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Abstract: As a key animal feed source, the dry matter content of clover is widely regarded as
an important indicator of its nutritional value and quality. The primary aim of this study is to
introduce a methodology for forecasting clover dry matter content utilizing a semantic segmentation
network. This approach involves constructing a predictive model based on visual image information
to analyze the dry matter content within clover. Given the complex features embedded in clover
images and the difficulty of obtaining labeled data, it becomes challenging to analyze the dry matter
content directly from the images. In order to address this issue, a method for predicting dry matter
in clover based on semantic segmentation network is proposed. The method uses the improved
DeepLabv3+ network as the backbone of feature extraction, and integrates the SE (Squeeze-and-
Excitation) attention mechanism into the ASPP (Atrous Spatial Pyramid Pooling) module to enhance
the semantic segmentation performance, in order to realize the efficient extraction of the features
of clover images; on this basis, a regression model based on the Random Forest (RF) method is
constructed to realize the prediction of dry matter in clover. Extensive experiments conducted
by applying the trained model to the dry matter prediction dataset evaluated the good predictor
performance and showed that the number of each pixel level after semantic segmentation improved
the performance of semantic segmentation by 18.5% compared to the baseline, and there was a great
improvement in the collinearity of dry matter prediction.

Keywords: clover dry matter prediction; DeepLabv3+; Squeeze-and-Excitation attention mechanism;
random forest; deep learning

1. Introduction

Clover is one of the major sources of feed for livestock. It provides an abundance of
nutrients, including carbohydrates, proteins, vitamins and minerals, to meet the nutritional
needs of livestock for growth, development and production. The right clover feed can
improve livestock performance and health. Growing high quality clover can provide a
stable feed supply, reduce feed costs and increase the benefits of livestock farming. Real-
time prediction of the dry matter content of clover can effectively improve the supervision
of clover quality in the field. As an important source of animal feed, the dry matter
content of clover is a key indicator of its nutritional value and quality. By accurately
predicting the dry matter content of clover, it can help farmers and livestock farmers to
determine the appropriate feed supply, which is crucial for the development of the livestock
industry [1-3].

The traditional method of dry matter content determination involves cumbersome
operations in several stages, and the method that is usually used requires a series of
operations such as clover planting, cultivation, harvesting, sun-drying and weighing [4,5],
which is a long process and often requires clover to be weighed throughout the entire
growth cycle before the final clover content level can be obtained, which makes it difficult
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to reflect the dry matter content level of clover in a timely manner during the growth
process, and is difficult to reflect the dry matter content level of clover during the growth
process at a time—cost. In terms of time and cost, it is difficult to respond to the dry matter
content level of clover in the growth process in a timely manner, and due to the destructive
operation of harvesting clover, it is impossible to continuously obtain the dry matter
content of clover in the same area. Consequently, this constraint impedes the seamless
implementation of real-time monitoring and control over the developmental trajectories
of clover.

As an information carrier, an image contains rich visual and semantic information. By
analyzing clover images, we can obtain the coverage of clover and the sparse density of
clover growth [6,7], in addition to the use of clover images which can be used to classify
various types of clover [8,9]; based on the image of clover, we also hope to obtain more
information from the image, especially the depth of the dry matter content information
contained in the image of clover.

There have also been many approaches to use images to predict dry matter content
in clover, for example, Skovsen et al. [10] achieved pixel-by-pixel classification of clover,
grass and weeds by training a full convolutional neural network, and then constructed a
linear regression model based on the results of the semantic segmentation to predict the dry
matter content, while Mortensen et al. [11] classified clover and grasses by color features,
using edge detection and morphology to segment clovers and grasses and thus predict
total dry matter, while Bretas et al. [12] combined satellite images and meteorological
data to predict above-ground biomass and dry matter content. Spectral images have also
been used for prediction; Murphy et al. [13] used near-infrared spectra to predict the mass
and dry matter content of fresh grass, and Sun et al. [14] combined spectra and height to
estimate biomass and nutritive value. Albert et al. [15] trained a perceptual segmentation
network with synthesized imagery, and then trained a regression CNN with the generated
labels to predict hay clover biomass. Hjelkrem et al. [16] developed a process-based model
“NORNE" to predict the dry matter yield of grassland using remote sensing information
from a drone, while Tosar et al. [17] used a near-infrared (NIR) imaging system to identify
red clover and estimate the weight.

