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Abstract: Quality control procedures in the manufacturing of tableware ceramics require a demand-
ing, monotonous, subjective, and faulty human manual inspection. This paper presents two machine
learning strategies and the results of a semi-automated visual inspection of ceramics tableware
applied to a private dataset acquired during the VAICeramics project. In one method, an anomaly
detection step was integrated to pre-select possible defective patches before passing through an object
detector and defects classifier. In the alternative one, all patches are directly provided to the object
detector and then go through the classification phase. Contrary to expectations, the inclusion of the
anomaly detector demonstrated a slight reduction in the performance of the pipeline, which may
result from error propagation. Regarding the proposed methodology for defect detection, it exhibits
average performance in monochromatic images with more than 600 real defects in total, efficiently
identifying the most common defect classes in highly reflective surfaces. However, when applied to
newly acquired images, the pipeline encounters challenges revealing a lack of generalization ability
and experiencing limitations in detecting specific defect classes, due to their appearance and limited
available samples used for training. Only two defect types presented high classification performance,
namely Dots and Cracked defects.

Keywords: defect inspection; quality control; ceramics; machine learning; multi-class

1. Introduction

The industry of ceramics is an ancient and highly competitive sector with an ex-
treme financial impact for many countries, particularly reflected in terms of exports.
Ensuring the quality of ceramic products, such as tableware pieces, is of supreme im-
portance, as even minor defects can impact both their aesthetics and structural integrity.
Unexpected additional costs for the manufacturing company can arise from contract penal-
ties, selling price reductions, whole batch returns, unnecessary usage of the oven in
false positive cases, and extraordinary hours paid to factory workers for re-inspection.
Nevertheless, quality control within this industry essentially relies on human visual in-
spection performed by trained operators, which requires a substantial allocation of human
resources and is inherently time-consuming and prone to error. The complexity is even
increased by variable glazing, shapes, dimensions, and colors. Consequently, the demand
for advanced and efficient quality control approaches has given rise to the development of
computer-aided visual inspection systems.

In this study, we introduce a comprehensive methodology for multi-class defect
detection in tableware ceramics, presenting a semi-automated process designed on the
shop floor. Therefore, this work aims to:

1. Develop an end-to-end system capable of efficiently identifying multiple classes of
defects in challenging objects;
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2. Investigate the impact of incorporating an anomaly detection step to pre-select possi-
ble defective image patches;

3. Conduct semantic segmentation to differentiate regions of the ceramic pieces, as the
defect’s location influences the manufacture quality of each piece (to set market value).

4. Promote innovation within the ceramics manufacturing sector and contribute to
product quality assurance, using the variable dimensions, colors, and shapes of pieces
and defects.

The remainder of the manuscript is organized as follows: Section 2 presents state-of-
the-art approaches for defect and anomaly detection; Section 3 details the dataset employed
in this work and the data acquisition process, and presents the methodology adopted
for each module of the proposed pipeline; Section 4 reports the results obtained for the
components and compares the incorporation of anomaly detection in the pipeline; Section 5
presents conclusions and possible modifications in future work.

2. Related Work

The application area of table ceramics has very specific requirements as highly re-
flective surfaces along the piece, several zones to inspect with distinct morphology and
texture background, and complex defects make the development of automatic inspection
solutions far from trivial. The existing commercial solutions for automatic visual inspec-
tions in related application areas are generally very specific to certain types of ceramic
(raw material), types of pieces (geometry) and types of defects. This is the case of OPTO
machines’ solutions [1], with product size and shape limitations, and SCIOTEX [2], which
has limited defect typology. These are solutions tailored to the needs of their existing
customers, and are not so widespread in the tableware ceramics industry. RSIP Vision [3]
employs machine learning algorithms for geometric defects, but inspections are applied
before mass production (without reflective glaze) and are not suitable for tableware pieces.
The SYSTEM CERAMICS [4] and SACMI [5] technologies are aimed at the floor and wall
ceramics sub-sector, where the pieces are typically flat (tiles, slabs, etc.) and are, therefore,
not very comparable to the solution proposed in this work.

To the best of our knowledge, there are no public datasets available on tableware
ceramic pieces, which motivated the research team to propose a dedicated setup for image
acquisition. However, some databases in further applications have been used for tackling
related challenges such as small-size defects in high-resolution images, or for dealing
with highly reflective surfaces. KolektorSDD [6] includes defects in electrical commutator
with microscopic fractions or cracks, but images are too noisy compared our application
problem. The NEU Surface Defect Database [7] is focused on hot-rolled steel strip surface
defects, with low resolution and only one type of defect per image. The Severstal [8] steel
defect dataset has four classes of defects with some diversity in size in steel manufacturing.
This dataset inspired some preliminary work of our research team, who tested the im-
plementation of the DeepLabV3+ architecture for semantic segmentation that would be
promising for one of the modules (Piece Zone presented in Section 3.3) of the main pro-
posed pipeline.

