
Citation: He, L.; Wang, M. SliceSamp:

A Promising Downsampling

Alternative for Retaining Information

in a Neural Network. Appl. Sci. 2023,

13, 11657. https://doi.org/

10.3390/app132111657

Academic Editor: Jose Santamaria

Received: 11 September 2023

Revised: 21 October 2023

Accepted: 23 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

SliceSamp: A Promising Downsampling Alternative for
Retaining Information in a Neural Network
Lianlian He 1 and Ming Wang 2,*

1 School of Mathematics and Statistics, Hubei University of Education, Wuhan 430205, China;
helianlian@hue.edu.cn

2 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
* Correspondence: oyamingo@whu.edu.cn

Featured Application: Plug-and-play downsampling module SliceSamp provides support for de-
ploying AI models on edge computing devices, powering neural networks with lighter weights,
lower computational costs, and higher performance.

Abstract: Downsampling, which aims to improve computational efficiency by reducing the spatial
resolution of feature maps, is a critical operation in neural networks. Many downsampling methods
have been proposed to address the challenge of retaining feature map information. However, some
detailed information is still lost, even though these methods can extract features with stronger se-
mantics. In this paper, we propose a novel downsampling method which combines feature slicing
and depthwise separable convolution for information-retaining downsampling. It slices the input
feature map into multiple non-overlapping sub-feature maps by using indexes with a stride of
two in the spatial dimension and applies depthwise separable convolution on each slice to extract
feature information. To demonstrate the effectiveness of SliceSamp, we compare it with classical
downsampling methods on image classification, object detection, and semantic segmentation tasks
using several benchmark datasets, including ImageNet-1K, COCO, VOC, and ADE20K. Extensive ex-
periments demonstrate that SliceSamp outperforms classical downsampling methods with consistent
improvements in various computer vision tasks. The proposed SliceSamp shows advanced model
performance with lower computational costs and memory requirements. By replacing the downsam-
pling layers in different network architectures (including ResNet (Residual Network), YOLOv5, and
Swin Transformer), SliceSamp brings different degrees of performance gains (+0.54~3.64%) compared
to these baseline models. Additionally, SliceUpsamp enables high-resolution feature reconstruction
and alignment during upsampling. SliceSamp and SliceUpsamp can be plug-and-play-integrated
into existing neural network architectures. As a promising downsampling alternative to traditional
methods, SliceSamp can also provide a reference for designing lightweight and high-performance
model architectures in the future.

Keywords: model lightweighting; information-retaining downsampling; feature slicing; depthwise
separable convolution; high-resolution feature reconstruction

1. Introduction

In recent years, deep learning [1] has achieved remarkable success in various computer
vision (CV) tasks, such as image classification [2], object detection [3,4], and semantic seg-
mentation [5]. However, deep learning (DL) models often suffer from heavy computational
burdens due to large numbers of parameters and high-dimensional input data, limiting
their practical applications [6]. In particular, the proliferation of smart devices and IoT
(Internet of Things) sensors has given rise to a pressing need for edge computing [7] as
edge computing enables computation near data sources or things. To deploy DL models
on resource-limited edge devices, reducing model complexity has become a priority [8,9].

Appl. Sci. 2023, 13, 11657. https://doi.org/10.3390/app132111657 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132111657
https://doi.org/10.3390/app132111657
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8244-7241
https://doi.org/10.3390/app132111657
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132111657?type=check_update&version=1

Appl. Sci. 2023, 13, 11657 2 of 19

Various techniques have been proposed for reducing the complexity of DL models, among
which downsampling plays a crucial role [10]. However, most existing downsampling
methods tend to lose some detailed information [11]. Thus, it remains a challenging prob-
lem to design a lightweight and efficient downsampling component which can retain
more semantic and detailed information with lower algorithmic complexity. In this arti-
cle, we address this issue by proposing a novel, high-performance slicing downsampling
component.

In many computer vision tasks, neural network downsampling is a crucial technique
that is used to reduce the spatial resolution of the feature map [11,12]. It can effectively
reduce the computational and memory requirements of the network and expand the
receptive field while retaining important information for subsequent processing [13]. It
reduces the spatial resolution by proportionally scaling down the width and height of
feature maps, which can be achieved by selecting a subset of features or by aggregating the
features in local regions. Downsampling can help to regularize the network and prevent
overfitting by reducing the number of parameters and introducing some degree of spatial
invariance [14]. It can improve the efficiency of the neural network in processing large-scale
complex data, such as remote sensing images and videos, and enable the DL models to
operate on resource-limited devices [15]. Pooling or subsampling of feature maps, such as
Max Pooling or Strided Convolution, is a common downsampling operation in the neural
network [16]. However, most of the methods condense regional features to a single output,
which suffers from several challenges, such as information loss and spatial bias [11]. For
instance, Max Pooling only retains the most distinguishable features [17], and subsampling
picks a portion of features randomly or according to rules [18,19], while the slicing adopted
in this work utilizes the full information in the input feature map, as shown in Figure 1.
Therefore, the research on neural network downsampling is still an active area where there
is space for optimization, and more efficient methods need be developed for better retaining
feature information.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 19

models on resource-limited edge devices, reducing model complexity has become a pri-
ority [8,9]. Various techniques have been proposed for reducing the complexity of DL
models, among which downsampling plays a crucial role [10]. However, most existing
downsampling methods tend to lose some detailed information [11]. Thus, it remains a
challenging problem to design a lightweight and efficient downsampling component
which can retain more semantic and detailed information with lower algorithmic com-
plexity. In this article, we address this issue by proposing a novel, high-performance slic-
ing downsampling component.

In many computer vision tasks, neural network downsampling is a crucial technique
that is used to reduce the spatial resolution of the feature map [11,12]. It can effectively
reduce the computational and memory requirements of the network and expand the re-
ceptive field while retaining important information for subsequent processing [13]. It re-
duces the spatial resolution by proportionally scaling down the width and height of fea-
ture maps, which can be achieved by selecting a subset of features or by aggregating the
features in local regions. Downsampling can help to regularize the network and prevent
overfitting by reducing the number of parameters and introducing some degree of spatial
invariance [14]. It can improve the efficiency of the neural network in processing large-
scale complex data, such as remote sensing images and videos, and enable the DL models
to operate on resource-limited devices [15]. Pooling or subsampling of feature maps, such
as Max Pooling or Strided Convolution, is a common downsampling operation in the neu-
ral network [16]. However, most of the methods condense regional features to a single
output, which suffers from several challenges, such as information loss and spatial bias
[11]. For instance, Max Pooling only retains the most distinguishable features [17], and
subsampling picks a portion of features randomly or according to rules [18,19], while the
slicing adopted in this work utilizes the full information in the input feature map, as
shown in Figure 1. Therefore, the research on neural network downsampling is still an
active area where there is space for optimization, and more efficient methods need be de-
veloped for better retaining feature information.

Figure 1. Feature information retained by different downsampling methods.

Upsampling also plays an important role in neural networks. It is often used for im-
age super-resolution [20], segmentation [21], and generation [22] tasks via the reconstruc-
tion of high-resolution feature maps during the decoding stage in the neural network [23].

Figure 1. Feature information retained by different downsampling methods.

