
Citation: Jang, B.; Yoo, I.; Yook, D.

Pipelined Stochastic Gradient

Descent with Taylor Expansion. Appl.

Sci. 2023, 13, 11730. https://

doi.org/10.3390/app132111730

Academic Editor: Haigang Gong

Received: 13 September 2023

Revised: 24 October 2023

Accepted: 25 October 2023

Published: 26 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Pipelined Stochastic Gradient Descent with Taylor Expansion
Bongwon Jang 1, Inchul Yoo 2 and Dongsuk Yook 2,*

1 Department of Computer Science and Engineering, Korea University, Seoul 02841, Republic of Korea;
wkdqhddnjs12@korea.ac.kr

2 Artificial Intelligence Laboratory, Department of Computer Science and Engineering, Korea University,
Seoul 02841, Republic of Korea; icyoo@ai.korea.ac.kr (I.Y.)

* Correspondence: yook@korea.ac.kr

Abstract: Stochastic gradient descent (SGD) is an optimization method typically used in deep learning
to train deep neural network (DNN) models. In recent studies for DNN training, pipeline parallelism,
a type of model parallelism, is proposed to accelerate SGD training. However, since SGD is inherently
sequential, naively implemented pipeline parallelism introduces the weight inconsistency and the
delayed gradient problems, resulting in reduced training efficiency. In this study, we propose a novel
method called TaylorPipe to alleviate these problems. The proposed method generates multiple
model replicas to solve the weight inconsistency problem, and adopts a Taylor expansion-based
gradient prediction algorithm to mitigate the delayed gradient problem. We verified the efficiency of
the proposed method using the VGG-16 and the ResNet-34 on the CIFAR-10 and CIFAR-100 datasets.
The experimental results show that not only the training time is reduced by up to 2.7 times but also
the accuracy of TaylorPipe is comparable with that of SGD.

Keywords: deep learning; stochastic gradient descent (SGD); parallel processing; pipeline processing

1. Introduction

The deep neural networks (DNNs) used in deep learning are applied to various
domains, such as image classification [1], speech recognition [2], natural language process-
ing [3], and so on [4–6]. Stochastic gradient descent (SGD) is a training method commonly
used to train DNN models [7]. SGD repeats the process of calculating the gradient and
updating the model parameters for each training data sample. This method of updating
model parameters for each training sample instead of all training data results in a random
walk phenomenon, which is useful for DNN training because it may help prevent the
training process from falling into the local minima [8]. The performance of DNNs tends to
improve as more training data and large-scale DNN models are used [1,9]. Since a signif-
icant amount of time is required to train a large-scale DNN that uses a massive amount
of training data, a parallel training method is needed. However, parallelization of SGD is
difficult because it is sequential in nature.

Many studies have been conducted to parallelize SGD. Parallelizing SGD can be per-
formed by distributing training data or model parameters. These methods of parallelization
are called data parallelism and model parallelism, respectively. For the data parallelism
method, a master model is trained by distributing training data across multiple computing
nodes with local model parameters and combining them to update the master model. Com-
bining local models can be performed synchronously or asynchronously. In synchronous
SGD (SSGD), the parameters of the master model are updated by simultaneously combin-
ing all local model parameters at a given point in time [10,11]. Each model update in SSGD
requires all computing nodes to complete the assigned training processes; therefore, it is
vulnerable to transient failures of computing nodes, since the SSGD algorithm has to wait
for such failed nodes.

Appl. Sci. 2023, 13, 11730. https://doi.org/10.3390/app132111730 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132111730
https://doi.org/10.3390/app132111730
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2445-2354
https://doi.org/10.3390/app132111730
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132111730?type=check_update&version=1

Appl. Sci. 2023, 13, 11730 2 of 12

Unlike SSGD, asynchronous SGD (ASGD) combines local model parameters asyn-
chronously to update the master model parameters [12,13]. As a result, each iteration of
ASGD does not have to wait for all computing nodes to finish the computation, nor does
it need to wait for slow or broken computing nodes. Therefore, the cost of updating the
master model parameters using ASGD is less than that of using SSGD. Hence, ASGD is one
of the most frequently used methods in parallel training of DNNs. Each local computing
node asynchronously transmits gradients to the parameter server where the master model
resides, and gradients are applied to the master model parameters in the order of arrival.
Therefore, gradients that arrive late are not applied to the master model parameters used
to compute those gradients, but to the master model parameters already changed by other
gradients that arrive earlier. These late-arriving gradients are called delayed gradients, and
the model parameters updated by the earlier-arriving gradients are called stale weights.

Model parallelism splits the parameters of the DNN model and distributes them over
computing nodes. Each computing node holds a portion of the model rather than the entire
model, so it requires a smaller amount of memory, making it suitable for accommodating
larger models. Pipeline parallelism [14] is a type of model parallelism in which a DNN
model is divided into stages and the stages are distributed to computing nodes. Layers
in the same stage are typically assigned to the same computing node, which increases the
communication efficiency between layers. However, similar to ASGD, a naive pipeline
parallelism algorithm suffers from poor accuracy due to delayed gradients and the weight
inconsistency problems.