Tao et al. [6] designed a cascaded autoencoder (CASAE) for the segmentation and
classification of metallic defects. The cascading network transforms the input defect image
into a pixel-wise prediction mask based on semantic segmentation. The defect regions
of segmented results are classified into their specific classes via a compact convolutional
neural network (CNN). Tabernik et al. [9] presented a segmentation-based deep-learning
architecture designed for the detection and segmentation of surface anomalies and is
demonstrated on a specific domain of surface-crack detection in industrial electronics.
The first stage implements a segmentation network that performs a pixel-wise localization
of the surface defect. Training this network with a pixel-wise loss effectively considers each
pixel as an individual training sample, thus increasing the effective number of training
samples and preventing overfitting. The second stage, where binary-image classification is
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performed, includes an additional network that is built on top of the segmentation network
and uses both the segmentation output as well as features of the segmentation net.

In recent years, anomaly detection techniques have gained significant interest in the
field of defect detection. These techniques leverage machine learning algorithms to au-
tomatically identify deviations from normal patterns in images. Due to their ability to
carry out distribution fitting, Generative Adversarial Networks (GANs) have been used
to this end, assuming that by learning feature representations of normal samples in the
latent space, anomalous samples may be identified [10]. Taking this into account, some
works were already developed, aiming to detect defects in several industrial applications.
Liu et al. [11] used a GAN-based approach for detecting surface defects of strip steel.
In the work of Lai et al. [12], a framework for anomaly detection in industrial datasets (a
wood texture and a solar panel datasets) was proposed, which also relies on a generative
network. Another semi-supervised approach was presented in [13], intending to classify
steel surface defects by using a combination of a Convolutional Autoencoder (CAE) and
Semi-supervised Generative Adversarial Networks (SGAN). GAN-based anomaly detec-
tion methods have also been explored in other application fields, such as medical diagnosis,
infrastructure inspection, or even other detection tasks, such as network security or finance
fraud [10]. Regarding medical diagnosis, for instance, Schlegl et al. [14] proposed fast
AnoGAN (f-AnoGAN), an improved version of AnoGAN [15], which intends to identify
anomalous samples and segments in patches of clinical optical coherence tomography
(OCT) scan images.

As far as we know, none of the commercial solutions and scientific methods for visual
inspection of defects in the tableware ceramics domain, include piece zone detection to
correctly assign the market value of the piece, anomaly detection for selecting defect
candidates, nor have been evaluated using tableware pieces with variable dimensions,
colors, and shapes.

3. Materials and Methods

Throughout this work, four machine learning modules were developed, aiming to as-
sist the inspection of defects in ceramics tableware. These modules comprised a piece zone
segmentor to identify the relevant regions of the ceramics pieces (Section 3.3), an anomaly
detection module to select possible defective pieces (Section 3.4), a defect detector to detect
defects in ceramic pieces (Section 3.5) and, finally, a classification module to categorize
different types of defects (Section 3.6). Each module was first developed and evaluated
independently, before being aggregated in a semi-automated pipeline (Figure 1) that is
able to visually inspect ceramics tableware through the identification and characterization
of defects.

Figure 1. Overview of the pipeline developed in this work towards the automated visual inspection
of tableware ceramics.

The initial step of the pipeline, Piece Zone Segmentation, involves the separation of
distinct zones within the ceramic plates. Considering this information, the input image is
cropped to include solely the plate area and it is then divided into patches of dimensions of
512 × 512, with a 50% overlap between adjacent patches.
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Following the segmentation step, the pipeline offers an optional module, Anomaly
Detection. This module analyzes each patch individually to determine the presence of any
defects. Patches that are identified as containing defects are then passed on to the Defect
Detection model, which generates bounding box predictions encompassing the defect areas.
To refine the predictions, the pipeline applies a two-step process. First, a Non-Maximum
Suppression (NMS) algorithm selects the most suitable bounding box among a collection of
overlapping boxes within each patch, considering only predictions with confidence score
higher than 90%. Subsequently, the coordinates of the selected boxes are transformed back
to the original image coordinate space, followed by a second NMS operation to filter out
redundant detections resulting from overlapping bounding boxes.

The final component of the pipeline is the Defect Classification model, responsible for
identifying the specific type of defect present. This classification is subsequently associated
with the corresponding zone in which the defect occurs, leading to the final decision
regarding the defect analysis.

3.1. Experimental Setup

The image acquisition setup was composed of a smart edge device with a GPU
(NVIDIA Jetson AGX Xavier), four infrared light bars (TPL Vision BLBAR-250-850), and
a 12 megapixel monochromatic industrial camera (Allied Vision Alvium 1800 u-1240m)
with lens and polarizer, as represented in Figure 2. The proposed setup was able to
achieve 10 pixels per mm. The smart edge device was responsible for controlling the
acquisition equipment and all inference processing, being the corresponding computing
times presented in Section 4.5.

Figure 2. Experimental setup developed for image acquisition.