Neural networks have achieved remarkable success in domains such as computer
vision and related fields [18-20]. The shortcoming of using them for the task of clover dry
matter prediction is that labeling the dry matter content of each pixel, attributable to the
possible presence of noise, occlusion and illumination variations in the image, generates a
random error that affects the prediction performance. This study is carried out through the
amalgamation of the potent feature extraction prowess inherent in semantic segmentation
networks [21-24] and the excellent regression performance of RF, and by borrowing the
concept of transfer learning [25-27]. In this research endeavor, we introduce a predictive
methodology that hinges on the synergy between semantic segmentation networks and RF
algorithms, which is able to efficiently analyze the dry matter prediction of clover images
at the pixel level.

DeepLabv3+, an advanced semantic segmentation network with excellent pixel-level
feature extraction and image segmentation capabilities, is first used. By associating each
pixel in the image with a specific semantic label, it was possible to accurately distinguish
clover, background and other elements. This provides a strong basis for subsequent dry
matter content prediction.

Further, RF regression is introduced as a complement to further dry matter prediction
in clover images. RF is an integrated learning method, which consists of multiple decision
trees and can effectively handle complex nonlinear relationships. By combining the feature
representation of the semantic segmentation network and the regression capability of RF,
the dry matter content of each pixel in clover images can be predicted more accurately.

The main contributions and innovations of this paper are as follows:

e It obtains the rich feature representation of clover images through semantic segmen-
tation network, and then combines it with RF regression to construct a dry matter
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prediction model of clover images to realize the function of predictive analysis of dry
matter content.

e It uses the DeepLabv3+ network with MobileNetv2 as the backbone as the feature
extraction network and uses the SE attention mechanism to improve the ASPP, which,
compared with the FCN-8s model used by the producer of the open-source dataset, has
an improvement of up to 18% in the mloU collinearity for the semantic segmentation
task of the GressClovers dataset. has an improvement of up to 18.5%.

e It obtains the pixel-level features of the species in the image through semantic seg-
mentation to understand the semantic information of the various classes in the image,
which is used to obtain the deep information linking the distribution of the species in
the image to the dry matter by constructing a RF regression model.

e  Provides a new, low-cost and efficient solution for the prediction of dry matter in clover.

The remainder of this paper is organized into three sections. The second section
will detail the model used in this paper while explaining the methodology and content
within the model. In Section 3, we delve into the specifics of the experimental design.
Finally, Section 4 presents a comprehensive discussion of the experimental results and
offers insights into the future prospects of the application.

2. Methods
2.1. Model Overall Architecture

Figure 1 demonstrates the overall framework of clover dry matter prediction; the
DeepLabv3+ network uses the Atrous Spatial Pyramid Pooling, adept at capturing seman-
tic intricacies within images. Features extracted within the Encoder component undergoes
a bifurcation into high-level and low-level variants, providing a versatile means of feature
extraction across diverse scales. The pivotal inquiry rests in the capacity of the DeepLabv3+
semantic segmentation model to aptly convey its image features into the dry matter predic-
tion model. In this study’s designed dry matter prediction model, the DeepLabv3+ network,
augmented with an enhanced ASPP module, first trains on the semantic segmentation
dataset to derive image feature representations. Subsequently, a random forest model
within the dry matter prediction framework undergoes further training for the purpose
of forecasting dry matter content. This comprehensive approach enables the model to es-
tablish predictive prowess by internalizing relationships between sample features and the
corresponding dry matter content. This orchestrated process leverages input images, fea-
ture extraction, and dry matter content prognostication, culminating in a precise prediction
of clover’s dry matter content. By orchestrating the complete dry matter prediction model,
the innate strengths of the DeepLabv3+ network within semantic segmentation tasks are as-
tutely harnessed. This transpositional learning strategy not only truncates training duration
but also augments the model’s performance in the domain of dry matter prediction.
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Figure 1. A framework for clover dry matter prediction based on semantic segmentation network
and RF, where the semantic segmentation network is DeepLabv3+.
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2.2. DeepLabv3+

