction coefficients between the uncoated pins and the Ti6-Al-4V alloy
with an average contact pressure of 1329 MPa and under LN2 cooling conditions were
compared with those obtained by Courbon et al. [57], as shown in Figure 22 for different
sliding speeds. The present work yielded apparent friction coefficients about 20% higher
than those found by Courbon et al. [57]. This difference may be due to the different contact
conditions (pressure, temperature, etc.) between the present tribological tests and those
performed by Courbon et al. [57], because the LN2 (including the flow characteristics),
pin diameter and normal forces applied were not the same in the present tribological test.
Despite these differences, both curves of the apparent friction coefficient followed the same
trend in relation to sliding speed.
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As far as the coating is concerned, and regardless of which MWF was used in the
tribological tests, Figures 18 and 19 show no clear effects of the coating on the apparent
friction coefficients and volumes of the built-up layer of Ti–6Al–4V alloy in the pins,
respectively. As far as the temperature in the pins is concerned, some differences between
the coatings can be seen in Figure 23. This figure shows the temperatures in the pins with
different coatings and for both MWFs, at an average contact pressure of 872 MPa and a
sliding speed of 60 m/min. These temperatures were extracted from the curves of the
temperature as a function of time, acquired during the tribological tests, and correspond to
a cutting time of 3.5 s for all the coatings shown in Figure 23.

This temperature was higher and more positive for flood conditions when compared
to LN2 cooling, wherein the temperature was negative. Moreover, this temperature was
higher for uncoated pins, regardless of the MWF. The presence of a lower temperature in
the pins depended on the coating and MWF used in the tribological tests. Under flood
conditions, the lowest temperature was observed for the AlCrN coating, followed by M2
and M4. Under LN2 cooling conditions, the lowest temperature was observed for the M4
coating, followed by CrN, AlCrN and M2. Nevertheless, from the thermal perspective,
the coated pins performed better that the uncoated ones, because their temperatures were
lower than that of the uncoated one. This means that the heat generated by the friction
conducted to the pins would be lower in coated pins when compared to uncoated ones.
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Figure 23. Temperature in the pins with different coatings (average contact pressure of 872 MPa and
a sliding speed of 60 m/min).

3.2. DoE Analysis and Discussion

In this section, an analysis of the DoE presented in Section 2.5 is performed, with the
following objectives:

1. To identify the relevant factors affecting the apparent friction coefficients and the
volume of built-up layer of Ti–6Al–4V alloy in the pins;

2. To determine the influence of these relevant factors on the apparent friction coefficient
and the volume of the built-up layer of Ti–6Al–4V alloy in the pins.

This DoE analysis was performed using the MinitabTM statistical software (Minitab® 20).
The first step was to identify the significant factors affecting the apparent friction coeffi-
cient and the volume of the built-up layer of Ti–6Al–4V alloy in the pins, as well as their
interactions, using Pareto analysis. As shown in Figure 24, the significant factors are the
type of MWF (flood vs. LN2), the sliding speed, and their interaction. The type of coating
showed no significance, confirming what was already mentioned in the previous section.
As shown in Figures 18 and 19, the apparent friction coefficient varied within 0.05 under
flood conditions, and within 0.1 under cryogenic conditions, for all pins. Similar small
variations can be found in the built-up layer of Ti–6Al–4V.

Figure 25 shows a graphical representation of the influence of the significant factors
(MWF, sliding speed and their interactions) on the apparent friction coefficient. Figure 25a
shows that the apparent friction coefficient was higher for cryogenic (LN2) cooling when
compared to flood conditions. This can be explained by the fact that no lubricant was used
during cryogenic cooling with LN2. This figure also shows a decrease in the apparent
friction coefficient with sliding speed up to 60 m/min, followed by an increase up to
100 m/min. This confirms the previous results, and this behavior can be attributed to the
increase in the adhesion after 60 m/min. Figure 25b shows the interaction between the
type of MWF and the sliding speed. This figure shows that, for most of the sliding speeds
(except for 100 m/min), the apparent friction coefficient was higher for cryogenic (LN2)
cooling compared to flood conditions.
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volume of the built-up layer of Ti–6Al–4V alloy in the pins.

Figure 26 shows a graphical representation of the influence of the significant factors
on the volume of the built-up layer of Ti–6Al–4V alloy in the pins. This volume can be used
to estimate the degree of adhesion of Ti–6Al–4V alloy in the pins. Figure 26a shows that
the adhesion was higher for cryogenic (LN2) cooling when compared to flood conditions.
Again, this can be explained by the fact that no lubricant was used during cryogenic cooling
with LN2. This figure also shows that adhesion was almost constant up until a sliding speed
of 60 m/min, followed by a fast increase in adhesion beyond 60 m/min until 100 m/min.
Figure 26b shows that adhesion was higher under cryogenic (LN2) cooling when compared
to flood conditions, regardless of the sliding speed, which confirms the previous results.
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Figure 25. Influence of the (a) type of MWF and sliding speed, and (b) their interactions, on apparent
friction coefficient.

