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Abstract: The human spatial perception of urban streets has a high complexity and traditional
research methods often focus on access surveys of human perception. Urban streets serve as both
a direct conduit for pedestrians’ impressions of a city and a reflection of the spatial quality of
that city. Street-view images can provide a large amount of primary data for the image semantic
segmentation technique. Deep learning techniques were used in this study to collect the boring,
beautiful, depressing, lively, safe, and wealthy perception scores of street spaces based on these
images. Then, the spatial pattern of urban street-space quality perception was analyzed by global
Moran’s I and GIS hotspot analyses. The findings demonstrate that various urban facilities affect street
quality perception in different ways and that the strength of an influencing factor’s influence varies
depending on its geographical location. The results of the influencing factors reveal the difference
in the degree of influence of positive and negative influencing factors on various perceptions of
the visual dimension of pedestrians. The primary contribution of this study is that it reduces the
potential bias of a single data source by using multi-dimensional impact analysis to explain the
relationship between urban street perception and urban facilities and visual elements. The study’s
findings offer direction for high-quality urban development as well as advice for urban planning and
enhanced design.

Keywords: urban quality; human perception; spatial regression; geospatial big data; urban computing

1. Introduction

With the increasing rates of urbanization, urban construction, and population density
growth, the global development of high-quality cities is imminent. The street constitutes
a direct display of urban imagery, serving as the principal site of citizens” activities, and
has a significant impact on the quality of life of urban residents. At present, big data
technology has been deeply integrated into the urban digital transformation [1-4]. The deep
integration of urban digital transformation and big data technology provides a foundation
for the scale, refinement, and intelligence of urban spatial research. For planning and
architectural research, the combination of streetscape imagery and geographic information
breaks through the limitations of traditional field collection methods. It also has a positive
effect on large-scale urban measurement research. At present, street-view imagery has high
coverage in large cities around the world and provides high-density and massive images
based on urban road networks [5]. Street-view images have been employed in the study of
the spatiotemporal traffic mode [6], the spatial perception score [7], the evaluation of urban
greening [8], and the earthquake risk assessment of cities [9]. Street-view photographs have
also opened up new possibilities for the study of urban space; however, there remains a
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need to investigate the different ways of combining street-view images to conduct research
on the effects of urban street-space quality.

Different cities have different urban characteristics, and there is variation within differ-
ent blocks and different spaces of the same city [10]. These factors lead to local differences
in street-space perception in an urban area. Therefore, the study of spatial perception not
only has global characteristics but can also capture the distinctive characteristics of blocks
within a city. Many Western countries emphasize the protection of urban characteristics
and plan regional development via urban planning documents (e.g., the Vancouver City
Plan, the Sheffield Development Framework, the London Plan 2021, etc.). Similarly, some
studies in China have focused on providing different guidance in different zoning control
zones. An example can be found in the work of scholar Yu, Z. Taking Harbin as an example,
the author selected 10 places with different period characteristics in order to discuss the pro-
tection and regeneration of urban characteristics under the Chinese planning system [11].
The case in this study, similar to that of Harbin, describes a large provincial capital city in
central China. Possessing the comprehensive characteristics of a modern city, historical city,
comprehensive city, and representative city, the Wuchang District is one of the central urban
areas of Wuhan city. Its urban street characteristics cover many periods, and some streets
retain the historical characteristics of different periods. This is one of the core reasons for
performing this study using the Wuchang District of Wuhan.

The principal objective of this study is to answer the following questions:

What are the characteristics of urban street spatial perception scoring in spatial patterns
in relation to the scoring situation based on street-view images? Is the quality score, which
leads to such local differences, related to the spatial measures of urban public facilities and
the human visual scale? If they are related, how do different facilities and different spatial
visual measures affect the perception of street spatial quality?

The main contribution of this study lies in constructing a research framework for
the assessment of the multi-dimensional impact of urban street spatial perception based
on multi-source data. These dimensions include the autocorrelation of the overall spatial
pattern, the influence of the public facility distribution, and the influence of the human
visual scale quantification index. This paper transforms perceived subjective problems into
objective data problems, undertaking a large-scale investigation of the measures and factors
capable of influencing spatial perception scoring. Past research usually used single-source
data to conduct urban spatial studies of perceived impact mechanisms. However, the multi-
source data used in this study provides multiple perspectives. As the dependent variable,
the spatial measure index of the human visual scale compensates for the limitations of
urban public facilities as independent variables, reducing the potential bias of using a
single data source. At the same time, the conclusions from this research can provide basic
indicators and references for high-quality urban development, as well as a people-oriented
quantitative perspective for future urban quality improvement strategies.

2. Literature Review
2.1. Perceived Spatial Quality of Urban Streets

Street space consists of streets and the various elements along them. The capacity of
street space is the ability of the street to sustain a particular scale of people passing, staying,
and performing other activities, which is the premise and foundation of all action [12].
Early studies on urban street space were mainly based on urban macro theory. The Image of
the City categorized urban spatial elements into five categories: roads, boundaries, zones,
nodes, and markers [13]. In the early days, the study of urban streets was closely related to
urban roads, and these features were considered to be part of the community [14]. Gehl, J.,
proposed that streets and squares are the main factors in city composition and that other
facility functions are arranged around them [15]. In terms of discussing urban streets and
their related elements, Cullen, G. mentioned that the active factors of the street landscape
can increase the appeal of street space [16]. At the same time, the sense of spatial enclosure
is also closely related to the oppressive perception of pedestrians in the street [17]. In
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the field of urban morphology, streets constitute important public spaces. In the relevant
description of the term street (cadastral) model, the space between blocks is the public space
network, while the urban street network model uses different categories. For example, rule
grids composed of geometric laws are generally planned. With the organic development of
urban roads, the organic or deformed grid becomes another form of street grid.

Perception is the result of human process filtering, which is due to the environment
inspiring emotions and providing people with more information than human processing
power can handle at once [18]. Whether the city streets are interesting or not can reflect
whether the city is interesting or not. Therefore, the quality perception evaluation of streets
can reflect the influence of the environment on people and can also be used to understand
the spatial quality of a city. In the macro dimension of urban activities, street spatial
perception research based on GIS, which utilizes road network data, POI data, etc., is
more commonly used as the basis of perception research [19]. Some scholars have also
constructed a street walkability measurement model including feasibility, accessibility,
safety, comfort, and pleasure by combining street view maps and Arc GIS [20]. On the
pedestrian scale, some scholars have calculated urban spatial measurement indicators such
as the street aspect ratio, green viewing index, and sky visual factor, and then explored their
relationship with spatial perception [21-24]. The most direct manifestation of pedestrians’
perception of street space comes from their vision. Visual appropriateness is important for
the places most likely to be visited by people from wider and various backgrounds [25],
and, obviously, urban street spaces are such places.