Deeplabv3+ [21] represents a semantic segmentation network characterized by its
coder-decoder architecture enhanced with a spatial pyramid pooling module, as illustrated
in Figure 2. The image input backbone network yields features that serve two crucial roles.
Firstly, these features are directly fed into the decoder component, assuming the guise of
low-level semantic features. This preserves original image details and local information.
Secondly, the ASPP employs dilated convolution with diverse expansion rates to process
these features. This operation begets semantic features of varying scales within the image,
constituting the high-level decoder features. Dilated convolution alleviates the issue of
insufficiently reconstructing information from diminutive objects during the enlargement of
the receptive field. Concurrently, the encoder—decoder architecture methodically recovers
spatial information, enhancing the discernment of object boundaries. This overarching
structure progressively reinstates the spatial characteristics of the image, thereby enabling
a more accurate capture of object boundaries. The encoder extracts high-level abstract
features from the input image, subsequently conveyed to the decoder. The decoder then
employs these features to iteratively delineate more distinct object boundaries through the
gradual restoration of spatial information. This hierarchical approach contributes to refined
image reconstruction, facilitating the network in faithfully capturing and reinstating object
contours from the original image while preserving a wealth of intricate details.
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Figure 2. Deeplabv3+ network architecture where backbone is MobileNetV2.

2.2.1. MobileNetv2

MobileNetV2 [28] is used here as a backbone. v2, along with v1 [29], is a deep neural
network model developed by Google for use in mobile devices and embedded systems. As
depicted in Figure 3, the MobileNetV2 authors propose a design strategy called “Inverted
Residuals with Linear Bottlenecks” that balances performance and efficiency by introduc-
ing deeply separable convolutions and linear bottleneck structures. Deeply separable
convolution, a technique that dissects the conventional convolution into two sequential
phases—deep convolution and pointwise convolution—achieves a twofold reduction in
computational load and parameter count. The deeply separable convolution strategically
disentangles the conventional convolution procedure into a sequential process encom-
passing deep convolution and pointwise convolution. This strategic division culminates
in a dual benefit, marked by a pronounced mitigation in computational complexity and
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a concomitant reduction in parameter proliferation. Meanwhile, the introduction of lin-
ear bottleneck structures can better utilize the network capacity and introduce nonlinear
activation functions between each bottleneck layer to improve the feature expression.

Pi

Add Conv 1x1,Linear

Conv 1x1,Linear

? Dwise 3x3,
Stride=2 Relu6
Dwise 3x3,Relu6 T
? Conv 1x1,Relu6

Conv 1x1,Relu6

Stride=1 block Stride=2 block

Figure 3. Inverse residuals of linear bottlenecks with stride = 1 and stride = 2.

“Inverted Residuals with Linear Bottlenecks” is a key component in MobileNetV2,
which is used to introduce non-linear transformations in the network while reducing the
dimensionality of the feature mapping. Inverted residuals are an idea opposite to the
traditional residual blocks. In a traditional residual blocks, a dimensionality reduction
operation (e.g., convolution) is first performed, then a nonlinear transformation is per-
formed, and finally, a dimensionality enhancement operation is performed. Whereas in
inverted residual blocks, nonlinear transformations are performed first, followed by di-
mensionality reduction and dimensionality enhancement operations. This order change
can effectively introduce nonlinearities and improve the expressiveness of the model. For
linear bottlenecks, in the traditional ResNet structure, the bottleneck layer usually consists
of al x 1 convolutional layer for dimensionality reduction, a nonlinear activation function,
a 3 x 3 convolutional layer, another nonlinear activation function and a 1x1 convolutional
layer. However, in MobileNetV2, the bottleneck layer is modified to be a linear activa-
tion function, which reduces the number of nonlinear transformations and contributes
to computational efficiency. “Inverted Residuals with Linear Bottlenecks” refers to the
use of inverted residual blocks to introduce nonlinear transformations and a bottleneck
layer with a linear activation function in it to reduce the dimensionality of the feature
mapping in the MobileNetV2 architecture. This combination allows the network to have
a smaller computational and memory overhead while maintaining a higher accuracy for
resource-limited scenarios.