In this study, we propose a pipelined SGD training method that solves the delayed
gradient and weight inconsistency problems of the naive pipeline parallelism. The proposed
pipelined SGD effectively becomes data parallelism. Therefore, any previous works to
enhance the performance of data parallelism can be incorporated into the proposed method
for even greater efficiency. To the best of our knowledge, it is the first attempt to apply a
data parallelism perspective to address the problems of naive pipeline parallelism, which
allows us to incorporate the advantages of existing methods developed for data parallelism
into pipeline parallelism.

Specifically, we propose TaylorPipe which utilizes Taylor expansion of gradients [15],
which showed good performance for ASGD. To confirm the effectiveness of the proposed
method, image classification performances were evaluated on the CIFAR-10 and CIFAR-100
datasets using the VGG-16 [16] and the ResNet-34 [9].

2. Problem Definition and Related Work

Instead of performing SGD for each training instance, we can organize multiple
training instances into groups called mini-batches and perform SGD for each mini-batch,
which is called mini-batch SGD. This can increase the training speed because the data in
a mini-batch can be processed in parallel using GPUs. This mini-batch SGD is a DNN
training method that is widely used at present. In this paper, SGD refers to mini-batch SGD.

SGD updates the model parameters gradually by calculating the gradient of the loss
function and moving to the opposite direction of the gradient as follows:

Wt+1 = Wt − η∇L(Wt; xt, yt), (1)

where W is the weight (i.e., model parameters) of a DNN model, η is the learning rate,
L is the loss function, x is the input data, y is the target value, and t is the time index
(i.e., index of a training instance or mini-batch). It is difficult to parallelize this type of
SGD that performs computations sequentially and repeatedly. Therefore, the accuracies
of SGD-based pipelined parallel training algorithms are lower than those of the original
sequential SGD algorithm.

Pipelined SGD typically groups the layers of a DNN model into as many stages
as the number of computing nodes and distributes the stages to the computing nodes
(Figure 1). After the forward pass of the t-th mini-batch is completed at the layers in the
n-th computing node, the (n + 1)-th computing node proceeds with the next forward

Appl. Sci. 2023, 13, 11730 3 of 12

pass of the t-th mini-batch. At the same time, the n-th computing node simultaneously
executes the forward pass of the (t + 1)-th mini-batch. Similarly, all computing nodes
simultaneously perform computations for different mini-batches in the backward pass as
well. Therefore, pipelined SGD is suitable for large-scale DNN training because it uses all
computing nodes without idle time and reduces the burden on each computing node, in
terms of memory use, by dispersing the DNN model parameters.

𝐹4
1 𝐵4

1 𝐹4
2 𝐵4

2 𝐹4
3 𝐵4

3 𝐹4
4 𝐵4

4

𝐹3
1 𝐹3

2 𝐹3
3 𝐵3

1 𝐹3
4 𝐵3

2 𝐹3
5 𝐵3

3

𝐹2
1 𝐹2

2 𝐹2
3 𝐹2

4 𝐹2
5 𝐵2

1 𝐹2
6 𝐵2

2

𝐹1
1 𝐹1

2 𝐹1
3 𝐹1

4 𝐹1
5 𝐹1

6 𝐹1
7 𝐵1

1

Computing
Node

Time

⋯

𝑊4

𝑊3

𝑊2

𝑊1

Model

Figure 1. Pipelined parallelism. Ft
n and Bt

n represent the forward pass and backward pass, respectively,
at computing node n for mini-batch index t.

However, when a backward pass is executed at a computing node in naive pipelined
SGD, the forward pass values and the model parameters required for the backward pass
computation have been changed already by a different mini-batch, causing the weight
inconsistency problem (i.e., the model parameters used during the forward and backward
passes are different). For example, the model parameters used in the forward pass of
the second mini-batch in the third computing node (denoted as F2

3 in Figure 1) and the
resulting forward pass values are changed in the process of F3

3 (the forward pass of the third
mini-batch), B1

3 (the backward pass of the first mini-batch), and F4
3 (the forward pass of the

fourth mini-batch). Hence, an incorrect forward pass values and stale weights are used
for B2

3, which is the backward pass of the second mini-batch in the third computing node,
causing the delayed gradient problem in the naive pipeline parallelism. Previous works on
pipelined SGD used the terms delayed gradient and weight inconsistency interchangeably.
In this work, delayed gradient refers to the late-arriving gradients as in the ASGD algorithm,
and weight inconsistency refers to the phenomenon that occurs in the naive pipeline
parallelism, which is the cause of the delayed gradients.

Various approaches have been studied to solve the delayed gradient problem in
pipelined SGD and improve the accuracies. In this section, the approximation methods
analyzed in [17] are briefly described.

Decoupled parallel backpropagation using delayed gradient [18] executes the forward
pass sequentially and uses the pipelining only for the backward pass. Though forward
passes are executed correctly, since backward passes proceed simultaneously in a pipeline
manner, the weight inconsistency problem persists. Also, there is a limit to improving the
parallelization performance because the higher the number of computing nodes, the larger
the effect of delayed gradients.

GPipe [19] executes the forward and backward passes by the pipeline method at a
level of micro-batch, which a mini-batch is further divided. However, though the problem
of weight inconsistency is solved, its convergence and parallelization efficiencies may
decrease depending on the size of the mini-batch and the number of computing nodes
because the backward passes start after all the forward passes have been finished, i.e., some
computing nodes may not participate in the computation during the forward–to–backward
and backward–to–forward transition periods.