Moughtin, C. pointed out that, besides being a natural element of the city [26], streets
are also a social factor, inseparable from the social, economic, cultural, and historical
background. It is noteworthy that research on street perception varies depending on the
cultural context. Western and Eastern nations have differing starting conceptions of urban
planning, which affects the layout of urban streets and how people perceive space. Due to
varying environmental experiences and personal evaluation standards, it is conceivable
that different social groups will have diverse opinions about the same location. In the
West, street space is an important space for communication and gathering. On the contrary,
in Chinese history, under the long-term influence of the ritual system, people possess
a strong sense of the boundary between the inner and outer urban spaces. As a result,
street space was not valued for a long historical period, unlike Western street space which
has diversified functionality and high vitality. However, with the evolution of urban
development and new social thought, the function of street space in China has grown more
complex, and its quality has continued to improve. Still, we cannot ignore differences
in social backgrounds. Therefore, the discussion of street perception and its influencing
elements mainly relates to the Chinese context. In order to better realize the specific context,
this study first used the pre-training model of China to score the street view of the research
area. Later, the influence mechanism was analyzed based on the urban cultural background
and specific street characteristics in order to achieve more targeted analytical conclusions.

2.2. Application of Big Data Tools in Urban Spatial Research

The complexity of urban space makes the direction and dimensions of urban research
more diverse, and the amount of data available on various attributes of cities is relatively
large. Traditional urban planning data primarily comes from spatial geographic infor-
mation and urban planning management systems, which sometimes have lagging and
regional restrictions. Supported by computer technology, big data approaches make up
for the needs of primary urban data in terms of data volume and accuracy. Currently, the
most widely used data sources for urban spatial street research mainly include street-view
maps [27], urban facility POI [28], and cell phone big data [29]. Street View Map is an
Internet-based live-view electronic map service that provides a new type of map experi-
ence centered around the human perspective [30]. The most commonly used street-view
imagery processing technology is image segmentation based on deep learning, and image
segmentation contains various types of technologies such as panoramic segmentation [31],
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semantic segmentation [32], instance segmentation [33], and so on. Among them, semantic
segmentation technology is widely used, being among the principal technical methods
utilized in this paper. Semantic segmentation is processed by classifiers based on specific
theories to categorize the pixel points in the image. This method is then combined with
image feature extraction techniques to obtain the segmentation results.

The semantic segmentation of images based on convolutional neural networks is a
leap forward from traditional semantic segmentation. Nagata S. et al. used semantic
segmentation and statistical modeling of Google Street View images to assess streetscape
walkability. The results of the study found that the walking vigor of older women has
a higher correlation with streetscape walkability than older men [34]. Xia et al. used
image segmentation techniques to generate a street-level SVFf map to assess the urban
thermal environment and propose more targeted urban planning measures [35]. Many
studies have confirmed the higher feasibility of street-level images in urban spatial research.
Urban POI data, which is mainly acquired through the map API interface, the urban big
data open platform, and field research data integration, is the most commonly used data
source for urban spatial research. POI is an important data source for spatio-temporal
big data in the fields of urban spatial structure [36], human activities [37], and ecological
development [38], and also has a significant reference value for urban spatial planning
and infrastructure service construction. Mobile big data has considerable advantages in
studying crowd mobility and social patterns. For example, Fina S et al. compared travel
patterns in selected monocentric and polycentric urban areas in Germany using mobile
big data to test hypotheses of transit-oriented regional development and congestion risk
in transport networks [39]. Many studies have combined the above research methods to
achieve more comprehensive data coverage, and this study aims to assist in understanding
spatial and temporal mobility patterns in different city types.

2.3. Trends in Urban Street Perception Research and the Innovativeness of This Study

Over the preceding decades, research on urban perception has been continuously
updated. The application of multi-source big data has brought new opportunities for
research on urban perception [40]. Many studies have quantitatively evaluated the spatial
perception of streets through indicators such as human activity patterns, built environment
measures, and field visit results. Pedestrian counts and qualitative street studies have
been used to explore the cultural differences and similarities in street vitality perceptions
between street users in the United States and Turkey and to analyze the physical factors
that contribute to increased street vitality [41]. Field visit results often need to rely on
more extensive sample data. For example, Zheng et al. investigated the preferences and
perceptions of street trees among 884 city residents in a metropolitan area in South Korea
to explore strategies for improving the spatial quality of urban streets [42]. Meanwhile,
advances in urban analysis tools provide new methods to describe, quantify, and present
street quality perceptions. For example, Lu et al. used a regression model to quantify the
correlation between vitality and the factors affecting the built environment in two cities [43].
LIU et al. used machine learning semantic segmentation, GIS, and semantic differential
(SD) to obtain spatial data and perceptual evaluations of Qingdao coastal streets. They
constructed a regression model with imageability, closure, human scale, transparency, and
complexity as dependent variables [44].

A wide array of complex factors influence urban spatial perception. For example, Jiwei
Xu et al. used random forest regression to reveal the non-linear effects of street canyon
properties on human perception [45]. This research was principally conducted from the
perspective of street-space characteristics. Additionally, a number of scholars have paid
attention to the correlation between urban spatial perception and urban vitality [46]. Urban
perception is also highly correlated with environmental exposures and urbanization factors.
It was found that population density, impervious surface area, major roads, traffic air
pollution, tree coverage, and NDVI resulted in statistically significant differences in levels of
safety, liveliness, and perceived location beauty [47]. The study was exclusively focused on
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capturing the relationship between the factors associated with built-environment exposure
and partial positive perception. Indeed, due to the complexity of factors influencing how
an urban space is perceived, it is difficult to find all the influencing factors in a single study.
For example, Fan Zhang et al. investigated how the resulting objects—trees, grass, roads,
bridges, houses, etc.—contribute to the curation of a certain experience [48]. Thus, we
developed a comprehensive research paradigm to assess the impact of urban perception
based on previous studies. In contrast to previous research, this study considers the macro
and micro influences of the urban micro-level on the layout of various functional facilities.
To summarize, existing research on big data technologies in urban street space has
shown an upward trend. The development and application of semantic segmentation
technology encouraged the algorithm’s ongoing improvement, and its potent capability
for image processing provided a strong framework for the execution of large-scale image
data studies. The granular coverage of POI data in cities also provided a source of data for
this study. Urban streetscape data sources, POI big data, and related technologies are all
combined in this study. However, most of the existing studies still have some limitations.
First, although some studies have focused on the relationship between urban perception
and multiple elements, the level of discussion is relatively homogenous, and due to the com-
plexity of urban elements, fewer studies have focused on multi-dimensional exploration
at different scales. Secondly, we also found that although many studies have conducted
regression analysis on city perception and city-influencing elements, they mainly focus
on the global area and pay insufficient attention to the local differences in the degree of
influence in different geographical locations. This paper refined the number of local differ-
ences in influencing factors through semantic segmentation technology and geographically
weighted regression analysis. The geographically weighted regression analysis approach
was chosen as the calculation method for the level of contribution of influencing variables
in public facilities because it can recognize the difference in local contribution level. A
quantitative approach for spatial indicators on the human visual scale was suggested in
order to implement the regression model development, based on the available research.
Taking the Wuchang District of Wuhan as an example, this study provides new ideas in
both a theoretical framework and technical methods, intending to guide the sustainable
development of urban street quality and the optimization of street spatial perception.