Appl. Sci. 2023, 13, 11657 3 of 19

Upsampling also plays an important role in neural networks. It is often used for image
super-resolution [20], segmentation [21], and generation [22] tasks via the reconstruction of
high-resolution feature maps during the decoding stage in the neural network [23]. The
main upsampling methods include interpolation-based upsampling such as the Nearest
Neighbor, Bilinear, and Bicubic Interpolation methods [24] and the Transposed Convolu-
tion [25] and Sub-Pixel Convolutional [26] methods. The simplest and fastest algorithm
is Nearest Neighbor sampling in which each pixel is copied in four copies to a 2 × 2
neighborhood; however, jagged edges are often introduced [27]. The Bilinear and Bicubic
Interpolation methods calculate new pixel values via the weighted averaging of the nearest
pixels in the original image, providing smoother results than Nearest Neighbor Upsam-
pling yet still introducing some blurring [28]. Transposed Convolution, also known as
deconvolution or fractionally strided convolution, is the reverse operation of convolution.
It produces high-quality results with an expensive computational burden [29]. Sub-Pixel
Convolutional Upsampling rearranges the feature maps via a periodic shuffling operator
to increase the spatial resolution [26]. It is fast and computationally efficient; however, it
may lead to some artifacts. Many existing downsampling techniques are often combined
with the above upsampling methods as it is difficult to implement an inverse transform for
generating low-dimensional spatial features [11]. However, our proposed feature-slicing
method can reconstruct high-resolution feature maps by reorganizing a feature map to
enable the upsampling operation.

In this paper, we present a comprehensive review of state-of-the-art downsampling
methods in neural networks, focusing on their advantages and disadvantages, theoretical
properties, and practical applications. To overcome the limitations faced by existing down-
sampling methods, we intend to develop a simple downsampling method that achieves
efficient feature extraction and captures channel importance with low computational com-
plexity without discarding the semantic and detailed information of the feature maps. The
main contributions of this paper are described briefly below.

(1) A novel downsampling method based on feature slicing and depthwise separable
convolution, SliceSamp, is proposed which is designed to retain all feature information
while optimizing computational efficiency.

(2) An upsampling component, SliceUpsamp, is constructed by reconstructing the feature
maps from the channel dimension to the spatial dimension, enabling the inverse
operation of downsampling.

(3) An ablation study is introduced to evaluate the effectiveness of the key design el-
ements. The proposed method can achieve a better balance between algorithmic
complexity and model performance.

(4) Extensive experiments are conducted via various computer vision tasks, including
image classification, object detection, and semantic segmentation, based on several
benchmark datasets. Our method exhibits significant advantages over classical down-
sampling methods by replacing the original downsampling layers in different network
architectures.

The rest of this paper is organized as follows. Existing work relating to downsampling
methods and depthwise separable convolution is reviewed in Section 2. The algorithmic
concept and network architecture of the proposed method are described in Section 3. The
dataset, implementation details, the results of experiments on a variety of computer vision
tasks, and ablation studies are reported in Section 4. Study limitations and future work are
discussed in Section 5. The conclusions of this work are summarized in Section 6.

2. Related Works
2.1. Downsampling in Neural Networks

To reduce model complexity, researchers have developed various downsampling
methods that are tailored to specific tasks and architectures, including pooling-based [17,19],
subsampling-based [16,30], patch-based [31,32], and learnable pooling [19,33] methods. In
the early stages of neural network development, Maximum Pooling or Average Pooling

Appl. Sci. 2023, 13, 11657 4 of 19

were commonly adopted to achieve downsampling by taking the maximum or average
value within a local window. These methods are fast and memory-efficient, yet t room for
improvement remains in terms of information retention [11]. Some methods that combine
Max and Average Pooling, such as Mixed Pooling [34], exhibit better performance compared
to a single method. Unlike Maximum Pooling, Average Pooling, and their variants, SoftPool
exponentially weights the activations using Softmax (normalized exponential function)
kernels to retain feature information [12]. Wu et al. [35] proposed pyramid pooling for
the transformer architecture; pyramid pooling which applies different scales of average
pooling layers to generate pyramid feature maps, thus capturing powerful contextual
features. There are also pooling methods that are designed to enhance the generalization
of a model. For example, Fractional Pooling [36], S3Pool [13], and Stochastic Pooling [30]
can prevent overfitting by taking random samples in the pooling region. However, most
pooling-based methods are hand-crafted nonlinear mappings which usually employ fixed,
unlearnable prior knowledge [37].

Nonlinear mapping can also be generated by overlaying complex convolutional lay-
ers and activation functions in a deep neural network (DNN) [16]. When the network
is shallow, pooling has some advantages. When the network goes deeper, multi-layer
stacked convolution can learn better nonlinearity than pooling. It can also achieve better
results [38]. Therefore, Strided Convolution, which reduces spatial dimensionality by
adjusting the stride to skip some pixels in the feature map, is generally used for downsam-
pling in convolutional neural networks at present [16]. Pooling and Stride Convolution
have the advantage of extracting stronger semantic features, although at the cost of los-
ing some detailed information [39]. In contrast, the features extracted via passthrough
downsampling [40] have less semantic information but retain more detailed information.
In transformer-based networks, patch-based downsampling is generally adopted [31,32].
Patch merging is a method of reducing the number of tokens in transformer architectures
which concatenates the features of each group of 2 × 2 neighboring patches and extracts
the features with a linear layer [32]. Patch-based methods perform poorly at capturing
fine spatial structures and details, like edges and texture [41]. Li et al. [42] stacked the
results of the Discrete Wavelet Transform in the channel dimension instead of directly
stacking patches to prevent spatial domain distortion. Moreover, Lu et al. [43] proposed
a Robust Feature Downsampling Module by combining various techniques such as slice,
Max Pooling, and group convolution, achieving satisfactory results in remote sensing
visual tasks.

In recent years, learnable weights were gradually introduced into some advanced
downsampling methods. Saeedan et al. [19] proposed Detail Preserving Pooling methods
that use learnable weights to emphasize spatial changes and preserve edges and texture
details. Gao et al. [33] proposed Local Importance-Based Pooling to retain important
features based on weights learned by a local attention mechanism. Ma and Gu et al. [44]
proposed spatial attention pooling to learn feature weights and refine local features. Hesse
et al. [45] introduced a Content-Adaptive Downsampling method that downsamples only
the non-critical regions learned by a network, effectively preserving detailed information
in the regions of interest.

Recently, other studies proposed bi-directional pooling operations that can support
both downsampling and upsampling operations, such as Liftpool [46] and AdaPool [11].
Liftpool decomposes the input into multiple sub-bands carrying different frequency in-
formation during downsampling and enables inverse recovery during upsampling [46].
AdaPool uses two groups of pooling kernels to better retain the details of the original
feature, and its learned weights can be used as prior knowledge for upsampling [11]. These
improved downsampling methods have demonstrated good performance gains, yet most
of them still inevitably lose some feature information in the downsampling process. In this
paper, we aim to explore how to improve model performance without discarding feature
information during downsampling.

Appl. Sci. 2023, 13, 11657 5 of 19

2.2. Depthwise Separable Convolution

Depthwise separable convolution (DSConv) [47] has gained significant attention in
recent years due to its effectiveness at reducing the computational cost of convolutional
layers in neural networks [48,49]. An early work was proposed by Chollet in the Xception
model [44]. It replaced traditional Inception modules with DSConv and showed advanced
performance on the ImageNet dataset with fewer parameters. Another remarkable work
on DSConv is MobileNet, which builds faster and more efficient lightweight DNNs for
mobile and embedded vision applications using DSConv [50]. In addition, several studies
integrated and improved DSConv. Drossos et al. [51] combined DSConv and dilated convo-
lutions for sound event detection. ShuffleNet uses channel shuffle to reduce computational
costs in DSConv while maintaining or improving accuracy [52]. Recently, a depthwise
separable convolution attention module was proposed to focus on important information
and capture the relationships of channels and spatial positions [53]. Compared to standard
convolutional layers, DSConv can significantly reduce the computational cost and memory
requirements of a network while maintaining competitive model performance [54,55]. This
makes it a popular choice in modern neural network architectures, especially for mobile and
embedded devices with limited computational resources [56]. Overall, the above studies
demonstrate the effectiveness of DSConv in terms of saving computational resources, as
well as the potential ability to further improve model performance by combining DSConv
with other techniques.