3.2. Data Acquisition

Table 1 provides a comprehensive overview of the frequency of defect classes observed
in each batch of image acquisitions. Moreover, the number of ceramic plates examined in
each batch is also highlighted.

Batches 1, 2, 3, and 4 were specifically utilized for training and validation in this
study for the development of the models, comprising the first set of images (set 1). Batches
5 and 6 were acquired later and reserved for testing purposes, forming the second set
of images (set 2). Visual representations of each defect class are presented in Figure 3.
An analysis of the defect class distribution highlights notable variations. Defects such as
Defect-10 and Defect-12 exhibit a higher occurrence rate, observed across multiple batches.
In contrast, Defects 2 and 13 have a minimal presence within the dataset. Defects 14
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and 15 exclusively appear in plates from the last two batches, indicating a more recent
occurrence. The observed distribution indicates a significant class imbalance among the
defect categories, with certain classes being more prevalent, while others are relatively rare.

Table 1. Dataset description.

Label Class Frequency
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Total

Number of images 112 136 262 200 148 80 938

Defect-1 Blister 2 12 - - - - 14
Defect-2 Glaze roll 4 - - - - 1 5
Defect-3 Lack of glass 13 7 11 3 1 - 35
Defect-4 Broken foot-ring 6 6 - - - 1 13
Defect-5 Chipped 6 4 - - 3 - 13
Defect-6 Chipped&glazed 8 4 - - 2 3 17
Defect-7 Finishing dirt 10 1 2 3 19 - 35
Defect-8 Oven dirt 17 7 1 - 4 - 29
Defect-9 Bad finish - - 2 3 31 2 38

Defect-10 Dots 93 77 167 84 71 34 526
Defect-11 Pore 13 38 25 5 36 16 133
Defect-12 Cracked 44 197 19 2 17 45 324
Defect-13 Glass dirt - - 1 - 1 - 2
Defect-14 Air in the paste - - - - 23 1 24
Defect-15 Bad retouch - - - - 19 - 19

Total number of defects 216 353 228 100 227 103 1227

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 3. Examples for each defect class, with variable shapes and dimensions. (a) Defect-1: Blister;
(b) Defect-2: Glaze roll; (c) Defect-3: Lack of glass; (d) Defect-4: Broken foot-ring; (e) Defect-5:
Chipped; (f) Defect-6: Chipped&glazed; (g) Defect-7: Finishing dirt; (h) Defect-8: Oven dirt; (i) Defect-
9: Bad finish; (j) Defect-10: Dots; (k) Defect-11: Pore; (l) Defect-12: Cracked; (m) Defect-13: Glass dirt;
(n) Defect-14: Air in the paste; (o) Defect-15: Bad retouch.

After the data acquisition, images were annotated using an internal tool for annotation
that was previously developed and tested with end-users [16]. The development of this
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tool included iterative usability tests to improve the interface usability, collect insights
about defect characterization, and establish design requirements for enhancing the system.

In Figure 4, it is possible to find two different pieces of tableware (a flat plate—
Figure 4d and a cereal bowl—Figure 4b) belonging to batch 3 of data. In these images,
the defects annotated by specialists through the developed tool are highlighted in different
colors. The annotations are converted to the bounding box format for training of the defect
detection module (presented in Section 3.5) The boxes are also used for cropping the regions
of interest for defect classification (Section 3.6).

(a) (b)

(c) (d)

Figure 4. Examples of defects annotated by specialists. Images belong to batch 3 of data. The blue
regions correspond to class Defect-11 and the purple regions are examples of Defect-12. (a) Plate with
“cracked” and “pore” defects; (b) Bowl with “cracked” and “pore” defects; (c) Zoom view of plate
with the same defects; (d) Zoom view of bowl with the same defects.

3.3. Piece Zone

Each tableware ceramic piece is characterized by zones according to utility or design.
Since the location of a defect in a given zone influences the quality and, consequently,
the market value of the piece, it is important to have an automatic method for piece
zone detection. To identify the relevant zones in the ceramic piece, we experimented with
multiple networks within the MMSegmentation framework [17]. This open-source semantic
segmentation toolbox, built on PyTorch, allows us to utilize state-of-the-art neural networks
and a wide range of augmentation libraries. During our experimentation, we tested
two different backbones with the DeepLabV3+ [18] semantic segmentation architecture:
ResNet18 [19] and ResNet50 [20]. However, after evaluating their performance, we swiftly
discarded the ResNet18 backbone due to its inferior results compared to the ResNet50
backbone. Consequently, we proceeded with the more effective ResNet50 backbone for our
semantic segmentation process.

3.3.1. Data Processing

Since the tableware used in this dataset are all of circular shape (see Figure 5), we
annotate the different piece zones of the tableware piece with a circular or ellipse form, using
the developed internal tool of annotation. One tableware piece (two images front and back)
can have up to seven zones of interest for defect priority categorization in the quality control.
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After completing these annotations, we prepared a script to do offline data augmentation
that includes Gaussian noise addiction, motion blur, and elastic transformations. Therefore,
in this phase, the training set contains 1718 images and the test set 786 images.