3. Data and Methodology
3.1. Research Framework

The main framework of the research methodology of this study is as follows:

In the first stage, it was necessary to obtain street image data using geographic infor-
mation. We first collected the road network data in Wuchang District, Wuhan, through
Open Street Map (OSM), the tool used in this study. Such data include urban expressways,
main roads, secondary roads, and other side roads. For this study, 26,000 sampling points
were generated. The Baidu Street View API was parsed and used to obtain the street-view
images. Then, it was necessary to obtain Baidu maps of Wuchang District public facility
interest points to provide essential data support for the correlation study.

In the second stage, based on the urban six perception pre-training deep learning
model of the China University of Geosciences (Wuhan) [49], we scored all street-view
images using six categories: boring, beautiful, depressing, lively, safe, and wealthy. They
were visualized in Arc GIS according to the coordinates of street-view acquisition points.
The spatial distribution pattern of spatial autocorrelation and the scoring of different
streetscape images were also investigated via the study of the spatial quality of urban
streets at the macro level, i.e., from a global perspective. This part mainly quantified the
spatial characteristics of different dimensions of the global Moran’s I index and hot-spot
analysis. The aggregate distribution of categories yielding high and low perceptual scores
was then discovered. This can help researchers analyze the spatial quality pattern of
urban streets more clearly, realize a comprehensive study at the global level, and provide
measurement support for the future urban planning field.
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In the third stage, we mainly assessed the impact of urban facility elements on the
perceived quality of urban streets, such as office facilities, dining facilities, medical facilities,
etc. Firstly, the urban facilities data were cleaned and organized in order to screen the
elements used as independent variables in this study. Then, the Pearson’s correlation
coefficient was used to analyze the correlation between the six perceptual dimensions
and the various types of facility elements, exclude non-significantly correlated factors,
and research the influence of the remaining ingredients through geographically weighted
regression. Due to the apparent spatial heterogeneity of streets, we conducted a meso-
scale study on the spatial quality of urban streets in typical regions. This explored the
reasons for the formation of different street perception score differentiation by combining
other regional characteristics and the influence coefficients of their influencing factors. We
analyzed and summarized the degree of the various influencing factors and finally sorted
out the influencing mechanisms behind them to provide a basis for the future improvement
of street quality at the urban planning level.

In the fourth stage, we measured the influencing factors of urban street spatial quality
at the micro level. In this part, we used semantic segmentation PSPNet to segment the
street image, extracted the visual elements in the image, and calculated the green visual
rate, sky visibility, interface enclosure, and other measurement indicators. The positive and
negative impacts of the above indicators on urban street-space perception were analyzed
through correlation analysis in order to guide future urban street-space transformation.

3.2. Study Area

Wuchang District is one of the administrative districts of Wuhan, located in the
southeastern part of Wuhan. The district is located on the south bank of the Yangtze River,
across the river from Hanyang and Hankou, adjacent to Qingshan District to the north
of Yujiadou Luojia Harbor, and bordering Hongshan District to the southeast, with the
Yangtze River in the west and the East Lake [50] in the east (Figure 1). In recent years, under
the guidance of the Wuhan Municipal Government, Wuchang District has implemented a
series of policies on the quality of urban streets, emphasizing the construction of a slow-
pedestrian-friendly city and adapting to the transformation of urban streets from “car-first”
into “people-first” [51]. As one of the nation’s megacities, it is essential for Wuhan to
realize high-quality development. Wuchang District has a long urban history, and its street
spatial structure has specific historical characteristics. It has modern neighborhoods and
historical street spaces under modern urban planning and diversity in street characteristics.
Meanwhile, Wuchang District, as one of the central urban areas of Wuhan, has a high level
of economic development. Therefore, Wuchang District has a high coverage of streetscape
images, enabling the development of a more comprehensive and refined study of urban
street space.
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Figure 1. Schematic of the study area.
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3.3. Acquisition of Research Data

(1) Wuchang District Street-View Image Data

Streetscape images can provide a wide range of geographic coverage and images,
so streetscape image acquisition and extraction are critical channels for the large-scale
measurement of urban spatial research. Streetscape images reflect the most direct visual
scene of human vision and thus have a wide range of application value in urban street-space
research. We acquired the streetscape images of Wuchang District through the API interface
‘Baidu Map’. These streetscape images correlated with the road network and provided
geographic coordinate information. Eventually, we collected more than 26,000 POI points,
covering most of the Wuchang District area. River areas on the map do not have streets,
and since there are several water areas in Wuchang District, they therefore do not have
collection points. The location distribution of the street-view data collection points is not
equidistant, meaning some areas are densely populated with collection points. Still, POI
points provide more complete coverage of the overall land area. Street-view shooting
is mainly performed using a street-view shooting vehicle shooting along the road. We
collected four street-view images according to the four relative angles of each point. In
order to obtain street-view pictures of the street-view points to the front, back, left, and
right of the four directions of the sampling point, the azimuth angle was set to be from
0 degrees to 360 degrees, and a 360-degree panoramic street-view was formed in the end.
The storage attributes of the street-view images include the X coordinate, Y coordinate,
and azimuth angle. After cleaning the images, they were projected to the corresponding
geographic locations.

(2) POI points for public facilities in Wuchang District

The POI points for public facilities in Wuchang District were obtained through the POI
interface of the Baidu map and retrieved through administrative divisions. To facilitate the
subsequent research, the POI data were defined to include detailed fields such as the POI
name, latitude, longitude, and exact address. The categories included food and beverage
facilities, governmental facilities, medical facilities, leisure and recreation facilities, etc.