3. Methods

Common downsampling methods face certain challenges, such as the high number of
parameters used in Strided Convolution, the inability of patch merging to extract spatial
and channel information, and the loss of detailed information via the pooling operation.
To address these issues, we propose exploring a hybrid method which combines slice
sampling with depthwise separable convolutions (DSConvs). In this section, we describe
the algorithmic concepts and architectures of the proposed downsampling and upsam-
pling components. The downsampling component, SliceSamp, uses a combination of
slicing and DSConv to reduce the spatial resolution of input feature maps while retain-
ing all their features. The corresponding upsampling component, SliceUpsamp, uses the
inverse operation of slicing to reconstruct high-resolution features; this is a process of
reorganizing high-dimensional features rather than simply using interpolation to fill in the
missing values.

3.1. SliceSamp: The Downsampling Component

The SliceSamp component consists of two main layers: a slicing layer and a depthwise
separable convolution layer including depthwise convolution and pointwise convolution,
as shown in Figure 2. For each channel of the input feature map, we first obtain four sub-
maps by slicing and then implement depthwise separable convolution on the four sub-maps.
Slicing provides a means of implementing downsampling by reducing the dimensions of
feature maps without increasing the number of model parameters. Subsequently, depthwise
separable convolutions (DSConvs) can simultaneously capture the spatial and channel-wise
features of the downsampled outputs, thereby ensuring timely learning and the effective
extraction of image features.

Appl. Sci. 2023, 13, 11657 6 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 19

Figure 2. The architecture of the SliceSamp component.

To provide a clearer description of the designed neural network component, the
pseudocode for the SliceSamp algorithm is provided in Algorithm 1:

Algorithm 1: output ← SliceSamp (𝑿)
/* Performs downsampling on input features using the SliceSamp algorithm. */
Input: 𝑿 ∈ ℝ , vector representations of the input feature map, where B is the batch size,

C is the dimension, H is the feature map height, and W is the feature map width.

Output: output ∈ ℝ , updated vector representations after downsampling using Slic-
eSamp.

Parameters: Wdepthwise ∈ ℝ , 𝒃depthwise = 0

Wpointwise ∈ ℝ , 𝒃pointwise = 0, where Cin is the number of input channels,

Cout is the number of output channels, and K represents the spatial dimensions of

each convolutional kernel.

1. X_slice ← [// Slice the input feature map
 𝑿 [..., ::2, ::2], // Upper-left corner
 𝑿 [..., 1::2, ::2], // Upper-right corner
 𝑿 [..., ::2, 1::2], // Lower-left corner
 𝑿 [..., 1::2, 1::2] // Lower-right corner
]
2. X_concat ← concatenate (x_slice, axis=1) // Merge slices in channel dimension
3. Depthwise_conv ← Wdepthwise * X_ concat + 𝒃depthwise // Depthwise Separable Convolution
4. Depthwise_bn ← BatchNormal (Depthwise_conv)
5. Depthwise_act ← GELU (Depthwise_bn)
6. Pointwise_conv ← Wpointwise * Depthwise_act + 𝒃pointwise
7. Pointwise_bn ← BatchNormal (Pointwise_conv)
8. output ← GELU (Pointwise_bn)
9. return output

In the slicing layer, four sub-maps are created by slicing each channel of the original
feature map along the width and height dimensions with a stride of two, and the four sub-
maps are then concatenated along the channel dimension. By slicing along the odd and
even indexes on the spatial dimensions, respectively, the four sub-maps become half of

Figure 2. The architecture of the SliceSamp component.

To provide a clearer description of the designed neural network component, the
pseudocode for the SliceSamp algorithm is provided in Algorithm 1:

Algorithm 1: output← SliceSamp (X)

/* Performs downsampling on input features using the SliceSamp algorithm. */

Input: X ∈ RB×C×H×W , vector representations of the input feature map, where B is the batch size,
C is the dimension, H is the feature map height, and W is the feature map width.

Output: output ∈ RB×C× H
2 ×

W
2 , updated vector representations after downsampling using

SliceSamp.
Parameters: Wdepthwise ∈ RCin×Cin×K×K, bdepthwise = 0

Wpointwise ∈ RCin×Cout×1×1, bpointwise = 0, where Cin is the number of input
channels, Cout is the number of output channels, and K represents the spatial
dimensions of each convolutional kernel.

1. X_slice← [// Slice the input feature map
X [..., ::2, ::2], // Upper-left corner
X [..., 1::2, ::2], // Upper-right corner
X [..., ::2, 1::2], // Lower-left corner
X [..., 1::2, 1::2] // Lower-right corner

]
2. X_concat← concatenate (x_slice, axis=1) // Merge slices in channel dimension
3. Depthwise_conv←Wdepthwise * X_ concat + bdepthwise // Depthwise Separable Convolution
4. Depthwise_bn← BatchNormal (Depthwise_conv)
5. Depthwise_act← GELU (Depthwise_bn)
6. Pointwise_conv←Wpointwise * Depthwise_act + bpointwise
7. Pointwise_bn← BatchNormal (Pointwise_conv)
8. output← GELU (Pointwise_bn)
9. return output

In the slicing layer, four sub-maps are created by slicing each channel of the original
feature map along the width and height dimensions with a stride of two, and the four
sub-maps are then concatenated along the channel dimension. By slicing along the odd and

Appl. Sci. 2023, 13, 11657 7 of 19

even indexes on the spatial dimensions, respectively, the four sub-maps become half of the
original feature map in both width and height, while the channel dimension is expanded
to 4× the input size, and the other dimensions remain unchanged. It is interesting that
the slicing operation achieves downsampling and retains all features only via a simple
dimensional transformation.

In the depthwise separable convolution layer, a series of efficient convolution opera-
tions are employed for the concatenated sub-maps from the slicing layer. There are two
main operations: depthwise convolution and pointwise convolution. For the depthwise
convolution, the 3 × 3 filters, each with a padding of one, are employed to perform a
stride of one convolution operation for each input channel separately, which produces a set
of output channels with the same number as the slicing layer. Depthwise convolution is
mainly used to capture the high-level semantic features in local regions without mixing the
information of different channels. This operation reduces the computational complexity
of the convolutional layers while efficiently extracting spatial information. In the second
operation, pointwise convolution applies multiple 1 × 1 filters to combine the output
channels from the depthwise convolution. This operation is used to mix information from
different channels, encode channel importance, and capture correlations across channels. It
allows for the flexible adjustment of the number of channels to suit subsequent operations
such as convolution. The outputs from the depthwise and pointwise convolutions are fed
to a Batch Normalization (BN) layer and a GELU (Gaussian Error Linear Unit) activation
function, thus stabilizing the training process, reducing the effects of internal covariate
shift, improving model generalization, and introducing nonlinearity. The combination of
slicing and depthwise separable convolutions can reduce the number of parameters and
computational costs in the downsampling process while retaining the full amount of feature
information, achieving a good balance between model accuracy and inference speed.