Table 1 outlines the network architecture of MoblieNetv2 as adopted in this study.
The parameter t represents the expansion factor employed to regulate the augmentation
of the input channel count within the bottleneck block. ¢ signifies the number of output
channels, signifying the final count of feature channels emerging from the bottleneck block.
n indicates the number of repeated blocks, indicating the frequency at which a given
bottleneck block is iterated in the network. s, denoting stride, specifies the convolution
operation’s step size. In contrast to the base model, we have augmented the input image
dimensions to amass a more extensive array of features.
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Table 1. Moblienetv2 network architecture.
Input Operator t c n s
10242 x 3 conv2d - 32 1 2
5122 x 32 bottleneck 1 16 1 1
5122 x 16 bottleneck 6 24 2 2
2562 x 24 bottleneck 6 32 3 2
1282 x 32 bottleneck 6 64 4 2
642 x 64 bottleneck 6 96 3 1
642 x 96 bottleneck 6 160 3 2
322 % 160 bottleneck 6 320 1 1
322 % 320 conv2d 1 x 1 - 1280 1 1
322 x 1280 avgpool 32 x 32 - - 1 -
1x1x 1280 conv2d 1 x 1 - k -

2.2.2. ASPP Based on Squeeze and Extraction Networks

The conventional convolution employs a fixed-size kernel, calculating each image
position with a consistent stride. The receptive field size is contingent upon the kernel
dimensions, expanding in line with network layer augmentation. However, this expansion
escalates computational demands. In the context of ASPP, dilated convolution introduces
the notion of an expansion rate into conventional convolution, governing the kernel’s
sampling interval through the expansion rate, as illustrated in Figure 4. This innovation
enhances the kernel’s voids, thus amplifying the receptive field, and consequently extract-
ing more extensive features. In essence, dilated convolution in ASPP employs the concept
of expansion rate within conventional convolution, manipulating the sampling stride of
the convolutional kernel to augment voids within the kernel. This approach expands the
receptive field, yielding features endowed with more expansive receptive fields.

(a) (b)

Figure 4. Dilated convolution schematic with 3 x 3 convolution kernel (a) Expansion rate of 1,
ordinary convolution (b) Dilated convolution with expansion rate of 2.

Designating the initial feature map as X and the resultant feature map from the cavity
convolution as Y, the operation of Dilated convolution can be formalized as follows:

Y(i )= ¥, Y Xlitm-dj+n-d-Kmn g

Here, i and j represent the spatial coordinates of the resulting feature map, while m
and # indicate the coordinates of the convolution kernel. The symbol k pertains to the
weight assigned to the convolution kernel at the corresponding spatial position, and d
signifies the expansion rate. In contrast, the conventional convolution can be conceived as
a specific instance of dilated convolution, characterized by an expansion rate of 1.

Figure 2 shows the model structure of ASPP in DeepLabv3+, which uses multiple
parallel convolutional branches, each using a different size of dilated convolutional kernel.
In this way, the model can capture features under different sensory fields, which enables the
model to better understand the objects in the image as well as their contextual information.
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In order to better fuse features at different scales, this paper introduces the SE [30] attention
mechanism before the fusion of features at each scale, which can amplify the response
to important features and suppress the response to unimportant features through the
learning of channel weights, and is able to adaptively learn the correlation between different
channels in the input feature map, and then re-calibrate the features of each channel, so as
to improve the ASPP in the performance in feature extraction capability.

2.3. Dry Matter Prediction

RF represents a potent machine learning methodology that is widely used in data
analysis and prediction tasks. It is an integrated learning algorithm that makes predictions
by constructing multiple decision trees and synthesizing their results.

The basic principle of random forest is to achieve prediction by combining multiple de-
cision trees. Each decision tree is a classification or regression model that classifies data into
different categories or makes predictions of continuous values by progressively dividing
the input features. Each decision tree in a random forest is constructed independently, by
randomly selecting a subset of features and samples. This randomness makes each decision
tree different, thus increasing the diversity of the model. In random forests, the random
selection of feature subsets is achieved by randomly selecting a fraction of the features
from all the features. This is carried out to reduce the correlation between features and to
ensure that each decision tree is able to take into account different feature information. In
terms of samples, random forest constructs the training data required for each decision tree
by randomly selecting samples with put-back. Such sampling allows the model to have a
certain degree of randomness while maintaining the characteristics of the data distribution,
improving the generalization ability of the model.