To determine the optimal type of MWF and sliding speed to reduce the adhesion
of Ti–6Al–4V to pins, and thus the apparent friction coefficient, an optimization analysis
was performed. The results are presented in Table 10, and allow us to conclude that flood
conditions and a sliding speed of 60 m/min should be used to reduce the adhesion of
Ti–6Al–4V to the pins and thus the apparent friction coefficient.
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Figure 26. Influence of the (a) type of MWF and the sliding speed, and (b) their interactions, on the
volume of the built-up layer of Ti–6Al–4V alloy in the pins.

Table 10. Optimized type of MWF and sliding speed to reduce the adhesion of Ti–6Al–4V to the pins
and the apparent friction coefficient.

MWF Sliding Speed
(m/min)

Adhesion
Volume (mm3) µ

Composite
Desirability

Flood 60 0.00507 0.259 0.864

4. Conclusions

The objective of this work was to analyze the tribological conditions and performance
of novel coatings specifically developed for cryogenic-assisted machining, in terms of
apparent friction coefficient, volume of built-up material (adhesion), and temperature. This
analysis was performed on two cooling/lubrication strategies [60]: liquid nitrogen (LN2)
and flood (oil–water mixture). A pin-on-bar tribometer specially designed to reproduce the
contact conditions in machining was used to conduct the tribological tests using uncoated
and coated pins in contact with a workpiece made of Ti–6Al–4V alloy, with several sliding
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speeds and two contact pressures. Four coatings developed in a previous research work [45]
were selected for the tribological tests, namely, CrN, AlCrN, M2 and M4.

The results show that, for both cooling/lubrication strategies, the coating has no
relevant effect on the apparent friction coefficient. However, the apparent friction coefficient
decreased as the sliding speed increased until about 60–80 m/min, and it then increased
with the sliding speed until 100 m/min. These values were generally higher under LN2
when compared to flood conditions. The increase in the apparent friction coefficient after
60–80 m/min was related to the increase in the adhesion of Ti–6Al–4V alloy to the pins
under both cooling/lubrication strategies, and this adhesion was higher for LN2 cooling
due to the absence of a lubricant. Increasing the contact pressure from 872 MPa to 1329 MPa
decreased the apparent friction coefficient, although the adhesion was higher at 1329 MPa.
The temperature measurements in the pins show that the temperature was lower for coated
pins compared to uncoated ones. The lowest pin temperature under flood conditions was
obtained with the AlCrN coating, while the lowest temperature under LN2 cooling was
obtained in the M4 coating.

The DoE analysis permitted us to identify the sliding speed and cooling/lubrication
strategy as the two main factors influencing the friction coefficient and the adhesion of
Ti–6Al–4V alloy to the pins, while the type of coating had no relevant effect. The apparent
friction coefficient decreased with the increase in the sliding speed until around 60 m/min,
then it increased up to 100 m/min. The adhesion volume was almost constant until a
sliding speed of 60 m/min, and it then increased up to 100 m/min. LN2 cooling led to
a greater apparent friction coefficient and adhesion volume than the flood conditions,
which is attributed to the lack of lubricant used in LN2. Finally, the optimization analysis
permitted us to conclude that flood conditions and a sliding speed of 60 m/min should
be used to reduce the adhesion of Ti–6Al–4V to the pins, and consequently reduce the
apparent friction coefficient.
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Abbreviations
The following abbreviations and nomenclature are used in this manuscript:

CCR Chip compression ratio
R Resultant force (N)
Fc Cutting force (N)
Fn Normal force (N)
Ft Tangential/trust force (N)
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Fx, Fy, Fz Measured force components (N)
Fn,pin Normal force applied to the pin (N)
Fnγ Normal force (tool/chip interface) (N)
Pnγ Average contact pressure (tool/chip interface) (MPa)
Pprob Contact pressure at the pin–workpiece interface
Vc Cutting speed (m/min)
V1 Chip velocity (m/min)
Vs Sliding speed (m/min)
h Uncut chip thickness (mm)
h1 Chip thickness (mm)
α, αn Flank angle (◦)
γ, γn Rake angle (◦)
rn Cutting edge radius (µm)
b Width of cut (mm)
µapp Apparent friction coefficient
µloc Local friction coefficient
µplast Macroscopic friction coefficient
lc Tool–chip contact length (mm)
φ Shear angle (deg.)
A, B, C, m, n Coefficients of the constitutive model
εp Plastic strain
.
ε Plastic strain rate (s−1)
Rpin Radius of the pin (mm)
Rwork Radius of the workpiece (mm)
Req Equivalent radius (mm)
Ra Arithmetical mean roughness (µm)
Rq Root mean square roughness (µm)
Rt Maximum height of the roughness profile (µm)
LN2 Liquid nitrogen
MQL Minimum quantity of lubricant
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