3.4. Semantic Segmentation and Spatial Measurement Index Calculation of Street-View Images
Based on Deep Learning

The machine learning algorithm represented by PSPNet was constructed based on a
deep convolutional neural network that can process street scene images in depth [52] and
recognize various elements in an image, such as the sky, sidewalks, cars, buildings, etc.
PSPNet stands for a pyramid scene parsing network, a scene-analyzing network constructed
using the pyramid pooling module [53]. Based on deep learning methods, it performs
a pixel-level segmentation of the semantics of objects such as the sky, roads, and plants
appearing in an image [54]. We chose this model because PSPNet produced a new mloU
accuracy record of 85.4% on PASCAL VOC 2012 and 80.2% on Cityscapes [55]. This model
uses a technique that enables a more accurate segmentation of scene image elements. The
street-view imagery from more than 26,000 collection points in Wuchan was segmented. In
this study, the method is mainly used to obtain the percentage of each visual element of the
street. A total of 14 visual elements are required to calculate the five spatial measurement
indicators, and the 14-element segmentation results are shown in Table 1.

Combined with the segmentation results of street-view images, five spatial measures
were selected in this study to quantify human visual elements. The application of green
vision and sky visibility is very common in urban spatial measurements. Green space
quality is often associated with urban health and has a certain impact on urban spatial
perception [56]. Sky visibility is also important for the study of urban heat islands. At the
same time, the sky represents infinity in space, which is also related to the visibility of
the line of sight. It is one of the more important visual elements in human vision. Space
enclosure degree is an important kind of public spatial measure. The degree of spatial
closure has a significant influence on the perception of spatial preference attributes and the
sensory feedback for mental health [57]. Therefore, it is indispensable to the measurement
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index of this study. The degree of motorization and non-motorization measures represent
the urban population mobility and the urban traffic situation to some extent. In Chinese
cities, the occurrence rate of non-motor vehicles is becoming higher and higher. They are
not constrained by the motor vehicle lane, indicating that the impact this will have on
pedestrian feelings is direct.

Table 1. Segmentation results of the 14 visual elements.

Maximum Minimum Average Standard Deviation
road 0.723 0.016 0.188 0.068
sidewalk 0.140 0.000 0.017 0.017
building 0.681 0.000 0.151 0.101
wall 0.172 0.000 0.005 0.009
fence 0.133 0.000 0.007 0.011
vegetation 0.713 0.000 0.205 0.154
sky 0.480 0.000 0.200 0.123
person 0.189 0.000 0.010 0.008
rider 0.025 0.000 0.001 0.001
car 0.983 0.000 0.191 0.064
truck 0.186 0.000 0.007 0.013
bus 0.115 0.000 0.001 0.005
motorcycle 0.048 0.000 0.002 0.004
bicycle 0.059 0.000 0.002 0.003

We calculated the spatial metrics from each visual element, and five metrics were
selected for spatial metrics: the green vision index, sky visibility, degree of interface
enclosure, degree of motorization, and degree of non-motorization.

(1) Green vision index

Green visibility can improve the attractiveness and visual experience of urban streets;
the public’s mental health is significantly affected by the perception of the amount of green
in urban streets [58]. The green vision index refers to the proportion of green plants in the
visual field, and the formula for its study is:

GVI; = ™ % 100%
nj

where GV ; is the green vision index at the i-th position; 1, is the number of vegetation
pixels of the street attraction; and n; is the total number of pixels of the street-view image
at the i-th location.

(2) Sky visibility index

The sky visibility index has a significant impact on metropolitan areas. It is an impor-
tant factor in the urban heat island effect [59] that the area experiences, as well as a crucial
factor in research into urban morphology. This indicator refers to the visual proportion of
sky features in an image in this study, and its calculation formula is as follows:

SVI = ™ % 100%
i

where SV I; is the sky visibility index at the i-th position; 7, is the number of sky pixels of the
street’s attractions; and #; is the total number of pixels in the i-th location street-view image.

(3) Degree of enclosure

The degree of the interface enclosure of urban street space measures the enclosure of
living street space by facilities such as buildings, walls, fences, etc., which in this study is
the pixel occupancy of elements such as buildings, fences, walls, etc. in the image. The
specific calculation formula is:

x 100%

Ng+MNny+n
Do}giz”i”"fr

n;
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where DOE; is the degree of enclosure at the i-th position; 1, is the number of architectural
pixels of the street’s attractions; 1y is the pixels of the number of walls of the street’s
attractions; ny is the number of pixels of the fence of the street’s attractions; and #; is the
total number of pixels in the i-th location street-view image.

(4) Degree of motorization

The degree of motorization impacts urban pedestrian mobility, which influences the
environmental, socio-demographic, mobility, and road safety characteristics of pedestrian
travel communities [60]. In this study, the degree of motorization is represented by the
percentage of pixels in the image of the motorized elements framed in a given streetscape
image. The formula is as follows:

DOM; = x 100%

ny + ne + ng + Ny
n;

where DOM, is the degree of motorization at the i-th position; 1, is the number of bus pixels
for the street attractions; 1, is the number of pixels for cars on the street’s attractions; n; is
the number of pixels of the trucks at the street attraction; #,, is the number of motorcycle
pixels in the street attraction; and n; is the total number of pixels in the i-th location
street-view image.

(5) Degree of non-motorization

The degree of non-motorization of urban streets reflects the traffic in the non-motorization
driving space in the city, which is one of the indicators used to measure the chronic space
in the city. This study mainly summed up the proportion of people, bicycles, and riders.
The formula is as follows:

DON; =

m % 100%

n;

where DON; is the degree of non-motorization at the i-th location; 1, is the number of
pixel points for pedestrians at that street point; 7, is the number of pixel points of a bicycle
at that street spot; 7, is the number of pixel points of the rider at that street scene point; and
n; is the total number of pixels in the streetscape image at the i-th location.

3.5. Convolutional Neural Network-Based Scoring and Spatial Pattern Study for Scene Perception

This section quantifies the macro-level research into the perceived spatial quality of
urban streets. The street spatial perception dataset is derived from MIT Lab’s “Place Pulse2”
project, an online data collection platform that collects people’s perceptual evaluations of
the appearance of cities. This dataset has massive data and wide coverage. However, there
is still some specificity required for the accurate evaluation of the street perception score
in China and its cities. Therefore, in this study, a pre-trained deep learning model with
higher pertinence was selected to obtain the perception score of urban street-view images
and carry out the analysis. The open-source model was developed and shared by China
University of Geosciences (Wuhan). This is a deep-learning model with high precision
and was pre-trained on a dataset of the Wuhan area [49]. After processing, the scores were
finalized as shown in Table 2. The six street spatial perception scores are shown in Figure 2.