The configuration of the random forest model is depicted in Figure 5. In this case,
the input data are the number of pixel values for each classification segmented by the
DeepLabv3+ network, and the pixel values are used as input features, which are regressed
by constructing different decision trees so that each one of them is regressed, and each one
of them adopts a similar structure, but the diversity is guaranteed by the introduction of
randomness in the training process. To construct each decision tree, we randomly select a
different subset of samples and features and learn the model through a regression algorithm
that maps the number of pixel values to the prediction of dry matter. Thus, each decision
tree becomes adept at discerning the intricate and nonlinear correlation existing between
the array of input pixel values and the outcomes related to dry matter content. After
training all the decision trees, we use a combiner to summarize the prediction results of all
the decision trees. The combiner uses a simple averaging strategy to determine the final
dry matter prediction result.

mput - ([ {117

Decision Tree 1 Decision Tree 2 Decision Treen

————— e —— = —_——— e ——

|
|
|
|
| eee
|
|
|
)

Combiner ::::::@:E
ouput [

Figure 5. Random forest architecture.



Appl. Sci. 2023,13, 11742

8 of 16

2.4. Experimental Workflow

The framework illustrated in Figure 1 amalgamates the strengths inherent in both
deep learning and machine learning paradigms, culminating in the accurate prognosis of
clover dry matter content. The DeepLabv3+ network, revered as a state-of-the-art model
extensively harnessed for tasks entailing semantic segmentation, excels in its capacity to
discern semantic information within images. Leveraging its hollow-space convolutional
pooling pyramid structure, the network adeptly captures image features across varying
scales, thereby exhibiting remarkable proficiency in semantic segmentation undertakings.
Through the stratification of image features into high-level and low-level components
within the encoder module, this methodology astutely exploits multi-scale features, ampli-
fying its acumen in extracting semantic information from images. This strategic framework
not only lays a robust groundwork for the subsequent prediction of dry matter content but
also underscores the dynamic synergy between image analysis and predictive modeling.

Crucially, the program explores how the features extracted by the DeepLabv3+ net-
work in semantic segmentation can be transformed into useful information for dry matter
prediction. In this process, firstly by training on a semantic segmentation dataset, the
DeepLabv3+ network learns the semantic distribution of different regions in an image
and thus extracts rich image features. These features not only contain information about
the appearance of the object, but also capture the relationship between the object and its
surroundings.

Subsequently, using the extracted features, this paper designs a dry matter prediction
model. The key part of this model is the random forest model, which is widely used in the
machine learning field for regression and classification tasks. By learning the relationship
between features and dry matter content on a training dataset, the random forest model
is able to build a mapping from the features of an input image to the corresponding dry
matter content. This predictive model building process is essentially a learning process
that allows the model to generalize to unseen images and accurately predict the dry matter
content of clover.

Here, the framework of the dry matter predictor based on DeepLabv3+ and random
forests can be summarized as Algorithm 1.

Algorithm 1: Dry matter predictor based on DeepLabv3+ and random forests

Input:
The target sample at the clover image X[xy];
Output:
Predicted dry matter of clover M;
Segmented image of clover;
for each t ranging from 1 to the last clover image N
1. Image preprocessing, standardization, resize;
. Implementing encoder feature extraction on the basis of the upper part of Figure 2;
. Introduction of feature extraction network for SE
. Implementing a featured decoder based on the bottom half of Figure 2;
. Implementing pixel-level segmentation of clover images, counting the number of pixels;
. Number of pixels combined with real dry matter to construct random forest models;
. Constructing a Random Forest Regression Model
. Construct a random forest regression based on Figure 5;
9. Predict dry matter in target image;
end for

O3 O Ul Wi

3. Experiments

In the task of dry matter prediction, there is a need to go for evaluating the pixel
segmentation performance of DeepLabv3+ as well as the accuracy of dry matter content
prediction, so the results are evaluated from these two aspects. Our experiments are
conducted in two aspects: the influence of distinct backbone networks on the efficacy of
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semantic segmentation, and the performance evaluation of the random forest model n dry
matter content prediction.