DAPPLE [20] uses a gradient accumulation method in which the gradients of mini-
batches are accumulated and the model parameters are updated once using the accumulated
gradients. Though it avoids the weight inconsistency problem, this method has the effect
of increasing the effective mini-batch size, thereby reducing the random walk phenomenon
and lowering the accuracy of the DNNs.

Appl. Sci. 2023, 13, 11730 4 of 12

SpecTrain [21] tries to prevent the weight inconsistency by predicting the future model
parameters using the momentum technique and employing them in the forward and
backward passes. Linear weight prediction [22] predicts the future model parameters using
the momentum to circumvent the weight inconsistency problem as in SpecTrain. However,
in these techniques, the higher the number of computing nodes, the more inaccurate the
predicted model parameters become, resulting in limited parallelization efficiency.

PipeMare [23] tries to mitigate the weight inconsistency problem by using estimated
forward pass model parameters at the time of the backward pass and alleviates the delayed
gradient problem by using smaller values of the learning rate. However, it does not
completely solve the weight consistency problem, so the more computing nodes there are,
the more unstable the model convergence becomes.

Spike compensation [22] increases the contribution of the latest gradient in pipelined
SGD with momentum. It has the effect that the overall contribution of each gradient
matches the case of original SGD where weight inconsistencies do not occur. However, the
training becomes unstable as the number of computing nodes increases.

FTPipe [24] is a pipeline parallelism proposed for fine-tuning pre-trained models.
It does not mitigate the weight inconsistency problem with the assumption that the pre-
trained models are less sensitive to weight staleness. However, not taking the staleness into
account at all leads to an accuracy drop.

A potential solution for the weight inconsistency problem involves the creation of
the same number of model replicas as that of time delays in the delayed gradient for each
computing node and updating these replicas during the backward pass [25]. For example,
PipeDream [26,27] uses this method, with the name of weight stashing. Furthermore, the
same number of model replicas as the largest number of delay occurrences at all computing
nodes can be created such that all computing nodes can use the same previous time step
parameters during the backward passes. It is called vertical sync in PipeDream [26]. This
method can be considered as the combination of model parallelism and data parallelism.
Therefore, additional synchronization of model parameters is required.

3. Proposed Methods
3.1. Pipelined SGD Work Scheduling and Model Replicas for the Proposed Methods

The proposed work scheduling for pipelined SGD is depicted in the left part of Figure 2.
It shows the simultaneous execution of forward or backward passes for different mini-
batches. For example, when the forward pass of the 5th mini-batch is executed in the
2nd computing node (denoted as F5

2), the forward pass of the 6th mini-batch is executed
concurrently in the first computing node (denoted as F6

1). Similarly, B1
2, which denotes

the backward pass of the 1st mini-batch in the second computing node, and B2
3, which

denotes the backward pass of the 2nd mini-batch in the 3rd computing node, are executed
in parallel.

𝐹4
1 𝐵4

1 𝐹4
2 𝐵4

2 𝐹4
3 𝐵4

3 𝐹4
4 𝐵4

4

𝐹3
1 𝐹3

2 𝐹3
3 𝐵3

1 𝐹3
4 𝐵3

2 𝐹3
5 𝐵3

3

𝐹2
1 𝐹2

2 𝐹2
3 𝐹2

4 𝐹2
5 𝐵2

1 𝐹2
6 𝐵2

2

𝐹1
1 𝐹1

2 𝐹1
3 𝐹1

4 𝐹1
5 𝐹1

6 𝐹1
7 𝐵1

1

𝑊4
1 𝑊4

2 𝑊4
3 𝑊4

4 𝑊4
5 𝑊4

6 𝑊4
7

𝑊3
1 𝑊3

2 𝑊3
3 𝑊3

4 𝑊3
5 𝑊3

6 𝑊3
7

𝑊2
1 𝑊2

2 𝑊2
3 𝑊2

4 𝑊2
5 𝑊2

6 𝑊2
7

𝑊1
1 𝑊1

2 𝑊1
3 𝑊1

4 𝑊1
5 𝑊1

6 𝑊1
7

ഥ𝑊4

ഥ𝑊3

ഥ𝑊2

ഥ𝑊1

Computing

Node

Time

⋯

Model Replicas (Local Models) Master Model

Figure 2. Work scheduling (left part) and model replicas (right part) of the proposed pipelined SGD.
Ft

n and Bt
n represent the forward pass and backward pass, respectively, at computing node n for

mini-batch index t. Wt
n represents the local model parameters in computing node n for mini-batch

index t. W̄n represents the master model parameters in computing node n.

The master model and the model replicas required to prevent the weight inconsistency
problem caused by the naive pipelined SGD are shown in the right part of Figure 2.