(a) (b)

Figure 5. Examples of zones annotated by specialists. The most saturated purple color to the less
saturated regions correspond, respectively, to the center top zone, lateral top zone, and border. Similar
for the bottom part of the bowl, the annotated zones are the center bottom zone, foot-ring, and lateral
bottom zone, respectively, from the center of the bowl to the outside part of the bowl. (a) Cereal bowl
front zones annotated; (b) Cereal bowl back zones annotated.

3.3.2. Training Details

For the training process, we followed the same structure of the config sample provided
by the framework and adjusted it for this use case in particular. The major modifications
were setting the number of classes as, in this case, seven classes were used, setting the total
number of steps to be trained to 80,000, the batch size to 4, and the input size to 256 × 256.
We used the cross entropy loss with the SGD optimizer, considering a learning rate of 0.01
and a momentum of 0.9 while decaying the learning rate from 0.01 to 0.0001 in 8000 steps
using the polynomial decay function with a power of 0.9.

3.4. Anomaly Detection

Anomaly detection concerns the task of identifying instances that significantly differ
from the majority of the samples in a given distribution. It may then be used as a means of
validation, consisting of an essential step in various decision systems [10].

In this experiment, the fast AnoGAN (f-AnoGAN) [14] framework was explored in
order to identify possible defects in data and the corresponding degree of abnormality.
The choice of this framework had to do not only with its capacity to process images by
patches [14], as intended in this work, but also with the promising results that we previously
achieved with it in exploratory studies from other domains, such as industry or healthcare.

3.4.1. Data Processing

To address the challenge posed by the small dimensions of defects found in the dataset,
which could potentially disappear when resizing images, a strategy of dividing the images
into patches was employed. In this procedure, different sizes were explored, namely by
diving images in patches of 256 × 256 and 512 × 512 pixels. The overlap between patches
was also set to 50% and to 10%. Nevertheless, we verified that when patches of 256× 256 or
an overlap of 50% were considered, the number of patches without defects was substantially
higher, so it was decided to proceed with patches of 512 × 512 pixels, using an overlap
of 10%.

Furthermore, to train the anomaly detection framework, only patches without defects
(belonging to batches 1, 2, 3, and 4 of images) have been selected in order to teach the
models the different variations that a normal sample may exhibit. Therefore, 70% of the
patches without defects from set 1 were used to train the algorithm and the remaining 30%,
together with all the defects (from 13 different classes) contained in the dataset, were used
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to test the framework, forming test set 1. The evaluation comprised yet another test set (test
set 2) where a completely new set of images collected in a different time frame (batches
5 and 6) was introduced in order to evaluate the robustness of the developed anomaly
detector. Test set 2 then includes all patches from test set 1 and the new dataset that is
composed of patches without defects (normal samples) and with defects belonging to
15 different classes.

3.4.2. Training Details

f-AnoGAN consists of a framework specifically designed for anomaly detection, and is
composed of a Generative Adversarial Network (GAN) and an Encoder, which are trained
in different steps. One particularity of this framework is that it can be applied to any pre-
trained GAN. Therefore, in this work, a DCGAN [21] was employed to learn a non-linear
mapping function from the latent space, Z, to the image space that represents the variability
of (normal) training images. With respect to the Encoder architecture, the network was
composed of five dense layers.

To train the GAN, a total of 300 epochs was performed. The binary cross-entropy was
considered and the Adam optimizer with a learning rate of 1 × 10−5 was used. The dimen-
sionality of the latent space was set to 100. Regarding the training process of the Encoder,
300 epochs were also made and the Adam optimizer with a learning rate of 2 × 10−4

was considered.

3.4.3. Evaluation

In order to evaluate the performance of the developed anomaly detection framework,
three different metrics were computed, namely the Image Distance, Anomaly Score, and Z-
distance. The corresponding definition is described below:

• Image Distance: consists of the Mean Squared Error (MSE) between the real image
and the fake image (i.e., image generated by GAN);

• Anomaly Score [14]: is the deviation between the query images and corresponding
reconstructions, which is given by: A(x) = AR(x) + k × AD(x), where x is a new
image, AR(x) is the image distance, AD(x) is the MSE between the features extracted
from the real and the fake images, and k is a weighting factor, which, in this work, was
set to one;

• Z-distance: corresponds to the MSE between the real and the fake latent spaces.

3.5. Defects Detection

For the defect detection model, we experimented with three state-of-the-art object
detection models, namely YOLOv5 and YOLOv8 from the YOLO (You Only Look Once)
framework, and RetinaNet [19] with a ResNet50 [20] backbone from the TensorFlow Object
Detection API.

YOLO is a real-time object detection model that offers high accuracy and efficiency by
directly predicting bounding boxes and class probabilities from a single neural network
pass. YOLO divides the input image into a grid and assigns each grid cell the responsibility
of detecting objects present within its boundaries. Each cell predicts bounding boxes and
corresponding class probabilities based on predefined anchor boxes.