Table 2. The six perception scores for urban streets.

Average Maximum Minimum Standard Deviation
boring 57.81194 85.11137 23.5317 6.27788
beautiful 17.61704 54.10796 —22.4117 7.96088
depressing 56.69106 91.56737 34.66571 5.30669
lively 37.11306 86.62331 2.01155 9.80697
safe 37.37488 61.92188 15.30053 5.68273

wealthy 41.92913 79.03056 10.92321 7.75064
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Figure 2. Map of the Wuchang District urban street perception score.
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When conducting an in-depth study of the spatial pattern of urban streets, it is also
necessary to judge the laws that exist in the spatial distribution. Therefore, we determined
whether the space is dispersed or aggregated and studied the law of aggregation and
the influence mechanism behind it. The analysis of the perceived spatial pattern of street
spatial quality mainly needs to focus on the spatial distribution characteristics of the points
and be combined with their interrelationships. Although the spatial relationship of the
scores can be judged to a certain extent through the observation of the perception map, it is
still necessary to further evaluate the spatial autocorrelation situation through calculation.
The common basis for judging the spatial autocorrelation phenomenon is known as the
spatial autocorrelation (Moran’s I) index. Global Moran’s I can statistically measure the
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relationship between the values of attributes of neighboring spatially distributed objects.
The Moran’s I calculation formula is as follows:

_ nY g Ljq Wij(xi — x) (xj — X)

1
T Wikl (v 92 .

where 7 is the total number of space units; x; is the observed value at space location [; x; is
the observed value at space location j; Wj; is the weighting matrix for space; and ¥ is the
average value of all space units.

The Moran I index has a value range of [-1, 1], with a negative spatial correlation
indicated if I < 0 and a positive spatial correlation if I > 0.

To further determine the type of numerical clustering in space, we used hotspot
analysis to determine whether the space was positively or negatively correlated and to
detect the location of clustered areas. Hotspot analysis is quantified by the Getis-Ord Gi*
coefficient, which is calculated by the following formula:

n . XY ..
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@

where x; is the attribute values of element i and element j; w; ; are the spatial weights of
elements i and j; and # is the total number of elements in the dataset.
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The z-scores and p-values obtained indicate where spatial clustering occurs for high-
or low-value elements.

3.6. Study on the Correlation of Multi-Dimensional Elements of Spatial Quality of Urban Streets

This section studies the relationship between the spatial quality scores of urban streets
and urban amenities. The primary method for quantifying and evaluating geospatial
dimensions is geographically weighted analytical regression analysis (GWR), first proposed
by Fotheringham, Brunsdon, and Charlton [61] in 1996. Geographically weighted regression
differentiates the use of different operations at different scales, and each spatial location
applies a unique algorithm for regression analysis. In this study, each of the six perceptual
scores is used as a dependent variable, and facility points within the urban grid are operated
as independent variables to explore the correlation between urban facility configurations
and spatial quality scores and to identify the significant influencing factors.

Firstly, the range of Wuchang District was gridded with 100 x 100 m as the image
element length and width, and the six perceptual scores were projected into each grid. For a
single grid with multiple POI points, the average of the relevant attributes of all the points
falling within the range was taken. After pre-processing the facility types, numerous types
of facility points were obtained, such as those relating to government facilities, medical
facilities, recreational facilities, parking facilities, transportation site facilities, tourist areas,
cultural facilities, residential areas, public security and traffic police, large-scale shopping,
and office buildings. After completing the above, the facility point POI data required
processing. We projected it into the grid as a sum of quantities, i.e., we calculated the
number of POI points in each image element. Regression analysis was performed using
the perceived score as the dependent variable and the number of urban facilities as the
independent variable. To better screen the independent variables, we used the Pearson
correlation coefficient to determine whether the independent and dependent variables
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were significantly correlated. The independent variables that did not have a significant
correlation were finally excluded. Additionally, because the total amount of data for some
types of POI points was too small, they were also excluded. A geographically weighted
regression was calculated for the final screening results. The formula is as follows:

yi = Bo(ui,01) + Y p_y By, vi)xie+ei =1,2,...,n @)
where y; is the value of the dependent variable at position i; xj(k =1,2,...,m) is the
value of the independent variable at location i; (u;,v;) is the coordinates of sampling
point i; Bo(u;, v;) is the intercept term; and By (u;, v;) is the regression coefficient of the kth
independent variable x at sampling point i.

After the above work was completed, it was also necessary to correlate the urban mi-
crocosmic space measurement indexes. The quantitative calculation methods used in such
exercises are Pearson coefficient correlation analysis and linear regression analysis, with
the dependent variables being the six urban street perception scores and the independent
variables being the five items of green visual indeXx, sky visibility index, degree of enclosure,
degree of motorization, and degree of non-motorization.

4. Results and Analysis
4.1. Analysis of Spatial Patterns of Perceived Spatial Quality in Urban Streets

The results of the global Moran's I calculations are shown in Table 3, where the Moran’s
I indices for all six perceptions are positive, indicating that the data exhibit a spatially
positive correlation. The results of the spatial autocorrelation analysis for all six perceptions
have high z scores and low p values, with small p values indicating that the observed
spatial patterns are unlikely to arise from stochastic processes (small probability events).
Therefore, hotspot analysis is also needed to detect agglomeration areas’ locations. The
hotspot analysis yielded six urban street perception clustering results (Figure 3). Figure 3a
demonstrates the spatial clustering relationship between the high and low values of the
boring score. According to the map, there is an apparent clustering of high values in the
northeast region. This is the East Lake Tunnel section, which is perceptually exceptionally
closed with only a monotonous view. Similar to this situation is the beautiful low-score
aggregation of the East Lake Tunnel in Figure 3b. The five cross-river bridges over the east
region also have low scores. Although the cross-river bridges have an open view range,
the lack of landscape diversity may contribute to the high boring score. There is a wide
range of low scores in the southeast area of Wuchang District, a university area with a
long history of construction, rich cultural heritage, a beautiful green landscape, unique
architectural and cultural attributes, and a beautiful campus environment. The low score
aggregation of boredom here may be related to the diverse environment of the university
campus. A similar aggregation of low scores is the depressing score in Figure 3c, both of
which are negative evaluations; it can be assumed that the lower their perceived scores, the
better the spatial quality. Figure 3b demonstrates the aggregation of high and low values
of beautification. Wuchang District along the Yangtze River, which contains more Wuhan
historical neighborhoods, cultural parks, and newly built residential areas, presents a more
extensive range of score aggregation. It is one of the most critical sections of Wuhan's urban
area style control. Figure 3c shows the depressing score aggregation. There is no wide range
of high aggregations of depressing scores, but there are two low aggregations of scores near
East Lake. Figure 3d shows the lively score; the overall dynamic low aggregation of scores
in the area is more significant, and the high aggregation of scores in the area is not apparent
and needs further study to transform it into a low aggregation of scores. In Figure 3e, in
addition to the low-scoring aggregation near East Lake, there is also a low-scoring area
in the eastern region, which has more old neighborhoods and older buildings. Hence,
the site has a high population density but narrower roads, more on-street parking, and
older facilities. The more aged settlement environment may create a sense of insecurity for
pedestrians, resulting in lower scores. Another significantly low-scoring roadway includes
the tunnel and viaduct, and the urban expressway harms pedestrians’ perceptions of safety.
The overall perception of affluence in Figure 3f is better, with high scores clustered mainly
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in dense urban residential and commercial areas and low scores primarily clustered around
the East Lake neighborhood. The overall economic development of the Wuchang District is
more advanced in the central metropolitan area of Wuhan. Generally speaking, the city’s
more prosperous commercial and residential areas have higher commercial value, and the
affluence perception is consistent with the general perception.