Appl. Sci. 2023, 13, 11730 5 of 12

The proposed pipelined SGD creates 2N− 1 model replicas when the number of computing
nodes is N. In Figure 2, for example, seven model replicas are created for the pipelined
SGD with four computing nodes. To access the model parameters used in F3

3 (the forward
pass of the 3rd mini-batch in the 3rd computing node) and the output values of F3

3 when
B3

3 (the backward pass of the 3rd mini-batch in the 3rd computing node) is executed, the
model parameters used in F3

3 must not be changed during the backward passes from B1
3

to B2
3, and the output values of F3

3 must not be changed after forward passes F4
3 and F5

3 .
Therefore, three sets of model parameters of different time points (W3

3 , W4
3 , and W5

3) must
be maintained at the 3rd computing node until B3

3 is executed. Also, three sets of output
values from F3

3 , F4
3 , and F5

3 must be maintained. Similarly, seven sets of model parameters
(W1

1 , W2
1 , ..., W7

1) of different time points and seven sets of output values from F1
1 , F2

1 , ..., F7
1

must be maintained until B1
1 is executed at the first computing node. To support data

parallelism, however, 2N − 1 sets of model parameters and output values of different time
points must be maintained at every computing node because any local model replica of
the same time point as the one in the first computing node should be accessible in each
computing node. Since 2N− 1, different DNN models use different mini-batches in parallel
training, and data parallelism occurs as well as model parallelism in the proposed pipelined
SGD. In this case, the master model corresponds to the model of the parameter server
in ASGD; by contrast, in the proposed pipelined SGD, each stage of the master model
is separately stored at each computing node by model parallelism (W̄1, W̄2, W̄3, and W̄4
in Figure 2).

Combining these 2N− 1 model replicas to produce the master model can be performed
using data parallelism techniques. ASGD algorithms have many advantages over SSGD,
including efficiency and error resilience, so these ASGD algorithms can be applied to
combine model replicas. However, direct use of ASGD induces the delayed gradient
problem, as in the original data parallelism algorithms. Therefore, we propose a new
pipelined SGD algorithm, TaylorPipe, which applies the Taylor expansion to mitigate the
delayed gradient problem of the naive pipeline parallelism.

3.2. Pipelined SGD with Taylor Expansion (TaylorPipe)

To alleviate the delayed gradient problem occurring in ASGD, the gradient at a future
point in time may be approximated by applying the Taylor expansion [15]. As gradients
are the first-order derivatives of the loss function, the second-order derivatives should be
used in applying the Taylor expansion. To predict the gradient of the master model W̄n
that is from the future in time using the current time local model Wt

n, the following Taylor
expansion can be used:

∇L(W̄n; xt, yt) = ∇L(Wt
n; xt, yt) +∇2L(Wt

n; xt, yt)(W̄n −Wt
n) + ε, (2)

where ε is the error caused by the first-order Taylor expansion. The Hessian matrix, which is
the second-order derivative of the loss function, can be approximated using an appropriate
value of λ as follows [15]:

∇2L(Wt
n; xt, yt) ≈ λ∇L(Wt

n; xt, yt)�∇L(Wt
n; xt, yt), (3)

where � represents the pair-wise dot product.
The proposed TaylorPipe alternately performs the forward pass and backward pass

according to the work scheduling in Figure 2. Each computing node calculates the Taylor
expansion only for the stage of the model assigned to the computing node, instead of
for the entire model, because the pipelined SGD work scheduling and the model replicas
described in Section 3.1 allow model parallelism as well as data parallelism.

A pseudo-code of TaylorPipe is presented in Algorithm 1, which is executed by all
computing nodes simultaneously. In the algorithm, tf and tb represent the mini-batch
indices for the forward and backward passes, respectively, and T denotes the total number
of mini-batches. During the initial and final phases, only the forward and backward passes

Appl. Sci. 2023, 13, 11730 6 of 12

are executed, respectively. After the (n + 1)-th computing node finishes executing the
backward pass Btb

n+1, the n-th computing node calculates the gradient in the backward pass
Btb

n using the local model Wtb
n for the mini-batch of index tb. Subsequently, it performs

the Taylor expansion of the gradient for the master model W̄n, and the updated master
model is copied back to the local model. At a given time point, each stage of the master
model in the computing nodes contains the updated model parameters trained on different
mini-batches. For example, when B1

1 and B2
2 are finished, W̄1 and W̄2 contain the model

parameters trained using up to the 1st and 2nd mini-batches, respectively. However, when
the pipeline is flushed completely, all stages of the master model in the computing nodes
finally contain the model parameters of the same time version.

Algorithm 1 TaylorPipe: Executed by computing node n in parallel with all other comput-
ing nodes.

Initialize W̄n and copy it to W1
n , W2

n ,· · · ,W2N−1
n .

Set tf and tb to 1.
repeat

if not final phase then /* forward pass */
if (1 < n) then

Wait for Ftf
n−1 to be finished

end if
Execute Ftf

n
if (n < N) then

Send the result of Ftf
n to node n + 1

end if
tf ← tf + 1

end if
if not initial phase then /* backward pass */

if (n < N) then
Wait for Btb

n+1 to be finished
end if
Execute Btb

n as follows:
g← ∇L(Wtb

n ; xtb , ytb)

W̄n ← W̄n − η(g + λg� g� (W̄n −Wtb
n))

Wtb
n ← W̄n

if (n > 1) then
Backpropagate the error to node n− 1

end if
tb ← tb + 1

end if
until (tf and tb equal T)

In the proposed method, the master model and local model are stored in the memory
of the same computing node. Hence, TaylorPipe does not need to have additional memory
for the backup model nor to copy the gradients to the parameter server, unlike in the
conventional ASGD. That is, compared with the conventional ASGD employing Taylor
expansion, TaylorPipe has the advantage of less memory requirement and less communica-
tion cost when updating the model parameters. Furthermore, the bottleneck phenomenon
due to simultaneous access to the master model does not occur because the local models
stored in each computing node are sequentially synchronized with the master model.