3.2. SliceUpsamp: The Upsampling Component

Most pooling-based and subsampling methods lack a mechanism of bidirectional
mapping between the original feature maps and the sub-maps. This limitation makes
it challenging to recover a refined high-resolution feature map. This is not friendly for
fine-grained CV tasks such as semantic segmentation [21], small-object detection [57], and
super-resolution [20]. Therefore, we propose a SliceUpsamp component for bi-directional
mapping with SliceSamp which is based on inverted slicing and depthwise separable
convolution.

Firstly, in the inverted slicing layer, the input features are equally divided into four
group feature sets along the channel dimension, and they are then are rearranged into 2 × 2
nearest neighbor regions to obtain a high-resolution feature map, as shown in Figure 3. It
can be seen that inverted slicing is a lossless feature reorganization process which directly
transfers features from the channel dimension to the spatial dimension. At this stage, the
width and height of feature maps are expanded to 2× the input size, while the channel
dimension is reduced to 1/4 of the input size.

Finally, the high-resolution feature maps from the slicing layer are fed into the depth-
wise separable convolution layer to extract spatial information and capture the channel
relationships. SliceUpsamp can reconstruct high-resolution features using position indexes
in an orderly manner, thus achieving accurate matching and the alignment of the original
feature map while ensuring upsampling efficiency. Given our aim of thoroughly learn-
ing image features with lower computational complexity, we accordingly minimize the
parametrization in convolutional configurations. Specifically, in the SliceUpsamp module,
we employ the same parameter setting as SliceSamp, utilizing 3 × 3 filters with a stride of
one and a padding of one for depthwise convolution, as well as 1 × 1 convolutional kernels
with a stride of one and zero padding for pointwise convolution.

Appl. Sci. 2023, 13, 11657 8 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 19

Figure 3. The architecture of the SliceUpsamp component.

Finally, the high-resolution feature maps from the slicing layer are fed into the depth-
wise separable convolution layer to extract spatial information and capture the channel
relationships. SliceUpsamp can reconstruct high-resolution features using position in-
dexes in an orderly manner, thus achieving accurate matching and the alignment of the
original feature map while ensuring upsampling efficiency. Given our aim of thoroughly
learning image features with lower computational complexity, we accordingly minimize
the parametrization in convolutional configurations. Specifically, in the SliceUpsamp
module, we employ the same parameter setting as SliceSamp, utilizing 3 × 3 filters with a
stride of one and a padding of one for depthwise convolution, as well as 1 × 1 convolu-
tional kernels with a stride of one and zero padding for pointwise convolution.

4. Experiments
We conducted extensive experiments based on various deep learning architectures

including ResNet [2], YOLOv5 [58], and Swin Transformer [32], and several benchmark
datasets, including ImageNet-1K [59], Microsoft COCO (Common Objects in Context)
[60], PASCAL VOC [61], and ADE20K [62], which cover a variety of CV tasks in image
classification, object detection, and semantic segmentation. Below, we compare the pro-
posed method with classical methods by replacing the downsampling layers in the above
network architecture. Moreover, we also compare the algorithmic complexity of these
methods, using the number of parameters as a measure of spatial complexity (i.e.,
memory), and FLOPs (Floating Point Operations) or MACs (Multiply–Accumulate Oper-
ations) as a measure of time complexity (i.e., computational latency).

4.1. Image Classification on ImageNet-1K
For the image classification task, we report the Top-1 and Top-5 accuracy values of

several classical methods, including SoftPool [12], AdaPool [11], and Patch Merging [32],
and our SliceSamp method based on an ImageNet-1K benchmark dataset, replacing the
Max Pooling layer of the ResNet-18 [2] model with the aforementioned algorithms. Mean-
while, we also compare the number of parameters and time complexity of these models.

4.1.1. Image Classification Datasets

Figure 3. The architecture of the SliceUpsamp component.

4. Experiments

We conducted extensive experiments based on various deep learning architectures
including ResNet [2], YOLOv5 [58], and Swin Transformer [32], and several benchmark
datasets, including ImageNet-1K [59], Microsoft COCO (Common Objects in Context) [60],
PASCAL VOC [61], and ADE20K [62], which cover a variety of CV tasks in image classi-
fication, object detection, and semantic segmentation. Below, we compare the proposed
method with classical methods by replacing the downsampling layers in the above network
architecture. Moreover, we also compare the algorithmic complexity of these methods, us-
ing the number of parameters as a measure of spatial complexity (i.e., memory), and FLOPs
(Floating Point Operations) or MACs (Multiply–Accumulate Operations) as a measure of
time complexity (i.e., computational latency).

4.1. Image Classification on ImageNet-1K

For the image classification task, we report the Top-1 and Top-5 accuracy values of
several classical methods, including SoftPool [12], AdaPool [11], and Patch Merging [32],
and our SliceSamp method based on an ImageNet-1K benchmark dataset, replacing the Max
Pooling layer of the ResNet-18 [2] model with the aforementioned algorithms. Meanwhile,
we also compare the number of parameters and time complexity of these models.

4.1.1. Image Classification Datasets

ImageNet-1K [59] is a large-scale dataset for image classification tasks which consists
of a training set (1.28 million images) and a validation set (50,000 images). The images
in this dataset were captured from various scenes and labeled into 1000 categories. As a
benchmark, the dataset has been widely used for training and evaluating deep learning
models and has played a crucial role in advancing the field of computer vision.

4.1.2. Experiment Setup

In the image classification experiment, ResNet-18 was treated as the baseline model.
We evaluated classical downsampling methods on the ImageNet-1K dataset by replacing

Appl. Sci. 2023, 13, 11657 9 of 19

the Max Pooling layer in the baseline model. All these models were trained using a
single GPU (Graphic Processing Unit) for 60 epochs with a learning rate reduction every
30 epochs, as our method has shown obvious advantages under the current epoch setting.
We adopted an SGD (Stochastic Gradient Descent) optimizer with an initial learning rate
of 0.1 and a weight decay of 0.0001. The other training configurations were uniformly set
to a batch size of 256 and an image size of 224 × 224. In addition, we employed several
data augmentation strategies, including randomly cropping spatial regions of a size of
299 × 299 pixels, resizing them to 224 × 224 pixels, and carrying out data normalization.

4.1.3. Results and Discussion

Table 1 compares the Top-1, Top-5, and computational costs of various downsampling
methods when performing the image classification task. When the model was trained with
60 epochs, our method outperformed other models by 1.26~19.67% of the Top-1 accuracy.
SoftPool and AdaPool show similar accuracies to the baseline method MaxPool, yet they still
exhibit significant performance gaps compared to our method. Additionally, Patch Merging
shows lower model performance than the above three methods, which demonstrates
that patch merging loses its effectiveness when applied to CNN (Convolutional Neural
Network) architectures. In terms of computational cost, MaxPool, SoftPool, and AdaPool
have roughly the same number of parameters and degree of computational complexity,
while Patch Merging and our method are slightly higher in comparison. Compared to the
baseline model, our method is only 3% higher with respect to MACs and 0.17% higher with
respect to the number of parameters (Params in the following tables). It is worth noting
that the levels of performance of most of the models are similar since only one Max Pooling
layer is available for replacement in the ResNet-18 model, which has a relatively small
impact on accuracy. However, our method can still improve Top-1 by 1.3% and Top-5 by
0.87% over the baseline. Experiments show that our method can significantly improve
model performance with a similar algorithmic complexity by replacing the Max Pooling
layer in the image classification task.