RetinaNet is an object detection framework that operates as a one-stage detector
and tackles the challenge of class imbalance during training by employing a focal loss
function. The ResNet50 backbone serves as the feature extractor in RetinaNet. It is a
deep convolutional neural network architecture that comprises multiple residual blocks.
These residual blocks enable the model to effectively capture and represent rich, hierarchical
features from input images.

3.5.1. Data Processing

The previously described approach of dividing the images in patches generated the
inputs for this module as it ensures that the defects are adequately captured and preserved,
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allowing for more accurate detection and analysis within the defect detection model.
The overlap between patches was set to 50% to guarantee that an entire defect was present
in the selected area (except for the Defect-12 class which presented bigger dimensions in
some cases, as it represents cracked pieces).

Offline data augmentation techniques were also performed to enhance the model’s
generalization and robustness. The generation of additional image data by applying
transformations in contrast, brightness and sharpness, and adding Gaussian and motion
blur helps to increase the diversity of the training data.

3.5.2. Training Details

We tested different YOLO variants—YOLOv5m, YOLOv5l, YOLOv8m, and YOLOv8l—
which differ in architecture and size, and offer a trade-off between model size and perfor-
mance. The models were trained for 200 epochs, with an input size of 640 × 640.

We fine-tuned the RetinaNet model, with weights pre-trained on the COCO 2017
dataset, for our specific case, using the Adam optimizer with an exponential decay learning
rate. The input images are resized to 640 × 640.

The training parameters adopted in the experiments with both frameworks were
specified in their respective original configuration files.

3.6. Defects Classification

The defect classification model was based on the EfficientNet-B3 architecture, a state-
of-the-art deep learning model known for its efficiency and accuracy.

3.6.1. Data Processing

There is an insufficient amount of data available for specific defects compared to
other more commonly found defects. For this reason, we compiled similar defects into
broader categories, resulting in a reduced number of classes (9). However, there is still
class imbalance which can lead to overfitting of the classification model, thus reducing
generalization. To address this issue, data augmentation techniques were employed, namely
translations, rotations, flips, blurring, contrast, and sharpness adjustments. Furthermore,
we used a weighted loss function to assign higher weights to the underrepresented classes
and lower weights to the overrepresented classes.

3.6.2. Training Details

To adapt the EfficientNet-B3 architecture for our defect classification task, we modified
its final fully connected layer to output the probabilities for the number of defect classes
present in our dataset. The model’s parameters were optimized through stochastic gradient
descent (SGD) with a learning rate of 1 × 10−3, and it was trained for 300 epochs with
an input size of 300 × 300. The training parameters were chosen based on empirical
determination, after conducting multiple experiments.

4. Results
4.1. Piece Zone

To respond to aim 3 of this work (outlined in Section 1), in order to evaluate the
performance of the segmentation of piece zones, we computed the Intersection over Union
(IOU) and accuracy for each zone. The central top zone is the most relevant for quality
control purposes, while the central bottom zone is the less relevant to this end. In Table 2, it
is possible to find the values of such metrics for each class, and the mean IOU and accuracy.
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Table 2. Test set metrics obtained for the piece zone segmentation task.

Class IOU (%) Accuracy (%)

Background 99.20 99.62
Center top zone 97.24 98.57
Lateral top zone 91.06 95.16

Border 82.36 90.60
Lateral bottom zone 92.58 95.99
Midle bottom zone 87.51 93.27

Foot-ring 87.03 92.85
Central bottom zone 95.42 97.89

Mean 91.55 95.49

4.2. Anomaly Detection

To evaluate the performance of the anomaly detector, for each test sample, three
metrics were computed: the image distance of the generated image to the original image,
the anomaly score, and the z-distance, which are defined in Section 3.4.3. In Table 3, it
is possible to find the average values of such metrics for each class of test set 1, while in
Figure 6a, the discrete distributions of the obtained anomaly scores are presented.

Table 3. Average of the metrics obtained for the anomaly detector for each class of test set 1.

Class Image Distance Anomaly Score Z-Distance

Normal 0.0058 ± 0.0124 0.0475 ± 0.1784 0.0372 ± 0.0557
Defect-1 0.0370 ± 0.0262 0.4244 ± 0.3301 0.1807 ± 0.0993
Defect-2 0.0453 ± 0.0342 0.3249 ± 0.3108 0.1816 ± 0.1175
Defect-3 0.0210 ± 0.0194 0.1918 ± 0.2715 0.1161 ± 0.0771
Defect-4 0.0458 ± 0.0127 0.7700 ± 0.4093 0.1812 ± 0.0468
Defect-5 0.0141 ± 0.0068 0.1971 ± 0.2940 0.0924 ± 0.0553
Defect-6 0.0243 ± 0.0230 0.3738 ± 0.3722 0.1388 ± 0.0787
Defect-7 0.0253 ± 0.0268 0.2309 ± 0.2507 0.1215 ± 0.1039
Defect-8 0.0526 ± 0.0377 0.5572 ± 0.5082 0.1811 ± 0.1094
Defect-9 0.0111 ± 0.0060 0.0962 ± 0.0938 0.0831 ± 0.0362