3.3. Computation and Communication Complexities

In this section, we analyze and compare the computation complexity and communica-
tion complexity of SSGD, ASGD, and TaylorPipe [17]. Let H denote the number of neurons
in a layer, which is assumed to be the same for all layers in a fully connected DNN model.

Appl. Sci. 2023, 13, 11730 7 of 12

L represents the number of layers in the model, M indicates the number of instances in
a mini-batch, and T is the number of mini-batches in the training data. The computation
complexity of the vanilla SGD for one epoch is O

(
H2LMT

)
.

When N computing nodes are used in parallel, the computation complexity for SSGD
and ASGD on each computing node is O

(
H2LMT/N

)
since each computing node pro-

cesses T/N mini-batches. In ASGD, as the parameter server updates the master model
after each mini-batch, it requires O

(
H2LT

)
operations. On the other hand, it requires

O
(

H2LT/κ
)

operations for the master model update in SSGD, as the parameter server
updates the master model after every κ mini-batches. In TaylorPipe, each computing node
processes all T mini-batches, but only for L/N layers, so the computation complexity
becomes O

(
H2LMT/N

)
, which is the same as the cases of SSGD and ASGD. However,

TaylorPipe does not require additional model synchronization because each computing
node updates the master model directly.

The model synchronization in ASGD and SSGD requires the communication between
the parameter server and all N computing nodes. Therefore, the communication complexity
of ASGD is O

(
H2LT

)
, while that of SSGD is O

(
H2LT/κ

)
. On the other hand, since the

master model and local models reside in the same computing nodes, no communication is
required for the model synchronization in TaylorPipe. However, the results of the forward
and backward passes are transmitted to the adjacent computing nodes in parallel, which
results in the communication complexity of O(HMT).

The computation and communication complexities of SSGD, ASGD, and TaylorPipe
are summarized in Table 1. Though the computation complexities in a computing node for
all three methods are the same, TaylorPipe has the advantage in communication, since HM
is usually much smaller than H2L/κ in a large-scale DNN training.

Table 1. The computation and communication complexities of SSGD, ASGD, and TaylorPipe for
training a fully connected DNN model using N computing nodes. H denotes the number of neurons
in each layer, L represents the number of layers in the model, M indicates the number of instances in
each mini-batch, and T is the number of mini-batches in the training data.

Method
Computation Complexity

(Computing Node)
Computation Complexity

(Parameter Server) Communication Complexity

SSGD O(H2LMT/N) O(H2LT/κ) O(H2LT/κ)
ASGD O(H2LMT/N) O(H2LT) O(H2LT)

TaylorPipe O(H2LMT/N) - O(HMT)

4. Experiments

Experiments were conducted to analyze the efficiency of the proposed pipelined SGD
method by comparing it with the conventional parallel SGD algorithms in terms of the
accuracy and training speed on an image classification task using two datasets: CIFAR-
10 and CIFAR-100. VGG-16 [16] and ResNet-34 [9] were used as the DNN models for
the image classification experiments. The training algorithms used in the comparative
study include the conventional sequential SGD (denoted as SGD), the naive pipelined
SGD that condones the weight inconsistency (denoted as NaivePipe), PipeDream [26],
SpecTrain [21], and TaylorPipe. In order to analyze the effect of the weight inconsistency
and delayed gradient problems only and compare the conventional methods with the
proposed methods fairly, PipeDream and SpecTrain used the same work scheduling and
model replicas as TaylorPipe, which were explained in Section 3.1. Our implementation of
PipeDream computes the master model parameters by calculating the average of the local
model parameters at every model synchronization period. Since this effectively becomes
one of the SSGD methods, the delayed gradient problem does not occur. We implemented
the aforementioned algorithms using the DNN library provided by the Compute Unified
Device Architecture and compared their performance under the same hardware conditions.
The performance of each algorithm was evaluated with a varying number of GPUs (one,

Appl. Sci. 2023, 13, 11730 8 of 12

two, four, and eight) on a server with eight NVIDIA RTX 2080 Ti GPUs. We conducted
experiments five times with a different random seed and reported the best case. An image
augmentation technique was applied to prevent overfitting. The hyperparameter settings
for experiments can be found in Appendix A. The test error rate curves can be found
in Appendix B.

Table 2 shows the image classification error rate and training time of each training
method using the CIFAR-10 dataset and the VGG-16 model for various numbers of GPUs.
SGD shows the error rate of 6.73%. NaivePipe failed to converge because it does not cope
with the weight inconsistency and delayed gradient problems. Both of the conventional
pipelined SGD methods (PipeDream and SpecTrain) and the proposed pipelined SGD
method (TaylorPipe) show similar error rates to SGD when two GPUs are used. However,
the error rates increase as the number of GPUs used increases. Since PipeDream uses
one of the SSGD methods, which increases the effective mini-batch size by the number
of computing nodes, the enlarged effective mini-batch size will degrade the DNN model
training. SpecTrain predicts the future model parameters to prevent the weight inconsis-
tency, but the greater the number of computing nodes, the more inaccurate the predicted
model parameters become, resulting in limited DNN model training. However, TaylorPipe
shows stable performance regardless of the number of GPUs used. We suspect that the
simple averaging method and the momentum-based future model prediction scheme are
not as effective as the Taylor expansion-based future gradient prediction, in mitigating the
delayed gradient problem.