Table 1. The accuracy and computational cost of the models on ImageNet-1K.

Method Model Epoch Batch Size Image Size Params MACs Top-1 Top-5

MaxPool (baseline) ResNet-18 60 256 224 11.69 M 1.82 G 59.73 82.87
SoftPool ResNet-18 60 256 224 11.69 M 1.82 G 59.77 82.86
AdaPool ResNet-18 60 256 224 11.69 M 1.82G 59.38 82.56

Patch Merging ResNet-18 60 256 224 11.71 M 1.87 G 41.36 66.95
SliceSamp (Ours) ResNet-18 60 256 224 11.71 M 1.88 G 61.03 83.74

4.2. Object Detection on COCO and VOC

For the object detection task, we report the precision, recall, mean average precision
(mAP@0.5), mAP@0.5:0.95, the number of parameters, and the computational complexity
of several classical methods, including MaxPool, SoftPool, AdaPool, and Patch Merging,
and our SliceSamp method based on two object detection benchmark datasets by replacing
the Strided Convolution layers in the YOLOv5s-5.0 [58] model with the above algorithms.
In addition, we also compare the convergence effect of different models while training
them on the COCO [60] and VOC [61] datasets visually.

4.2.1. Object Detection Datasets

In the object detection experiments, we used two classic datasets, the Common Objects
in Context (COCO) [60] and the Visual Object Classes (VOC) [61] datasets. Among these,
the COCO dataset is a popular large-scale benchmark dataset which was designed for
object detection and instance segmentation tasks. There are 80 object categories labeled
in this dataset, and the annotations are provided in JSON (JavaScript Object Notation)
format. The COCO dataset contains 118,287 training, 5000 validation, and 20,288 test-dev

Appl. Sci. 2023, 13, 11657 10 of 19

images with more than 2.5 million object instances. Moreover, the VOC dataset was first
introduced in 2005 as part of the PASCAL (Pattern Analysis, Statistical Modelling, and
Computational Learning) Visual Object Classes Challenge for the object detection task. It
contains 20 object classes, and the annotations are provided in XML (eXtensible Markup
Language) format. The VOC dataset has been updated and extended over the years, and
the most recent version is VOC2012. The VOC dataset was obtained using the default code
of the YOLOv5 algorithm, which includes 16,551 training and 4952 validation images.

4.2.2. Experiment Setup

In the object detection experiment, YOLOv5s-5.0 was treated as the baseline model. We
evaluated classical downsampling methods on the COCO and VOC datasets by replacing
the Strided Convolution layer in the baseline model. We replaced all Strided Convolution
(Strided Conv) layers in the YOLOv5s-5.0 model, including four layers in the Backbone
component and two layers in the Neck component. All models were trained using a single
GPU for 300 epochs on the VOC dataset and 60 epochs on the COCO dataset. We adopted
an SGD optimizer with an initial learning rate of 0.01 and a weight decay of 0.0005. The
training used a batch size of 64 and an image size of 640 × 640. In addition, we employed
various data augmentation strategies, such as mosaic, MixUp, affine transformation, color
transformation, and random horizontal and vertical flipping. We also used overfitting
prevention strategies, including a cosine decay learning rate scheduler and 1000 iterations
of linear warm-up.

4.2.3. Results and Discussion

Table 2 compares the model performance and computational cost of various down-
sampling methods on the object detection task. The model performance of MaxPool is
significantly lower than that of the baseline Strided Conv for all accuracy evaluation met-
rics. Unexpectedly, Softpool, Adapool, and Patch Merging exhibit lower accuracy values
in the precision, recall, mAP@0.5, and mAP@0.5:0.95 metrics. By checking their losses
during training, it was found that their loss values for both the training and validation sets
gradually become NaN, leading to gradient explosion and a failure to converge. It can be
seen that these methods have poor cross-model compatibility and portability and are not
suitable for directly replacing Strided Conv in the baseline model. In contrast, the accuracy
of SliceSamp was slightly improved on both the COCO and VOC datasets compared to
the baseline model. By further replacing the Nearest Neighbor Upsampling layer in the
baseline model, we also evaluated the effectiveness of the proposed upsampling method.
When all models were trained for 60 epochs on the COCO dataset, SliceUpsamp showed
similar performance to the SliceSamp model without replacing the upsampling component.
When all models were sufficiently trained for 300 epochs on the VOC dataset, SliceUpsamp
outperformed the SliceSamp model by about 0.6% in terms of mAP@0.5. It can be seen
that after sufficient training, our proposed upsampling method can further achieve good
performance gains.

Table 2. The accuracy and computational cost of the models on the COCO and VOC datasets.

Method Model Params FLOPs
COCO VOC

Precision Recall mAP@0.5 mAP@0.5:0.95 Precision Recall mAP@0.5 mAP@0.5:0.95

Strided Conv
(baseline) YOLOv5s-5.0 7.28 M 17.2 G 62.18 48.60 51.91 32.05 79.71 71.16 78.50 51.75

Maxpool YOLOv5s-5.0 5.23 M 12.9 G 58.52 44.98 47.14 27.97 76.16 70.54 74.98 47.74
Softpool YOLOv5s-5.0 5.23 M 12.9 G 6.92 1.11 0.57 0.32 15.17 11.75 4.95 1.98
Adapool YOLOv5s-5.0 5.23 M 12.9 G 0.64 4.02 0.36 0.09 10.80 14.11 4.41 1.68

Patch Merging YOLOv5s-5.0 6.00 M 14.6 G 0.06 0.003 0.002 0.002 0.64 8.05 0.26 0.05
SliceSamp (ours) YOLOv5s-5.0 6.03 M 14.7 G 62.89 48.79 52.08 32.59 80.88 71.90 78.71 53.85

SliceUpsamp (ours) YOLOv5s-5.0 6.06 M 14.8 G 65.43 46.85 51.72 32.45 79.7 72.99 79.29 53.95

Moreover, it is noteworthy that our proposed method maintains or slightly improves
model performance while significantly reducing the computational cost. Compared to the
baseline model Strided Conv, SliceSamp reduces the number of parameters by 17.17% and

Appl. Sci. 2023, 13, 11657 11 of 19

the number of FLOPs by 14.53%. Experiments show that our method can significantly
reduce the number of parameters and computational costs while maintaining the original
model performance in a neural network in which Strided Conv is the main downsampling
component.

4.3. Semantic Segmentation on ADE20K

For the semantic segmentation task, we report the mIoU (Mean Intersection over
Union) and mAcc (Mean Accuracy) of several classical methods, including MaxPool,
SoftPool, and AdaPool, and our SliceSamp based on the ADE20K [62] benchmark dataset
by replacing the Patch Merging layer of the Swin Transformer [32] model with the above
algorithms. In addition, we also provide statistics such as the number of parameters and
computational complexity of these models.

4.3.1. Semantic Segmentation Datasets

The ADE20K [62] dataset is a benchmark dataset for semantic segmentation tasks
which contains large-scale images of indoor and outdoor scenes from various environments.
Each image in the dataset is annotated with pixel-level segmentation labels, covering
150 object and scene categories and providing fine-grained information about the contents
of each scene. The ADE20K dataset has a total of 25 K images of which 20,210 are used for
training, 2000 for validation, and 3000 for testing.