Table 3. Statistics of the global Moran’s I for the six perceptions of urban streets.

Boring Beautiful  Depressing Lively Safe Wealthy
Moran’s I 0.125 0.122 0.131 0.257 0.126 0.336
Z-score 157.58 153.67 165.64 323.54 159.10 424.31
p-value 0.000 0.000 0.000 0.000 0.000 0.000

Hotspot analysis results for different perceptions
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Figure 3. Cluster analysis of the high and low values of spatial perception of six streets.

4.2. Results and Analysis of Regression Analysis of the Spatial Quality of Urban Streets and Urban
Amenity Points

Table 4 gives the local R2 of the six perception dimensions. The local R2 can be
interpreted as the proportion of the variance of the dependent variable covered by the
regression model globally. As can be seen in Table 4, the local R2 for all six dimensions is
above and below 0.4; due to the complexity of the influencing elements of urban spatial
perception, a fit of 0.4 can be judged as an acceptable range. Since urban street space is
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closely related to geographic location and its perception scores are spatially heterogeneous,
it is also necessary to pay attention to the variability in the local R2 and the fluctuation
of the correlation coefficient. Figure 3 shows the values of localized R2, which we seg-
mented. Regression model instability occurred in some places as a result of the absence
of street attractions and the scarcity of dependent variable data. However, because they
are uncommon, these locations were left out of the study. When the fit is too small, the
regression coefficients cannot sufficiently explain the relationship between the independent
and dependent variables. As shown in Figure 4, the fit is less than 0.2 (blue area). As such,
subsequent studies should carefully refer to the model interpretation. Still, the proportion
of this part is small so that the regression coefficients can be used in assessing most di-
mensions of the relationship between the spatial quality of the city street and the urban
amenity points. Different influences have different interpretations in other locations. As
such, we organized and analyzed each influential element for the six different perception
types. The correlation coefficient represented the effect of different facility point elements.
There were nine types of facility point elements used as independent variables in this study:
restaurants, office buildings, residential locations, cultural facilities, transportation sites,
parking lots, recreational facilities, medical facilities, and government facilities.

Table 4. Table of the R2 results of the six categories of the perceptual regression models.

Boring Beautiful Depressing Lively Safe Wealthy
Local R2 0.398 0.388 0.414 0.413 0.419 0.422

A negative influence coefficient means the dependent variable contributes negatively
to the perceived score. In contrast, a positive influence coefficient implies that the de-
pendent variable contributes positively to the perceived score. The absolute value of the
influence coefficient means that a dependent variable in this position contributes more
to the perception score. The nine urban amenity elements contain two types of influence.
The first category includes the global, entirely positive influence elements, i.e., they are
positively influenced globally. The second category addresses local differential influence
factors, which refer to factors that are positively influenced in local areas and negatively
influenced in regional areas. Let us take the boring perception as an illustration. Figure 5
shows the localization of the influence coefficients of urban facility elements on the boring
perception. According to their coefficients” positive and negative values, we classify the
results as follows: parking facilities and medical facilities are entirely positive elements,
and food and beverage facilities, office buildings, entertainment and recreational facilities,
and government facilities are positive elements with local differences. The results of the
other five perceptual scores are categorized along the same lines, and the results are shown
in Table 5. These will serve as a reference for the later portion of the local impact study.
The values of the coefficients can also reflect the local impact on the score situation. For
areas where a facility point has a positive effect, adding a particular type of facility point
at a location with a higher impact coefficient can have a more significant effect when it
is necessary to improve a specific perceptual score. For areas where a facility has a neg-
ative impact, a positive perception can be enhanced by reducing the number of amenity
sites, and a negative perception can be reduced by increasing the number of facilities in a
particular location.

The six perceptions were divided into positive and negative perceptions, with the
positive ones including beautiful, lively, safe, and wealthy, and the negative perceptions
being boring and depressing. The optimization goal of urban street-space perception
is to enhance positive perception and weaken negative perception. Therefore, in urban
planning practice, we need to focus on the low-value aggregation of positive perceptions
and the high-value aggregation of negative perceptions, corresponding to the low-value or
high-value aggregation in Part 4.1; the typical area schematic is shown in Figure 6. Since
some of the areas with low-value or high-value clusters do not have the conditions for
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adjusting the facility points, such places were not included in the discussion of optimizing
the spatial perception of urban streets through the facility points, such as the cross-river
bridges, tunnels, and the interior of university campuses, and therefore are excluded from
the discussion of the typical street spaces in this section.

Geographically weighted regression analysis results for different perceptions
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Figure 4. Local R2 scores.

To better screen the typical regional influencing factors and analyze them, we catego-
rized the critical influencing factors of the selected typical area. The categorization standard
is that if the proportion of the region with an influence coefficient greater than five is greater
than 60%, it is recognized as a key influencing factor. The results are shown in Table 6. The
selected key influencing factors can provide a reference for the planning of urban facilities
in the Wuchang District. Among them, the statistics found that the influence coefficient
of each type of facility land has a certain influence on beauty, but the categories and their
regions with contribution values greater than five account for less. Therefore, further urban
micro-influence factors must be implemented in a supplementary fashion.
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Figure 5. Coefficients of influence of urban facility elements on the boring perception.
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Lively

The letters of the regions correspond to the descriptions in Table 6.