Table 2. Image classification error rate (%) and training time (in hours) of each method using the
CIFAR-10 dataset and the VGG-16 model for various numbers of GPUs.

Algorithm
Error Rate (%) Training Time (Hours)

1-GPU 2-GPU 4-GPU 8-GPU 1-GPU 2-GPU 4-GPU 8-GPU

SGD 6.73 - - - 11.96 - - -
NaivePipe - 72.07 74.18 81.70 - 0.10 0.06 0.05
PipeDream - 6.61 6.93 7.95 - 7.89 4.95 4.64
SpecTrain - 7.03 7.07 7.43 - 7.86 5.30 4.65
TaylorPipe - 6.64 6.63 6.70 - 8.35 5.26 4.51

Another important factor that affects the overall training time is statistical efficiency,
i.e., the number of epochs required to reach a desired level of accuracy. Since NaivePipe
failed to converge, it finished early. In the eight-GPU experiments, SpecTrain and PipeDream
are the slowest and the second slowest among the parallel algorithms and their error rates
are much higher than the proposed methods. TaylorPipe not only shows the comparable
error rate with SGD but also is 2.6 times faster than SGD.

Table 3 shows the averaging training time per epoch for each method using the
CIFAR-10 dataset and the VGG-16 model for various numbers of GPUs. For all parallel
algorithms, the average training time per epoch decreases in proportion to the number
of GPUs used. NaivePipe is the fastest because it does not perform any extra work to
handle the weight inconsistency and delayed gradient problems. PipeDream is faster than
SpecTrain because the synchronization period was set to be somewhat large. TaylorPipe
is faster than SpecTrain since the number of operations for gradient prediction is smaller
than the number of operations for weight prediction, i.e., TaylorPipe predicts the gradients
during the backward pass only whereas SpecTrain predicts the weights both for the forward
and backward passes. For all parallel algorithms, as the number of GPUs used increases, the
effect of extra computation time to handle the weight inconsistency and delayed gradient
problems diminishes and the overhead of communication time overwhelms, leading to
comparable training time per epoch in the last column of Table 3.

Appl. Sci. 2023, 13, 11730 9 of 12

Table 3. Average training time (in seconds) per epoch for each method using the CIFAR-10 dataset
and the VGG-16 model for various numbers of GPUs.

Algorithm 1-GPU 2-GPU 4-GPU 8-GPU

SGD 293 - - -
NaivePipe - 187 118 107
PipeDream - 194 123 111
SpecTrain - 213 129 112
TaylorPipe - 200 126 110

Table 4 shows the image classification error rate and training time of of each method
using the CIFAR-100 dataset and the VGG-16 and ResNet-34 models on eight GPUs.

Table 4. Image classification error rate (%) and training time (in hours) of each method using the
CIFAR-100 dataset and the VGG-16 and ResNet-34 models on 8 GPUs.

Algorithm
Error Rate (%) Training Time (Hours)

VGG-16 ResNet-34 VGG-16 ResNet-34

SGD 29.14 27.42 12.20 22.77
PipeDream 29.38 28.04 4.70 13.11
SpecTrain 30.50 31.05 4.60 9.28
TaylorPipe 29.46 27.09 4.43 8.69

In the VGG-16 experiment, the training time for PipeDream to reach the minimum
error rate is the slowest among the pipelined SGD algorithms. SpecTrain is the one of the
slowest algorithms and shows the worst error rate. The proposed method, TaylorPipe,
shows comparable error rates to SGD, with about 2.7 times faster convergence speed.

In the ResNet-34 experiment, PipeDream shows the slowest training time to reach
the minimum error rate among the parallel algorithms. Since the synchronization period
of PipeDream was set to 1, PipeDream should flush the pipeline more frequently to syn-
chronize the master model with local models. It not only increases the training time per
epoch but also uses computing nodes inefficiently. These are the major drawbacks of the
pipelined SGD using the SSGD method. SpecTrain shows the second slowest training
time and achieves the worst error rate of 31.05%. TaylorPipe shows the fastest training
time among the parallel algorithms. Compared to SGD, the training time of TaylorPipe is
2.6 times faster. Furthermore, TaylorPipe recorded a similar error rate to that of SGD.

Based on our experiments, the proposed method, TaylorPipe, shows robust perfor-
mance in terms of both image classification error rate and the training time to reach the
minimum error rate. Therefore, it can be inferred that TaylorPipe not only overcomes the
weight inconsistency problem but also more efficiently alleviates the delayed gradient that
occurs in the pipelined SGD.