4.3.2. Experiment Setup

In the semantic segmentation experiment, the Swin Transformer model in MMSeg-
mentation [63] was treated as the baseline. We evaluated classical downsampling methods
on the ADE20K dataset by replacing the Patch Merging layer in the baseline model. We re-
placed all Patch Merging layers employed in the last three downsampling operations of the
Swin Transformer model. All models are trained on four GPUs for 160,000 iterations, with
a linear warmup of 1500 iterations. We adopted the AdamW (adaptive moment estimation
with decoupled weight decay) optimizer with an initial learning rate of 0.1 and a weight
decay of 0.0001. The training configuration was uniformly set to assign two images per
GPU with a batch size of eight and an image size of 512 × 512. In addition, we employed
default data augmentation strategies, including random cropping, random flipping, and
photometric distortion.

4.3.3. Results and Discussion

Table 3 compares the mIoU, mAcc, and computational cost values of various down-
sampling methods on the semantic segmentation task. By replacing the Patch Merging
layers in Swin Transformer, MaxPool and Softpool achieve slight accuracy improvements
(+0.09~1.75%) in mIoU and mAcc metrics, respectively. However, Adapool suffers from
accuracy degradation on the ADE20K dataset, showing less stability than MaxPool. Com-
pared with MaxPool and Softpool, the SliceSamp model demonstrates further performance
improvement. Compared to the baseline model, our model exhibits more significant per-
formance gains of 2.58% in the mIoU and 3.64% in the mAcc. In terms of algorithmic
complexity, Maxpool, Softpool, and Adapool have similar numbers of parameters and
time complexities, yet their accuracy is lower than that of our method. Compared to the
baseline model Patch Merging, our method increases the number of parameters by only
0.05% with the same FLOPs. Experiments show that our method can significantly improve
model performance with similar algorithmic complexity in neural networks in which Patch
Merging is the main downsampling component.

Appl. Sci. 2023, 13, 11657 12 of 19

Table 3. The accuracy and computational cost of the models on ADE20K.

Method Model Iteration Batch Size Image Size Params FLOPs mIoU mAcc

Patch Merging
(baseline) Swin Transformer 160,000 8 224 59.94 M 236.1 G 21.99 30.75

Maxpool Swin Transformer 160,000 8 224 58.78 M 235.4 G 23.08 32.50
Softpool Swin Transformer 160,000 8 224 58.78 M 235.4 G 22.08 30.87
Adapool Swin Transformer 160,000 8 224 58.78 M 235.4 G 20.95 29.13

SliceSamp (ours) Swin Transformer 160,000 8 224 59.97 M 236.1 G 24.57 34.39

4.4. Ablation Studies

In this section, we perform extensive experiments to analyze the important design
elements in the proposed method, including slicing, DSConv, and upsampling components
(+Up, in the following table). We discuss the balanced capability of the proposed approach
in terms of algorithmic complexity and model performance. In addition, we visualize the
process of training the models using different design elements.

4.4.1. Experiment Setup

Since the YOLOv5s-5.0 [58] model architecture is easy to modify and trains quickly,
we chose it to conduct ablation experiments with different design elements. Also, we used
the same datasets and experimental settings as in Section 4.2 for the object detection task.
We ablated slicing and DSConv by replacing the Strided Conv layers and investigate the
gain in performance of adding the SliceUpsamp component (+Up) by replacing the Nearest
Neighbor Upsampling layers. Specifically, the Slicing method uses only a slicing layer to
downsample and a 1 × 1 convolution to transform the channel dimension. The DSConv
method uses only a DSConv with a stride of two to downsample and transform the channel
dimension. The SliceSamp method uses both the slicing downsampling and DSConv design
elements. The SliceUpSamp method further uses the SliceUpsamp component to replace
the Nearest Neighbor Upsampling layer of the SliceSamp method. The SlicingConv3×3
method uses a slicing layer to downsample and a 3 × 3 convolution to transform the
channel dimension and extract feature information.

4.4.2. Results and Discussion

Table 4 shows the ablation detail, algorithm complexity, and model performance for
different design elements. In this table, red text indicates a decrease in performance relative
to the baseline, while green text indicates an improvement in performance relative to the
baseline. “

√
” indicates that the current design element is considered in the model.

Table 4. Ablation study on COCO and VOC benchmarks based on the YOLOv5 model.

Method Slicing DSConv +Up Params FLOPs
COCO VOC

Precision Recall mAP@0.5 mAP@0.5:0.95 Precision Recall mAP@0.5 mAP@0.5:0.95

Strided Conv
(baseline) - - - 7.28 M 17.2 G 62.18

(+0.00)
48.60

(+0.00)
51.91

(+0.00)
32.05

(+0.00)
79.71

(+0.00)
71.16

(+0.00)
78.50

(+0.00)
51.75

(+0.00)
Slicing

√
- - 6.00 M 14.5 G 63.48

(+1.30)
45.99

(−2.61)
50.65

(−1.26)
30.76

(−1.29)
76.93

(−2.78)
71.69

(+0.53)
76.95

(−1.55)
49.92

(−1.83)
DSConv -

√
- 5.24 M 13.0 G 63.49

(+1.31)
45.78

(−2.82)
50.54

(−1.37)
30.96

(−1.09)
78.85

(−0.86)
70.15

(−1.01)
76.54

(−1.96)
50.22

(−1.53)
SliceSamp

(ours)
√ √

- 6.03 M 14.7 G 62.89
(+0.71)

48.79
(+0.19)

52.08
(+0.17)

32.59
(+0.54)

80.88
(+1.17)

71.90
(+0.74)

78.71
(+0.21)

53.85
(+2.10)

SliceUpSamp
(ours)

√ √ √
6.06 M 14.8 G 65.43

(+3.25)
46.85

(−1.75)
51.72

(−0.19)
32.45

(+0.40)
79.70

(−0.01)
72.99

(+1.83)
79.29

(+0.79)
53.95

(+2.20)
SlicingConv3×3

√
- - 15.50 M 33.0 G 67.64

(+5.46)
48.37

(−0.23)
54.08

(+2.17)
34.60

(+2.01)
78.49

(−1.22)
75.02

(+3.86)
80.32

(+1.82)
55.17

(+3.42)

On both the COCO and VOC datasets, the Slicing and DSConv methods exhibited
poor performance with respect to various accuracy metrics. Although the DSConv method
demonstrated a slight performance improvement compared to the Slicing method on the
VOC dataset, it still has a large gap in accuracy between both Strided Conv and our method.
This indicates that using only a single design element does not achieve good model perfor-
mance. When considering both slicing and DSConv, SliceSamp achieved a slightly better

Appl. Sci. 2023, 13, 11657 13 of 19

performance than Strided Conv while reducing the number of parameters by 17.17% and
the number of FLOPS by 14.53%. By further replacing the Nearest Neighbor Upsampling
layers in SliceSamp, the SliceUpSamp method outperformed the SliceSamp method by
0.58% mAP@0.5 on the VOC dataset while achieving similar performance on the COCO
dataset. This indicates that the proposed upsampling component can further improve
model performance when sufficient model training cycles are available. Finally, we also
tested the impact of the SlicingConv3×3 method with a higher degree of algorithmic com-
plexity on the model’s performance. We found that a higher degree of model accuracy can
be achieved using a combination of slicing layers and Conv3×3. However, the disadvan-
tage is that this required sacrificing a large amount of computational cost. Compared with
our method, the SlicingConv3×3 method increased the number of parameters by 157% and
the FLOPs by 124%. The results show that our proposed SliceSamp method has significant
advantages in terms of balancing model performance and algorithm complexity. It can
achieve a higher degree of model accuracy at a lower computational cost.