Defect-10 0.0120 ± 0.0164 0.1158 ± 0.2534 0.0781 ± 0.0682
Defect-11 0.0194 ± 0.0209 0.2127 ± 0.3394 0.1079 ± 0.0802
Defect-12 0.0197 ± 0.0219 0.2899 ± 0.3734 0.1101 ± 0.0920
Defect-13 0.0059 ± 0.0024 0.0309 ± 0.0270 0.0848 ± 0.0139

(a) (b)
Figure 6. Results for the anomaly detection engine with test set 1. (a) Discrete distributions of
anomaly scores; (b) ROC-AUC curve in terms of anomaly scores.

As it is possible to infer from these results, the normal class, which corresponds to
the images without any defect, achieved the lowest values in terms of the three computed
metrics for almost all classes, with the exception of class 13 concerning the anomaly
score metric. It is important to mention that, for these experiments with the anomaly
detector engine, class Defect-13 was only present in two patches. Moreover, although these
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metrics are very close between some defective classes, which prevents their separability,
the results suggest that this approach is able to distinguish between samples with and
without (normal samples) defects. This statement may also be verified in Figure 6a, where
the green (normal) samples are essentially settled in the leftmost area of the plot, which
corresponds to the lowest anomaly scores, whereas for other defective classes, it is difficult
to find the corresponding boundaries, due to the verified overlap.

Bearing this in mind, a threshold was defined in order to distinguish between normal
and defective samples. To establish this value, the ROC–AUC curve (Figure 6b) concerning
the anomaly scores of test set 1 was plotted and the cut-off point, i.e., the closest point of
the curve to the top left corner of the plot, was set as the threshold value, corresponding
to an anomaly score of 0.0128. This was made using only test set 1, as it is composed of
defective and normal patches that belong to the same set of images used to train the models
but that have not been seen during the training process. Also, we decided to go with
the anomaly scores to make this experiment as this metric was proposed in the original
paper of f-AnoGAN [14] and gives information regarding the degree of anomaly. Therefore,
a sample whose anomaly score is higher than this value is defined as a defective sample.
The resulting accuracy, macro-average, and weighted-average metrics were then calculated
for both test set 1 and test set 2, and the corresponding confusion matrices were computed,
giving rise to the results shown in Table 4 and Figure 7, respectively.

Table 4. Results of defect detection using the anomaly detection engine. Test set 1 refers to test images
from batches 1, 2, 3, and 4; test set 2 comprises test set 1 and the entirety of batches 5 and 6.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Macro Weighted Macro Weighted Macro Weighted

Test Set 1 73.29 59.20 89.44 73.27 73.29 58.56 78.65
Test Set 2 74.14 56.97 91.73 72.50 74.14 55.68 80.39

(a) (b)
Figure 7. Confusion matrices regarding defects detection using the anomaly detector engine. (a) Con-
fusion matrix for test set 1; (b) Confusion matrix for test set 2.

These results show that the introduction of patches belonging to a dataset acquired in
a different time window (test set 2) slightly penalized the macro-average metrics, which
treat the two classes equally while improving the weighted-average metrics, which take
into consideration the number of samples belonging to each class. It is worth noting
that this new set of images that is present in test set 2 is essentially composed of patches
without defects. By scrutinizing these outcomes in terms of classes, we verified that, overall,
the ability of the framework to differentiate defective patches decreased, while its ability
to detect normal patches improved. This may also result from the different acquisition
conditions of these new samples, which may have influenced the defects’ appearance, even
if minimally.
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4.3. Defects Detection

The results presented in Table 5 indicate the performance of different defect detection
models in both tests sets, comprising 289 and 619 defects, respectively.

Table 5. Results of experiments for defect detection. Test set 1 refers to test images from batches 1, 2,
3, and 4; test set 2 comprises test set 1 and the entirety of batches 5 and 6.

Experiment mAP@.5 mAP@.5,0.95 Precision (%) Recall (%)
Test Set 1 Test Set 2 Test Set 1 Test Set 2 Test Set 1 Test Set 2 Test Set 1 Test Set 2

RetinaNet 25.5 17.0 - - - -
YOLOv5m 97.2 56.3 90.9 50.9 98.2 97.5 97.0 51.2
YOLOv5l 97.4 55.8 90.7 50.9 99.4 95.4 96.3 51.6

YOLOv8m 86.6 52.4 78.7 46.5 89.4 82.9 83.9 47.2
YOLOv8l 88.1 52.3 80.0 47.8 92.0 85.5 83.6 47.2

The results demonstrate the superior performance of YOLO models compared to
RetinaNet. RetinaNet achieved mAP@.5 below 30% in both sets, indicative of its difficulties
to correctly identify defects. The best performing approaches are the YOLOv5 models,
which yielded mAP@.5 scores of around 97% and 56% in test sets 1 and 2, respectively.
The two variants of YOLOv8 achieved comparable results, but fell short when compared to
alternative YOLOv5 models. It is worth noting that all YOLO models were trained using
identical settings and hyperparameters. This difference in performance can potentially
be attributed to the initial selection of well-suited anchor boxes using genetic algorithms,
a step employed specifically in YOLOv5.