3.1. GrassClover Image Dataset

The GrassClover dataset [31] is a comprehensive resource designed for semantic
segmentation of high-resolution images captured in outdoor agricultural environments.
This dataset focuses on densely vegetated categories within the grass—clover domain,
comprising 8000 finely annotated synthetic high-resolution images, each with pixel-level
perfect annotations. Additionally, it includes 15 pixel-level annotated images with a
resolution of 1 million pixels and 31,600 unlabeled images collected from five different
locations using three different capture platforms: NiKon d810a, Sony a7 mk1 and IDS
3280CP. Among them, 435 images are annotated with the biomass composition present in
the images.

The main image categories in the dataset include perennial grass (Lolium perenne),
red clover (Trifolium pratense), white clover (Trifolium repens), soil and weeds. In this
context, the “weeds” category encompasses various species, predominantly dandelions,
thistles, pasture grass, yellow rattle and creeping buttercup.

For our research, we focus on a subset of the dataset, utilizing 8000 finely annotated
high-resolution images and 435 images annotated for biomass content. The synthetic nature
of these images allows controlled experiments, including detailed pixel-level segmentation
and instance annotations, facilitating effective supervised learning. The collection locations
of these images cover two experimental sites and real-world scenarios on three dairy farms
in Denmark. These samples were collected between May and October of 2017 and May
to October of 2018, ensuring a comprehensive representation of seasonal variations and
growth cycles.

3.1.1. Semantic Segmentation Dataset

In semantic segmentation experiments, we leveraged a set of 8000 synthetically gen-
erated images from the GrassClover dataset, as depicted in Figure 1. The primary aim
was to execute precise semantic segmentation targeting specific plant species. To refine the
experiment’s clarity, we reorganized the initially diverse image labels based on Figure 6.
The modified labels are visualized in Figure 7. Subsequently, the image labels underwent
reclassification and were grouped into five main categories: red clover, white clover, soil,
grass and weeds. These categories were then further divided into both training and test
sets at a ratio of 9:1, ensuring a balanced distribution of data for effective model training
and evaluation. It is noteworthy that the labels of these synthetic images were meticu-
lously annotated, underscoring the high quality and accuracy of the annotations, thereby
providing a reliable foundation for the experiments.

Main Classes _______________ @ @
Sub-classes ————————- Shepherds
purse
_ _ [ Redclover Red clover Unknown White clover
Parts
flower leaf clover leaf leaf

Figure 6. Labels hierarchy of the synthetic images, with the label annotation positions at the lowest
level of the hierarchy [31].
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Figure 7. (a) Synthetic training image (b) Reclassified image semantic labels for major categories,

where soil is black, grass is green, white clover is yellow, red clover is red, and weeds are blue.

3.1.2. Dry Matter Prediction Dataset

In this study, the dataset used for biomass prediction experiments is also derived from
GrassClover. This dataset comprises 435 authentic images, each meticulously annotated
with biomass information. These genuine images were obtained through on-site biomass
sampling in agricultural fields, with precise annotations reflecting the accurate biomass
content of the vegetation in each image. This dataset serves as a valuable reference for our
biomass prediction experiments, providing real-world context.

Each biomass sample includes the following components:

1. A canopy image of a defined 0.5 m by 0.5 m of grass clover preceding the cut.
2. A composition of the harvested biomass with stems located in the square.

After cutting the plants at a height of 5 cm, all plant samples were separated into rye-
grass, clover and weeds. Among them, 272 samples underwent further subclass separation
into red clover and white clover. After drying the samples, each fraction was individually
weighed to determine the dry matter yield and composition. A total of 435 biomass samples
were collected. The sampling spanned the seasons of 2017, with additional samples in 2018.

By utilizing this dataset of real images annotated with biomass information from
GrassClover, we aimed to further validate the robustness and accuracy of our biomass pre-
diction model. These images from real-world scenarios will provide training and evaluation
data that closely align with practical applications, thereby enhancing our confidence and
understanding of the performance of the biomass prediction model. We used 261 dataset
images with biomass labels from this dataset.

3.2. Experimental Environment

The experimental platform in this paper is the Window11 operating system, the CPU
is Intel(R) CORETM i9-10900k CPU@3.7GHZ, the computational graphics card for deep
learning is dual GeForce RTX 4090, corresponding to a graphics memory size of 48 GB, and
the version of the deep learning framework torch was used.