To investigate the impact of various design elements on model performance, we
employed Gradient-weighted Class Activation Mapping (Grad-CAM) [64] to generate
heatmaps for different object categories. The heatmaps produced via Grad-CAM revealed
the model’s attention distribution, helping us understand the feature mapping within the
neural network. In this context, color intensity signifies the model’s degree of focus on
different regions of the input image, with the color becoming redder, indicating the greater
significance of those features for the model’s predictions. Figure 4 visualizes the Grad-CAM
heatmaps for different design elements across different methods.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19

Figure 4. Grad-CAM heatmaps for Different Design Elements.

In Figure 4, the top row displays heatmaps for the “Person” category. Most algo-
rithms exhibited good attention toward the “Person” category, with our proposed meth-
ods demonstrating larger attention regions. The second row showcases heatmaps for the
“Horse” category in which the Strided Conv and Slicing methods tended to focus on the
horse’s abdominal region, while other methods encompassed a wider area, including the
front hooves and tail. The third row exhibits heatmaps for multiple instances of the “Per-
son” category, with the Slicing and DSConv methods displaying comparatively lower at-
tention levels while other methods generally yielded satisfactory results. The fourth row
presents heatmaps for the “Bus” category in which Slicing and DSConv tended to focus
on unrelated areas, resulting in less robust performance in this category compared to our
proposed methods. In summary, compared to our proposed model, models employing a
single design element exhibited slightly inferior performance in terms of attention distri-
bution areas and focus intensity. This can impact a model’s precision and recall, thereby
leading to a decrease in the model’s overall performance.

4.4.3. Visual Comparison
In this section, based on the COCO dataset, the validation accuracy and loss changes

were visually compared during the process of training models with different design ele-
ments, as shown in Figure 5. From the mAP@0.5 and mAP@0.5:0.95 metrics, it is clear that
the models with different design elements exhibit three different levels of model perfor-
mance. The Slicing and DSConv methods, each with only a single design element, are at
the lowest level of model accuracy. The proposed SliceSamp and SliceUpsamp methods,
with both slicing and DSConv elements, perform similarly to Strided Conv and show a
trend of further improvement after the 50th epoch. The SlicingConv3×3 method, which
combines Slicing and 3 × 3 convolution, achieves the highest model performance yet, as
mentioned before, it is more computationally expensive. In terms of the loss changes on
the validation set, the loss values of all models also converged to three levels. All models
showed a pattern of lower loss values with higher mAP values. However, it is noteworthy
that the proposed method converges to lower loss values on Object loss after the 40th

Figure 4. Grad-CAM heatmaps for Different Design Elements.

In Figure 4, the top row displays heatmaps for the “Person” category. Most algorithms
exhibited good attention toward the “Person” category, with our proposed methods demon-
strating larger attention regions. The second row showcases heatmaps for the “Horse”
category in which the Strided Conv and Slicing methods tended to focus on the horse’s
abdominal region, while other methods encompassed a wider area, including the front
hooves and tail. The third row exhibits heatmaps for multiple instances of the “Person”
category, with the Slicing and DSConv methods displaying comparatively lower attention
levels while other methods generally yielded satisfactory results. The fourth row presents

Appl. Sci. 2023, 13, 11657 14 of 19

heatmaps for the “Bus” category in which Slicing and DSConv tended to focus on unrelated
areas, resulting in less robust performance in this category compared to our proposed
methods. In summary, compared to our proposed model, models employing a single
design element exhibited slightly inferior performance in terms of attention distribution
areas and focus intensity. This can impact a model’s precision and recall, thereby leading to
a decrease in the model’s overall performance.

4.4.3. Visual Comparison

In this section, based on the COCO dataset, the validation accuracy and loss changes
were visually compared during the process of training models with different design ele-
ments, as shown in Figure 5. From the mAP@0.5 and mAP@0.5:0.95 metrics, it is clear that
the models with different design elements exhibit three different levels of model perfor-
mance. The Slicing and DSConv methods, each with only a single design element, are at
the lowest level of model accuracy. The proposed SliceSamp and SliceUpsamp methods,
with both slicing and DSConv elements, perform similarly to Strided Conv and show a
trend of further improvement after the 50th epoch. The SlicingConv3×3 method, which
combines Slicing and 3 × 3 convolution, achieves the highest model performance yet, as
mentioned before, it is more computationally expensive. In terms of the loss changes on
the validation set, the loss values of all models also converged to three levels. All models
showed a pattern of lower loss values with higher mAP values. However, it is noteworthy
that the proposed method converges to lower loss values on Object loss after the 40th epoch,
which is similar to the Strided Conv method on Class and Box losses. It can be seen that
our method has better generalization compared to the baseline Strided Conv.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 19

epoch, which is similar to the Strided Conv method on Class and Box losses. It can be seen
that our method has better generalization compared to the baseline Strided Conv.

Figure 5. Validation accuracy and loss on the COCO dataset during model training.

Meanwhile, based on the VOC dataset, the validation accuracy and loss changes were
visually compared during model training with 300 epochs, as shown in Figure 6. As seen
from the mAP@0.5 and mAP@0.5:0.95 metrics, the Slicing and DSConv methods still ex-
hibit the lowest model accuracy. Although the SlicingConv3×3 method achieves the high-
est model performance, the validation accuracy gradually decreases and exhibits overfit-
ting after the 200th epoch. However, the accuracy of the proposed SliceSamp and SliceUp-
samp methods continues to steadily improve after the 200th epoch. In particular, in terms
of the mAP@0.5:0.95 metric, our method is significantly higher than the Strided Conv
method after the 50th epoch. In terms of loss convergence on the validation set, on the
Class, Object, and Box losses, both the Slicing and DSConv methods converge to higher
values, and the SlicingConv3×3 method converges to lower values. Although our methods
(SliceSamp and SliceUpsamp) have slightly higher Class loss values than Strided Conv,
they converge to lower loss values on the Object and Box losses. It is noteworthy that
SliceUpsamp exhibits loss values close to those of the SlicingConv3×3 method on the Ob-
ject and Box losses after the 250th epoch. Moreover, when SlicingConv3×3 is overfitting
on Object loss, SliceUpsamp still maintains a low loss value, showing good robustness.

Figure 5. Validation accuracy and loss on the COCO dataset during model training.

Meanwhile, based on the VOC dataset, the validation accuracy and loss changes were
visually compared during model training with 300 epochs, as shown in Figure 6. As seen
from the mAP@0.5 and mAP@0.5:0.95 metrics, the Slicing and DSConv methods still exhibit
the lowest model accuracy. Although the SlicingConv3×3 method achieves the highest
model performance, the validation accuracy gradually decreases and exhibits overfitting
after the 200th epoch. However, the accuracy of the proposed SliceSamp and SliceUpsamp
methods continues to steadily improve after the 200th epoch. In particular, in terms of the
mAP@0.5:0.95 metric, our method is significantly higher than the Strided Conv method
after the 50th epoch. In terms of loss convergence on the validation set, on the Class, Object,
and Box losses, both the Slicing and DSConv methods converge to higher values, and the

Appl. Sci. 2023, 13, 11657 15 of 19

SlicingConv3×3 method converges to lower values. Although our methods (SliceSamp
and SliceUpsamp) have slightly higher Class loss values than Strided Conv, they converge
to lower loss values on the Object and Box losses. It is noteworthy that SliceUpsamp
exhibits loss values close to those of the SlicingConv3×3 method on the Object and Box
losses after the 250th epoch. Moreover, when SlicingConv3×3 is overfitting on Object loss,
SliceUpsamp still maintains a low loss value, showing good robustness.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 19

epoch, which is similar to the Strided Conv method on Class and Box losses. It can be seen
that our method has better generalization compared to the baseline Strided Conv.