The discrepancy observed in the results between test set 1 and test set 2 can be at-
tributed to data drift, due to the inclusion of images acquired at different time frames and
under slightly varied conditions in the second set. These differences highlight the limited
robustness of the model in accommodating minor variations. Additionally, inconsisten-
cies in the ground truth annotations could also contribute to the contrasting outcomes.
Therefore, it is evident that the models’ performance is impacted by the variations in image
acquisition conditions as well as the consistency of the ground truth annotations.

Overall, considering the computational cost of the models, YOLOv5m appears to be
the most effective model, as it delivers the best trade-off between performance and size.

4.4. Defects Classification

The defect classification model results are summarized in Table 6. This table presents
key metrics and performance indicators associated with the classifier’s performance: accu-
racy rates and F1-score.

Table 6. Results of the defect classification model. Test set 1 refers to test images from batches 1, 2, 3,
and 4; test set 2 comprises test set 1 and the entirety of batches 5 and 6.

Class Accuracy (%) F1-Score (%)
Test Set 1 Test Set 2 Test Set 1 Test Set 2

Defect-1 80.00 80.00 80.00 61.54
Defect-3 50.00 45.45 58.82 35.71
Defect-4 50.00 60.00 57.14 60.00

Defect-5 + 6 100 66.67 87.50 51.28
Defect-7 + 8 50.00 22.86 57.14 29.09

Defect-9 100 62.86 57.14 67.69
Defect-10 93.08 91.49 93.80 88.66

Defect-2 + 11 81.48 53.75 84.62 58.90
Defect-12 98.91 86.36 95.79 86.08

Macro Results 89.97 77.00 74.66 59.90
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Classes Defect-10 (“Dots”) and Defect-12 (“Cracked”) present the highest F1-scores
in both test sets, indicating successful classification. Despite the efforts to handle class
imbalance, this behaviour was expected as the two classes of defects are the most repre-
sented. On the contrary, classes such as Defect-2, 4, 7 + 8 and 9 underperform, suggesting
challenges in accurately identifying instances of those defects.

In terms of overall results for test set 1 and 2, the defect classification model achieved
a macro accuracy of 89.97% and 77.00%, and F1-score of 74.66% and 59.90%, respectively.
As explained in the previous section, the results of the first set outperform the second one
because the model was trained in images acquired in the first batch of images. Nevertheless,
the difference is not as abrupt as in the defect detection model, indicating more robustness
and generalization capability of the classification model.

4.5. Pipeline

In accordance with the expected contributions of this work (aim 1 and 2, outlined
in Section 1), this section provides the results of using end-to-end pipelines for defect
identification.

Tables 7 and 8 offer a comparison between the inference times (in seconds) and results,
respectively, of two distinct pipelines: Pipeline A, which does not incorporate anomaly
detection, and Pipeline B, which does include anomaly detection. The differentiation allows
for a rigorous assessment of the performance differences between the two approaches,
shedding light on the potential advantages and drawbacks of incorporating anomaly
detection in the pipeline. The values presented in the tables were obtained by computing
measurements on multiple batches of data and subsequently averaging the results.

Table 7. Average inference times for each module of the vision pipeline. Pipeline A: Defect Analysis;
Pipeline B: Anomaly-Driven Defect Analysis.

Module Times (s)
Pipeline A Pipeline B

Piece Zone 0.252 ± 0.002 0.252 ± 0.003
Anomaly Detection - 9.091 ± 0.538

Defect Detection 6.06 ± 0.345 2.254 ± 0.807
Defect Classification 0.061 ± 0.042 0.031 ± 0.026

Total 6.998 ± 0.395 12.044 ± 1.119

Pipeline A (with no anomaly detector) achieves defect characterization within approx-
imately 7 s, thereby providing a baseline for inference time. In contrast, the alternative
pipeline offers a reduction in defect detection inference time by minimizing the number of
patches fed to the module through the adoption of patch selection with anomaly detection.
However, this comes at the expense of a longer anomaly module runtime of 9 s due to the
involvement of three models: a generator, a discriminator, and an encoder. Consequently,
the alternative pipeline’s overall inference time amounts to 12 s. Comparing the two
pipelines, it is evident that Pipeline A exhibits a faster inference time, outperforming the
alternative pipeline by 5 s.

Table 8. Average results of the vision pipeline. All values correspond to macro metrics. Pipeline A:
Defect Analysis; Pipeline B: Anomaly-Driven Defect Analysis.