3.3. Experimental Results of DeepLabv3+ Network

In order to verify the feature extraction performance of the feature extraction network
used in this paper, it is evaluated according to the general evaluation criteria of semantic
segmentation, and for the evaluation of DeepLabv3+ network we use Precision, loU, and
PA(Pixel Accuracy), the formula for the particular index is outlined as follows:

TP
Precision = ———— 2
recision TP+ FP 2)

TP

U= — -
U= 5 T FPrEN

®)
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TP+ TN
PA_TP+TN+FP+FN @

where TP corresponds to instances where a sample was predicted as belonging to a positive
category while its true label also indicated a positive category; FN corresponds to cases
where a sample was erroneously predicted as a counterexample, but its true label indicated
a positive example; FP pertains to situations where a sample was inaccurately predicted as
a positive example, while the true label suggested a counterexample; and TN represents
scenarios where a sample was correctly identified as a counterexample, aligning with its
true label.

To ascertain the aggregate performance of each evaluation metric, the cumulative sum
of the evaluation metrics across all categories was divided by the total number of categories.
The training results for DeepLabv3+ are depicted in Figure 8.

Various Training Results
T

100 T T
[ ou
B 92 [ PA 1
%l 89 — 90 [—IPrecision |
86 87 87
8 83 o 22 83
80 | 80 i
® 751 b
S 72 73
70 69 4
65 64
60 - -
55 - 8
50 - — - e o
soil grass white_clover red_clover weeds

class

Figure 8. Training results of DeepLabv3.

To assess the performance of the method proposed in this paper, the results of our
experiments on GrassClover are presented in the form of bar charts showing the IoU,
PA and precision metrics for each category. In Figure 6, we can clearly observe that our
methodology excels in terms of recognition accuracy across diverse vegetation categories.
Our method exhibits relatively high IoU, PA and precision scores, which indicates that our
approach demonstrates the capability to accurately identify and segment pixels within the
category of clover. The overall recognition results for weeds are poorer compared to the
other categories; this is because the weeds category merges the three weeds, as well as the
five categories of unknown_clover_leaf and unknown_clover_flower when merged, which
can lead to a slightly poorer recognition due to the complexity of the texture, shape or
appearance features. However, overall in terms of clover category recognition, our method
performed well and provided a reliable basis for further clover dry matter prediction.
Particularly in terms of the level degree of mloU, the model we used performs 18.5% better
on the GressClover dataset than on the alignment proposed by Skovsen S [31].

To assess the feature extraction prowess of the devised DeepLabv3+ network, we com-
pared the DeepLabV3+ models of several different backbone networks and the modeling
results are shown in Table 2. The magnified local details of various backbone networks are
presented in Figure 9.
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Table 2. Performance comparison of DeepLabv3+ across different backbone networks.
Size mPrecision mloU mPA
MobileNetV2 22.4MB 83.69% 71.15% 82.20%
Xception 209 MB 81.82% 66.93% 78.48%
MobileNetV3 15.7 MB 79.71% 64.92% 77.81%
MobileNetV2 + SE 23.2 MB 85.37% 73.50% 83.85%
/.
/
-

(a) MobileNetv2+SE (b) MobileNetv2

, /
’
’
//' -
/// ///

(c) MobileNetv3 (d) Xception

/
/

Figure 9. Local pixel enlargement of each model. DeepLabV3+, built by MobileNetv2+SE, has a
clearer recognition boundary and better recognition accuracy in terms of segmentation performance.

3.4. Experimental Results of Dry Matter Prediction

The model trained in the DeepLabv3+ network was used on the dry matter prediction
dataset to perform pixel-level segmentation of clover images to obtain semantic information
and count the pixels in the image for dry matter information prediction. For the regression
fitting of random forest, we carried out two scenarios here: Scheme 1: use all the data in
the dataset to construct the random forest fitting model; Scheme 2: in order to show the
feasibility of this model in practical applications and to test its generalization performance,
the dataset was partitioned into distinct training and test sets, distinguished by an 8-2 ratio,
for training as well as validation of the model.