5. Conclusions

In this study, a novel pipelined parallel SGD algorithm, TaylorPipe, is proposed to miti-
gate the weight inconsistency and delayed gradient problems that occur when implementing
the inherently sequential SGD algorithm as pipeline parallelism to improve the training speed.
It generates multiple model replicas to address the weight inconsistency problem and predicts
gradients by using Taylor expansion to alleviate the delayed gradient problem. The experi-
mental results confirmed that the convergence rate does not decrease even if the number of
computing nodes increases, unlike in the conventional parallel SGD algorithms. Therefore, the
proposed method is expected to train DNN models more efficiently in a large-scale parallel
processing environment. Furthermore, the attempted combination of pipeline parallelism
and data parallelism in this paper will serve as an example advising diverse approaches to
address issues that arise during parallelizing deep learning. However, the proposed method

Appl. Sci. 2023, 13, 11730 10 of 12

has a disadvantage in terms of memory efficiency because it creates multiple model replicas.
For future work, we believe that applying memory optimization techniques in deep learning,
such as gradient accumulation, gradient checkpointing, or mixed precision methods, and so
on, may be explored to effectively address this problem.

Author Contributions: B.J., I.Y. and D.Y. contributed equally to the work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT, and Future Planning
(NRF-2017R1E1A1A01078157). Also, it was supported by the NRF under project BK21 FOUR.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Hyperparameter Settings

Table A1. The hyperparameter settings for image classification experiments with VGG-16 using
the CIFAR-10 dataset on an 8-GPU environment. We adopted exponential learning rate decay in
this experiment.

Hyperparameters SGD PipeDream SpecTrain TaylorPipe

Batch Size 32 32 32 32
Learning Rate 0.003 0.003 0.001 0.003
Learning Rate Decay Factor 0.98 0.98 0.98 0.98
Momentum 0.9 0.99 0.99 0.9
Weight Decay 0.0005 0.0005 0.0005 0.0005
Communication Period (κ) - 64 - -
Variance Control Parameter (λ) - - - 2.0

Table A2. The hyperparameter settings for image classification experiments with VGG-16 using
the CIFAR-100 dataset on an 8-GPU environment. We adopted exponential learning rate decay in
this experiment.

Hyperparameters SGD PipeDream SpecTrain TaylorPipe

Batch Size 32 32 32 32
Learning Rate 0.003 0.003 0.001 0.003
Learning Rate Decay Factor 0.98 0.98 0.98 0.98
Momentum 0.9 0.99 0.99 0.9
Weight Decay 0.0005 0.0005 0.0005 0.0005
Communication Period (κ) - 16 - -
Variance Control Parameter (λ) - - - 2.0

Table A3. The hyperparameter settings for image classification experiments with ResNet-34 using
the CIFAR-100 dataset on an 8-GPU environment. We adopted exponential learning rate decay in
this experiment.

Hyperparameters SGD PipeDream SpecTrain TaylorPipe

Batch Size 16 16 16 16
Learning Rate 0.01 0.01 0.0003 0.01
Learning Rate Decay Factor 0.96 0.96 0.98 0.96
Momentum 0.9 0.99 0.99 0.9
Weight Decay 0.0005 0.0005 0.0005 0.0005
Communication Period (κ) - 1 - -
Variance Control Parameter (λ) - - - 2.0

Appl. Sci. 2023, 13, 11730 11 of 12

Appendix B. Test Error Rate Curve

0 10 20 30 40 50 60 70 80 90 100110120130140
Epoch

6

7

8

9

10

11

12

Er
ro

r r
at

e
(%

)

2-GPU

0 10 20 30 40 50 60 70 80 90 100110120130140
Epoch

6

7

8

9

10

11

12

Er
ro

r r
at

e
(%

)

4-GPU

0 10 20 30 40 50 60 70 80 90 100110120130140
Epoch

6

7

8

9

10

11

12

Er
ro

r r
at

e
(%

)

8-GPU
SGD (1-GPU)
PipeDream
SpecTrain
TaylorPipe

Figure A1. Image classification error rates (%) of each method with VGG-16 on the CIFAR-10 dataset
using various numbers of GPUs.

0 10 20 30 40 50 60 70 80 90 100110120130140
Epoch

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Er
ro

r r
at

e
(%

)

8-GPU
SGD (1-GPU)
PipeDream
SpecTrain
TaylorPipe

Figure A2. Image classification error rates (%) of each method with VGG-16 using the CIFAR-100
dataset on an 8-GPU environment.

0 10 20 30 40 50 60 70 80 90 100110120130140
Epoch

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Er
ro

r r
at

e
(%

)

8-GPU
SGD (1-GPU)
PipeDream
SpecTrain
TaylorPipe

Figure A3. Image classification error rates (%) of each method with ResNet-34 using the CIFAR-100
dataset on an 8-GPU environment.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25, pp. 1097–1105.
2. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.r.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep

Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process.
Mag. 2012, 29, 82–97. [CrossRef]

3. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186.

4. Yin, L.; Wang, L.; Li, T.; Lu, S.; Yin, Z.; Liu, X.; Li, X.; Zheng, W. U-Net-STN: A novel end-to-end lake boundary prediction model.
Land 2023, 12, 1602. [CrossRef]

5. Lu, S.; Ding, Y.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. Multiscale feature extraction and fusion of image and text in VQA. Int. J.
Comput. Intell. Syst. 2023, 16, 54. [CrossRef]

http://doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.3390/land12081602
http://dx.doi.org/10.1007/s44196-023-00233-6

Appl. Sci. 2023, 13, 11730 12 of 12

6. Yin, L.; Wang, L.; Li, J.; Lu, S.; Tian, J.; Yin, Z.; Liu, S.; Zheng, W. YOLOV4_CSPBi: Enhanced Land Target Detection Model. Land
2023, 12, 1813. [CrossRef]

7. Zhang, T. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In Proceedings of the
Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 116.