Metrics Results
Pipeline A Pipeline B

Accuracy (%) 28.36 ± 11.02 28.48 ± 10.27
Precision (%) 28.36 ± 11.02 28.48 ± 10.27

Recall (%) 70.30 ± 10.02 20.59 ± 13.43
F1-Score (%) 40.08 ± 12.54 22.82 ± 12.42
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A decline in performance is evident for both vision pipelines with the metrics pre-
viously presented, attributed to the propagation of errors. Thus, a true positive in this
case must be a piece with all the defects verified in the right location, with the correct type
detected in the correct subzone of the piece. The general decline in performance is further
amplified with anomaly detection, as the inclusion of an additional step aggravates the
effect. The rationale behind incorporating this module was to effectively reduce the number
of false positives identified by the defect detection process. However, the introduction of
anomaly detection inadvertently leads to misclassification of patches containing defects as
“defect-less” patches. As a consequence, besides the reduction in false positives, the number
of true positives also gets adversely affected. This phenomenon highlights the inherent
challenges and trade-offs associated with the application of anomaly detection in defect
detection pipelines.

5. Conclusions and Future Work

Ensuring robust quality control processes in the ceramics industry is crucial to main-
taining product excellence and customer satisfaction while minimizing defects and produc-
tion costs. Nowadays, quality control protocols in this industry entail a rigorous, repetitive,
subjective, and error-prone human manual inspection. The aim of this work was, therefore,
to develop a semi-automated visual inspection framework designed for application on the
shop floor that is able to detect the presence of defects in tableware pieces.

To achieve this goal, two pipelines were developed. For both of them, the first
component comprised a piece zone detector, employing the DeepLabV3+ meta-architecture
with a ResNet50 backbone (selected due to its higher performance), which is able to identify
the relevant zones of the ceramic piece and so select the region of interest to be analysed
by the following components. The difference between both pipelines essentially relied on
the incorporation of an anomaly detection component based on the f-AnoGAN framework
in order to pre-select possible defective patches. In one of the pipelines (Pipeline A), all
patches coming from the piece zone detector were provided to a defects detector, whereas
in the other (Pipeline B), only the patches identified as defective by the anomaly detector
went on to the defects detector module. For this component, three state-of-the-art object
detection models were used, namely YOLOv5, YOLOv8, and RetinaNet with a ResNet50
backbone. YOLO models demonstrated the superior performance in comparison to the
RetinaNet, being YOLOv5m the most effective model. After the defects detection phase,
the identified regions passed through a defects classification model derived from the
EfficientNet-B3 architecture able to recognize different types of defects.

Each component was first evaluated before being integrated into each pipeline. The eval-
uation was made using two different sets of data. Test set 1 consisted of images sourced
from the same batches of data used for model training, while test set 2 incorporated the
images from test set 1 supplemented by new ones acquired in a different time frame of
manufacturing production. The observed performance decrease in test set 2, resulting
from the inclusion of the previously mentioned two additional data batches, aligns with
expert feedback indicating the increased complexity of the recent data due to varying defect
appearances, which could have led to subjective annotations. Moreover, it was also evident
that critical defects lacked a sufficient number of representative samples, and only the
“Dots” and “Cracked” defect types presented a high classification performance, with an
accuracy of around 91% and 89%, respectively, and an F1-score of around 86% for both
classes, with respect to the largest test set (test set 2).

Regarding the comparison of both pipelines (i.e., with and without the anomaly
detection component), a decline in performance was verified when the anomaly detector
was integrated, especially in terms of recall and F1-score, which decreased from around 70%
to 21%, and from 40% to 23%, respectively. This drop in the results may have resulted from
an additional source of error propagation, since some defective patches were misclassified
as flawless by the anomaly detector, thus not being considered by the defects detector.



Appl. Sci. 2023, 13, 11708 15 of 16

Despite the average achieved results, it is worth noting that this work comprises
a highly challenging task. Beyond the huge diversity in the appearance of defects be-
longing to the same class (which in some cases are poorly represented), the quality of
images among the different batches of data also varied, especially for the last two batches.
Moreover, tableware pieces represent highly reflective surfaces, which increase the com-
plexity of the problem, being in line with aim 4 of this work (outlined in Section 1).

These factors influenced not only the quality of the annotations by the specialists but
may have also led to data-drift, significantly impacting the performance of the trained
models and revealing their poor ability to generalize among different data.

In future work, it could be interesting to use f-AnoGAN to provide region proposals
about the location of a defect, as proposed in the original paper [14]. These coarse seg-
mentations could then be further assessed through a subsequent classification approach,
consisting of an alternative method to the defect detection step presented in our work.
Moreover, although we have used the anomaly scores metric to establish the defec-
tive/normal threshold for the reasons previously stated in Section 4.2, this threshold
could also be defined with the z-distance metric in mind, since it provided promising
results in terms of the difference between the normal and defective classes.
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