According to Figure 1, we constructed a complete dry matter prediction model using
the DeepLabv3+ network to output the pixel values of the categories, and processed these
statistics by constructing a random forest regression model to further mine the association
and contextual information between the categories, as well as between the categories and
the dry matter content.

We used the root mean square error (RMSE), and the mean absolute error (MAE) for
the assessment of the predicted values. It is calculated as where y is the true dry matter
content value and is the predicted value predicted by the model.

©)

(6)
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The random forest linear fitting of the complete dataset has a very high fitting perfor-
mance, with a considerable improvement in the RMSE as well as the MAE in all categories
compared to the collinear first-order linear model designed by Skovsen S et al. The random
forest model is able to capture nonlinear relationships by integrating the results of multiple
decision trees, and is able to better model complex nonlinear functions, with good perfor-
mance capabilities in mapping from image pixel values to dry matter content. The training
results are shown in Table 3. The comparison of the predicted dry matter scores with the
true values obtained is shown in Figure 10.

Table 3. Scheme 1: random forest fitting performance for the complete dataset.

Method Grass White Clover Red Clover Clover Weeds
RE RMSE [%] 5.15 3.25 2.80 4.71 1.44
MAE [%] 3.57 2.37 1.54 3.37 0.83
First order = RMSE [%] 9.05 9.91 6.50 9.51 6.68
linear [31] MAE [%] 6.85 7.82 4.65 7.62 4.87

-1
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Figure 10. Scheme 1 Plot of the points of fit between the true dry matter mass fraction and the
predicted mass fraction, and its second-order fit curve.

In Scheme 2, 80% of the 261 samples are selected as the training set, and 20% of the data
are used as the test set, and the random forest regression model for dry matter prediction is
reconstructed, and the performance of the test set is shown in Table 4, which shows that,
relative to the collinear line, there is a certain degree of improvement in the performance,
except for the grass class.

Table 4. Scheme 2: Training performance of dry matter prediction on random forest models.

Grass White Clover Red Clover Clover Weeds

RMSE [%] 16.26 4.05 3.92 294 3.47
MAE [%] 10.76 3.00 244 2.11 2.58
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4. Conclusions

In this study, we propose an innovative approach to the dry matter prediction problem
in clover production sites, combining the DeepLabV3+ semantic segmentation model in
deep learning and the random forest regression model in machine learning. Based on
the in-depth exploration and improvement of the DeepLabV3+ model, we pay special
attention to its ASPP structure and introduce the SE attention network, which strengthens
the network’s ability to characterize the features at the feature channel level. This fusion
is important for the fine-grained prediction of dry matter content of different crops in
semantic segmentation tasks.

In order to construct a dry matter prediction model, pixel-level semantic segmentation
of the dry matter prediction dataset was performed using the adapted DeepLabV3+ net-
work, resulting in finely segmented clover images. The information about the dry matter
content of the crop was obtained by counting the number of these images at the pixel
level. In order to predict dry matter content more accurately, a random forest regression
model was further introduced to model the relationship between features such as pixel-
level counts and actual dry matter content, thus achieving the reliable prediction of dry
matter content.

The contribution of this study is to enhance the model’s ability in capturing crop
features by optimizing the structure of the DeepLabV3+ model and incorporating the SE
attention mechanism. Meanwhile, a comprehensive dry matter prediction framework is
constructed by combining pixel-level semantic segmentation with random forest regression,
providing a novel and effective approach for dry matter management and prediction in
clover production. This has significant potential for optimizing agricultural production
and achieving precision agricultural management, and also demonstrates a useful example
for the integration of deep learning and machine learning in interdisciplinary research.

Furthermore, it is imperative to consider the practical implementation of our proposed
method in real-world agricultural settings, where end users may not possess advanced
computer skills. To address this, we envision a user interface that simplifies interaction
with our system. This conceptual interface would include intuitive controls, visual aids
and easy-to-understand prompts. Additionally, it should offer flexibility to accommodate
different skill levels among agricultural practitioners. While the intricacies of the interface
design are beyond the scope of this paper, we emphasize the significance of creating a user-
centric interface that enhances the usability of our method in the agricultural domain. Such
an interface would contribute to smoother integration into existing agricultural workflows,
ultimately maximizing the accessibility and utility of our approach for the target user base.
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