8. Smith, S.L.; Le, Q.V. A Bayesian Perspective on Generalization and Stochastic Gradient Descent. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

10. Valiant, L.G. A bridging model for parallel computation. Commun. ACM 1990, 33, 103–111. [CrossRef]
11. Zinkevich, M.; Weimer, M.; Li, L.; Smola, A. Parallelized Stochastic Gradient Descent. In Proceedings of the Advances in Neural

Information Processing Systems, Vancouver, BC, Canada, 6–9 December 2010; Volume 23, pp. 2595–2603.
12. Recht, B.; Re, C.; Wright, S.; Niu, F. Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In Proceedings

of the Advances in Neural Information Processing Systems, Granada, Spain, 12–14 December 2011; Volume 24, pp. 693–701.
13. Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Ranzato, M.; Senior, A.; Tucker, P.; Yang, K.; et al. Large scale

distributed deep networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA,
3–6 December 2012; Volume 25, pp. 1223–1231.

14. Petrowski, A.; Dreyfus, G.; Girault, C. Performance analysis of a pipelined backpropagation parallel algorithm. IEEE Trans.
Neural Netw. 1993, 4, 970–981. [CrossRef] [PubMed]

15. Zheng, S.; Meng, Q.; Wang, T.; Chen, W.; Yu, N.; Ma, Z.M.; Liu, T.Y. Asynchronous stochastic gradient descent with delay
compensation. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017;
Volume 70, pp. 4120–4129.

16. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

17. Yook, D.; Lee, H.; Yoo, I.C. A survey on parallel training algorithms for deep neural networks. J. Acoust. Soc. Korea 2020, 39, 505–514.
18. Huo, Z.; Gu, B.; Yang, Q.; Huang, H. Decoupled Parallel Backpropagation with Convergence Guarantee. In Proceedings of the

35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2098–2106.
19. Huang, Y.; Cheng, Y.; Bapna, A.; Firat, O.; Chen, D.; Chen, M.; Lee, H.; Ngiam, J.; Le, Q.V.; Wu, Y.; et al. GPipe: Efficient Training

of Giant Neural Networks using Pipeline Parallelism. In Proceedings of the Advances in Neural Information Processing Systems,
Vancouver, BC, Canada, 8–14 December 2019; Volume 32, pp. 103–112.

20. Fan, S.; Rong, Y.; Meng, C.; Cao, Z.; Wang, S.; Zheng, Z.; Wu, C.; Long, G.; Yang, J.; Xia, L.; et al. DAPPLE: A pipelined data
parallel approach for training large models. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Virtual Event, Republic of Korea, 27 February–3 March 2021; pp. 431–445.

21. Chen, C.C.; Yang, C.L.; Cheng, H.Y. Efficient and robust parallel dnn training through model parallelism on multi-GPU platform.
arXiv 2018, arXiv:1809.02839.

22. Kosson, A.; Chiley, V.; Venigalla, A.; Hestness, J.; Koster, U. Pipelined Backpropagation at Scale: Training Large Models without
Batches. In Proceedings of the Machine Learning and Systems, Virtual Event, 5 April–9 April 2021; Volume 3, pp. 479–501.

23. Yang, B.; Zhang, J.; Li, J.; Ré, C.; Aberger, C.; De Sa, C. PipeMare: Asynchronous Pipeline Parallel DNN Training. In Proceedings
of the Machine Learning and Systems, Virtual Event, 5 April–9 April 2021; Volume 3, pp. 269–296.

24. Eliad, S.; Hakimi, I.; De Jagger, A.; Silberstein, M.; Schuster, A. Fine-tuning giant neural networks on commodity hardware with
automatic pipeline model parallelism. In Proceedings of the 2021 USENIX Annual Technical Conference (USENIX ATC 21),
Virtual Event, 14–16 July 2021; pp. 381–396.

25. Lee, H.; Lee, K.; Yoo, I.C.; Yook, D. Analysis of parallel training algorithms for deep neural networks. In Proceedings of the 2018
International Conference on Computational Science and Computational Intelligence, Las Vegas, NV, USA, 13–15 December 2018;
pp. 1462–1463.

26. Narayanan, D.; Harlap, A.; Phanishayee, A.; Seshadri, V.; Devanur, N.R.; Ganger, G.R.; Gibbons, P.B.; Zaharia, M. PipeDream:
Generalized pipeline parallelism for DNN training. In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
Huntsville, ON, Canada, 27–30 October 2019; pp. 1–15.

27. Narayanan, D.; Phanishayee, A.; Shi, K.; Chen, X.; Zaharia, M. Memory-Efficient Pipeline-Parallel DNN Training. In Proceedings
of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021; Volume 139, pp. 7937–7947.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/land12091813
http://dx.doi.org/10.1145/79173.79181
http://dx.doi.org/10.1109/72.286892
http://www.ncbi.nlm.nih.gov/pubmed/18276527

	Introduction
	Problem Definition and Related Work
	Proposed Methods
	Pipelined SGD Work Scheduling and Model Replicas for the Proposed Methods
	Pipelined SGD with Taylor Expansion (TaylorPipe)
	Computation and Communication Complexities

	Experiments
	Conclusions
	Appendix A
	Appendix B
	References