Figure 6. Schematic diagram of a cluster area with typical high or low scores.

Table 6. Typical regions and their key influencing factors.

If the number of typical regions of a perception is greater than 1, its different areas are labeled (A) or (B) or _(_(E) in turn.
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Negative influencing factors are marked in parentheses and positive influencing factors are unmarked.
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4.3. Analysis of the Impact of Spatial Visual Elements on the Spatial Quality of Urban Streets

We calculated the values of the five spatial metrics for each streetscape collection
point using the formula shown in Part 3.4. Then, we tested the correlation between the
six perception scores and the five primary spatial metrics. The results showed that all
the factors were significantly correlated, meaning that linear regression analyses could
continue. The regression analysis results are shown in Figure 7, where the lines of different
colors represent the influence coefficients of the five spatial measures under the spatial
perception of different streets. The longer the lines of color in the bar graph, the higher
the absolute value of the standardized beta coefficient. Firstly, the respective factors under
the six perceptions were compared and analyzed. Under the boring perception category,
all five spatial metrics had a negative impact on the boredom score. Still, the degree of
influence varied, with the green visual index having a significantly higher negative impact
than the other categories, followed by the degree of enclosure and the sky visibility index.
The degree of non-motorization had a more negligible, albeit still negative, impact. In
the beautiful perception study, the green visual index and the sky visibility index had
the most significant positive effects. Sky and plant visibility were essential for building
a beautiful ecological and visual environment that is conducive to enhancing the spatial
experience of pedestrians. Thus, these two factors were more critical for pedestrians’
perceptions of space. The degree of non-motorization had a negative influence, and it can
be presumed that people’s perception of the beautification of the street space was hindered
by people or bicycles. For the depressing perception, the higher the degree of enclosure
and motorization, the more depressing the urban street space. However, sky and green
visibility had a significant adverse effect on the perception of pedestrian depressiveness,
necessitating a focus on these elements in the discussion of the design methods used to
reduce the depressiveness of urban street space. All five spatial measures positively impact
the lively feeling of street space. Still, the degree of enclosure, sky visibility index, and
green visual index have a significantly higher impact than the other two indicators. The
degree of enclosure is often closely related to the height and density of the surrounding
buildings, which indicates that the closer the area with a high perception of urban liveliness
value is, the higher the density and height of buildings tend to be. The perception of a lively
core correlates with an area’s prosperity. The degree of enclosure, green visual index, and
sky visibility index significantly positively affect the perception of safety. However, due
to the negative impact of motorization on safety perception, one way to improve security
is to reduce the occurrence rate of motor vehicles. Under the influence of affluence, the
degree of enclosure and sky visibility index have a more crucial impact, and the degree
of non-motorization plays a negative role. Overall, the green visual index, sky visibility
index, and degree of enclosure greatly influence each aspect of perception, providing clear
guidance for the research strategy of quality improvement in terms of the spatial dimension
of urban streets.

Wealthy

Safe
Degree of non-motorization
Lively Degree of motorization
Degree of enclosure
Depressing
Sky visibility index

Beautiful Green visual index

Boring

Figure 7. Histogram of the beta coefficient of the regression analysis.
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5. Discussion

Influence studies on the spatial quality perception of urban streets play complementary
roles across different analytic dimensions. This study constructed a quantitative research
framework to investigate the spatial quality perception of urban streets on macro-, meso-,
and micro-multi-dimensions. This study formed an urban perception map of the Wuchang
District in Wuhan, China, and carried out a spatial pattern analysis at the macro level. At
the meso level, the correlation between street perception and critical urban facilities in
typical areas was studied to provide a reference for future urban facility planning. At the
micro level, this study investigated the influencing factors of street space based on the scale
of human perspectives, which provides a reference for the design update of specific spaces.
The conclusions of the leading research elements of this study are discussed below.

5.1. The Aggregation Characteristics of the Urban Street Spatial Perception Score in
Spatial Pattern

The results supported the existence of significant spatial agglomerations in all six cat-
egories of urban street perception, but these agglomerations were considerably different
from one another. The high-score aggregation of the beauty perception and the low-score
aggregation area of the lively perception were present among them in a significant area,
and the spatial characteristics demonstrated the continuity of the block. These regions
border the Yangtze River. The cluster scores of the four perceptions of boredom, depression,
safety, and wealth that were high or low tended to be localized. This phenomenon may be
determined by the peculiarities of the campus street. On the campus, there are significant
differences from cities in terms of vehicle density, population density, building density, etc.
within the field of view. The spatial perception of streets in nearby cities outside of school
differed significantly from the scoring results for the streets on campus when the campus
streets were evaluated using the perceptual scoring criteria of regular city streets. In terms
of specific perception, we also found the following characteristics:

First of all, there is a correlation between a city’s beauty and its prosperity. The more a
city is developed and includes environmental regulation, the more beautiful it is considered
to be in contrast to areas in its proximity. Second, the perceptions of beauty and liveliness
in the areas along the river are scored a different way, with the scores in the vicinity of
the city’s developed sections being lower. Older commercial housing communities and
numerous historic structures can be found nearby. This serves to remind urban planners
that there are measures they can take to improve the vibrancy of urban centers. In addition,
urban tunnels and bridges across the river are significant agglomeration areas with high
scores of urban negative perceptions, and they are also low-value aggregation areas of
urban safety perception. It is important to further investigate this finding in conjunction
with the unique street situation since high or low levels of boredom are primarily found
in specific neighborhoods and are related to the spatial characteristics of a small number
of streets. In the study of spatial patterns, the perception of urban affluence basically
corresponds to the level of regional development.

5.2. Discussion on the Difference of Factors Affecting the Perception of Street-Space Quality at the
Level of Urban Facilities

The aforementioned research has already demonstrated that urban facilities exert a
certain level of influence on the perception of urban street space, but the contribution to
the scores varied among facilities with different functions. At the same time, the degree
of influence that a single type of urban facility has on a certain street-space perception
also differed by location. Therefore, characteristic analyses need to be conducted based
on typical regions. The focus of this study is on areas with low scores that are actively
perceived and areas with high scores that are negatively perceived. The results showed
that among the low-scoring factors of boredom perception, cultural facilities, medical
facilities, office buildings, and residential areas were more crucial. The effects of cultural
facilities in different regions may be positive or negative. Urban cultural facilities contain
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different specific attributes, such as university facilities, libraries, theaters, etc., and different
categories have different effects on the perception of boredom. This might be connected
to more detailed types of cultural facilities, according to speculation. Office buildings,
residential areas, and traffic stations all contributed greatly to the boredom perception
score. In terms of POI location, the contribution of urban facilities to the beauty perception
score was relatively low, except for office buildings, so the explanation of influencing
factors at the micro level is more important. Residents and medical facilities were the key
influencing factors in depressive perception. Going to the hospital is a symbol of illness,
and the hospital may bring negative psychological feelings, thus contributing more to the
depression score in that geographical location. In a Chinese context, the general downtown
area symbolizes bustle and better security. Office buildings, parking lots, and cultural
facilities are higher in more affluent areas, meaning that identifying similar facilities in the
field of view can lead to an awareness of the affluence of the area.

The study’s results on the impact of urban facilities on urban street space reveal
the relative importance of the relevant factors in the perception of urban quality. It was
found that the impact of facilities on spatial perception was characterized by significant
geographic variability, which received less attention in many previous studies. We also
screened the findings for the critical factors of urban facilities in high- or low-value areas,
constituting a new research framework under the perspective of spatial differentiation. On
the other hand, this part of the study can also assist practitioners in finding the pivotal
factors of poor quality. Urban planning practitioners can supplement, reduce, or transform
urban facilities with these pivotal factors to establish a better basis for planning and design.

5.3. Discussion of the Differences of Factors Influencing the Spatial Quality of Urban Streets at the
Urban Micro Scale

Studying the influencing factors at the microscale can help urban renewal designers
better understand the elemental role of mechanisms at the human-view scale. Due to
the limited interpretation degree of facility planning, although the influence of facility
functions can be mined to a certain extent, the visual indicators at the micro level can be
an important part of the spatial design. First, we found a significant correlation between
the five indicators selected for the study and the six perceptions. However, the positive,
negative, and contribution of different indicators varied, so specific analysis was necessary.
The results showed that the green vision index and sky visibility degree had a significant
effect on reducing negative perception (boring, depressing perception) and increasing
positive perception (beautiful, lively, safe, and wealthy perception). Among them, the
positive influence on the perception of beauty and the negative impact on the perception of
boredom were the most prominent. Areas with high levels of affluence tend to have cleaner
urban greenery. Some scholars have pointed out that healthy and tidy trees contribute to
the beauty and active perception of cities [56]. Thus, this conclusion is consistent with the
general consensus and earlier research. Urban customers are ostensibly willing to pay more
for residences that showcase the surrounding environment’s natural components (sky and
vegetation) [62]. This explains why increased sky visibility and green views resulted in
increased wealth perception. The five perceptions of wealth, safety, liveliness, depression,
and beauty were all positively influenced by spatial enclosure; however, the perception
of boredom was negatively impacted. In addition to focusing on the green vision index
and sky visibility degree, the influence coefficient of the degree of motorization and non-
motorization could be considered an auxiliary consideration due to its comparatively low
absolute value.

Designers can improve the quality of the street by enhancing the urban ecological
landscape. For areas with better environmental terrain, the spatial quality of streets can
be improved by adjusting the degree of spatial enclosure. Since the positive and negative
effects of a certain index on different perceptions vary, the specific spatial improvement
should be designed to take into account the specific conditions of reality. For example, the
degree of enclosure is a positive factor in positive perception, but it is also positive for
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the sense of depression, meaning that comprehensive consideration is desirable. In terms
of traffic, it is worth noting that the emergence of motor vehicles was negative for safety
perception, but that non-motorized vehicles were positive. Positive perceptions can be
achieved through the study of the degree of influence. For example, neighborhoods with
high safety scores should adopt pedestrian—vehicle segregation to weaken the impact of
motor vehicles on the street, enhance the optimization of the pedestrian experience, and
achieve a human-centered area. This section of the study adds further information to the
facility planning and spatial pattern of perception scores.

6. Conclusions

This study constructs a research framework for urban street quality perception and its
multi-dimensional impact based on multi-source data, utilizing urban big data, semantic
segmentation, regression modeling, and other quantitative technical tools. Unlike tradi-
tional single-dimension measurement and analysis, this study constructs a quantitative
framework for urban macro-level, meso-level, and micro-level multi-dimensional integra-
tions. Among them, the gathering area of beauty and liveliness perception showed regional
continuity along the river, while the aggregation of boredom, depression, safety, and wealth
perception scores was more scattered.

Through hotspot analysis, we identified typical areas in the study area and uncovered
the typical influencing factors. For typical regions, the low-score aggregation area of
positive perception and the high-score aggregation area of negative perception are worth
noting. Therefore, we conducted an analysis of the magnitude of the influence of typical
influencing factors. This can provide some guidance for urban facility planning; however,
the impact study of urban facility dimensions is limited. Following this, we explored the
differentiated impacts of urban street-space quality at a micro-urban scale. The positivity
or negativity and the contribution of different spatial measurement indicators varied.
Greenery, sky, and the degree of spatial enclosure contributed more to the perception of
urban streets than motorized and non-motorized vehicles did. The detailed analysis results
provide guidance for micro-space design strategies in urban renewal.

We confirmed the spatial pattern of the high and low aggregation of quality perception
in the studied urban areas and summarized the influencing mechanisms, showing that
the urban facility layout and human-visual elements complement each other. We then
explored the ways in which it is possible to enhance urban space, finally forming a complete
research system. The ideas and methods adopted in this study can effectively realize
the measurement of urban streets’ spatial quality and guide urban renewal measures.
The research results provide methodological value and a technical reference for future
urban development.

Facing the challenge of the high-quality development of cities in the context of urban-
ization, focusing on street space and the study of urban street spatial perception is of great
significance in shaping high-quality space and realizing high-quality development. This
study recognizes the spatial pattern and multi-dimensional influence of urban street-space
quality perception in the Wuchang District in Wuhan, China, as an example. However, this
study still has the following limitations: The first is the data source limitation; although the
technology behind street image maps is mature, some of the collection points at the edge
location were not dense enough, and there was a local region of collection points insuffi-
cient for data calculation. Additionally, due to seasonal variations, weather patterns, and
limitations of acquisition time, street-view images may have partially affected the accuracy
of the findings. Secondly, due to the complexity of the influencing factors of urban quality
perception, some influencing factors were still not involved. In future studies, it is crucial
to expand on more comprehensive and advanced techniques for big data collection. The
availability of wider and more precise street-view data is critically important for research
into the perception of urban street spaces. In the future, we will further explore more influ-
encing factors of urban spatial quality (e.g., the spatial history dimension, socio-economic
dimension, urban management dimension, etc.) to assess the influence of different factors
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on the perception of urban street quality. We will continue to deepen our research in the
direction of broader types, larger areas, and more detailed techniques.
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