Figure 5. Validation accuracy and loss on the COCO dataset during model training.

Meanwhile, based on the VOC dataset, the validation accuracy and loss changes were
visually compared during model training with 300 epochs, as shown in Figure 6. As seen
from the mAP@0.5 and mAP@0.5:0.95 metrics, the Slicing and DSConv methods still ex-
hibit the lowest model accuracy. Although the SlicingConv3×3 method achieves the high-
est model performance, the validation accuracy gradually decreases and exhibits overfit-
ting after the 200th epoch. However, the accuracy of the proposed SliceSamp and SliceUp-
samp methods continues to steadily improve after the 200th epoch. In particular, in terms
of the mAP@0.5:0.95 metric, our method is significantly higher than the Strided Conv
method after the 50th epoch. In terms of loss convergence on the validation set, on the
Class, Object, and Box losses, both the Slicing and DSConv methods converge to higher
values, and the SlicingConv3×3 method converges to lower values. Although our methods
(SliceSamp and SliceUpsamp) have slightly higher Class loss values than Strided Conv,
they converge to lower loss values on the Object and Box losses. It is noteworthy that
SliceUpsamp exhibits loss values close to those of the SlicingConv3×3 method on the Ob-
ject and Box losses after the 250th epoch. Moreover, when SlicingConv3×3 is overfitting
on Object loss, SliceUpsamp still maintains a low loss value, showing good robustness.

Figure 6. Validation accuracy and loss on the VOC dataset during model training.

5. Discussion

Our approach enables seamless integration into both CNN-based and Transformer-
based models, thereby achieving a more favorable balance between algorithmic complexity
and model performance. However, certain limitations may hinder its broader adoption
in specific application scenarios. Firstly, our components were founded on the CNN
architecture, which may not confer a distinct advantage in cases in which researchers
prefer to construct neural networks exclusively based on the Transformer architecture.
Nevertheless, it is noteworthy that the existing research has demonstrated that hybrid
networks incorporating both CNN and Transformer architectures can yield substantial
performance gains. Secondly, CNN-based components tend to emphasize local attention,
leaving room for improvement in their capacity to capture global context. Therefore, in
future work, we intend to explore the development of efficient downsampling components
grounded in the Transformer architecture.

6. Conclusions

In this paper, we introduce SliceSamp, an effective downsampling method that en-
hances model performance while minimizing computational latency and memory re-
quirements. To reconstruct and align high-resolution feature maps, we also developed
SliceUpsamp for upsampling, employing inverted slicing and depthwise separable con-
volution. We validated the effectiveness of SliceSamp across multiple datasets, including
ImageNet-1K, COCO, VOC, and ADE20K. Extensive experiments demonstrate SliceSamp’s
superior performance across various computer vision tasks compared to other classical
downsampling methods. Compared with the baseline model, SliceSamp improves Top-1 by
1.3% and Top-5 by 0.87% on the image classification task, maintains a similar accuracy while
reducing the number of parameters by 17.17% and FLOPs by 14.53% on the object detection
task, and improves mIoU by 2.58% and mAcc by 3.64% on the semantic segmentation task.
In addition, ablation studies and a Grad-CAM analysis show that integrating Slicing and

Appl. Sci. 2023, 13, 11657 16 of 19

DSConv can provide a qualitative leap in model performance compared to the use of a
single element. SliceSamp seamlessly integrates into various models like ResNet, YOLO,
and Transformer. We firmly believe that SliceSamp represents a superior and promising
alternative to widely used downsampling methods.

Author Contributions: Conceptualization, M.W.; Methodology, M.W.; Validation, L.H. and M.W.;
Investigation, L.H.; Resources, L.H.; Data curation, L.H.; Writing—original draft, M.W.; Writing—
review & editing, L.H. and M.W.; Visualization, M.W.; Project administration, L.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: In this study, we used four open-source datasets. They are available
at: https://image-net.org/challenges/LSVRC/index.php (accessed on 20 October 2023), https:
//cocodataset.org/#download (accessed on 20 October 2023), https://pjreddie.com/projects/pascal-
voc-dataset-mirror (accessed on 20 October 2023), https://groups.csail.mit.edu/vision/datasets/
ADE20K (accessed on 20 October 2023).

Acknowledgments: We are very grateful for the support of benchmark datasets, including ImageNet-
1K, COCO, VOC, and ADE20K, and open-source codes, including ResNet, YOLOv5, and Swin
Transformer.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
2. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
3. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer

Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. Available online: https://openaccess.thecvf.com/content_iccv_2017
/html/He_Mask_R-CNN_ICCV_2017_paper.html (accessed on 20 October 2023).

4. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

5. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Springer
International Publishing: Cham, Switzerland, 2015; pp. 234–241. [CrossRef]

6. Sinha, R.K.; Pandey, R.; Pattnaik, R. Deep Learning for Computer Vision Tasks: A review. arXiv 2018, arXiv:1804.03928. [CrossRef]
7. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
8. Shen, S.; Li, R.; Zhao, Z.; Liu, Q.; Liang, J.; Zhang, H. Efficient Deep Structure Learning for Resource-Limited IoT Devices. In

Proceedings of the GLOBECOM 2020–2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020;
pp. 1–6. [CrossRef]

9. Xie, Y.; Guo, Y.; Mi, Z.; Yang, Y.; Obaidat, M.S. Edge-Assisted Real-Time Instance Segmentation for Resource-Limited IoT Devices.
IEEE Internet Things J. 2023, 10, 473–485. [CrossRef]

10. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput.
Intell. Neurosci. 2018, 2018, e7068349. [CrossRef] [PubMed]

11. Stergiou, A.; Poppe, R. AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling. IEEE Trans. Image
Process. 2023, 32, 251–266. [CrossRef] [PubMed]

12. Stergiou, A.; Poppe, R.; Kalliatakis, G. Refining Activation Downsampling with SoftPool. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 10357–10366. Available on-
line: https://openaccess.thecvf.com/content/ICCV2021/html/Stergiou_Refining_Activation_Downsampling_With_SoftPool_
ICCV_2021_paper.html (accessed on 20 October 2023).

13. Zhai, S.; Wu, H.; Kumar, A.; Cheng, Y.; Lu, Y.; Zhang, Z.; Feris, R. S3Pool: Pooling with Stochastic Spatial Sampling. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4970–4978.
Available online: https://openaccess.thecvf.com/content_cvpr_2017/html/Zhai_S3Pool_Pooling_With_CVPR_2017_paper.html
(accessed on 20 October 2023).

https://image-net.org/challenges/LSVRC/index.php
https://cocodataset.org/#download
https://cocodataset.org/#download
https://pjreddie.com/projects/pascal-voc-dataset-mirror
https://pjreddie.com/projects/pascal-voc-dataset-mirror
https://groups.csail.mit.edu/vision/datasets/ADE20K
https://groups.csail.mit.edu/vision/datasets/ADE20K
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/CVPR.2016.90
https://openaccess.thecvf.com/content_iccv_2017/html/He_Mask_R-CNN_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/He_Mask_R-CNN_ICCV_2017_paper.html
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.48550/arXiv.1804.03928
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/GLOBECOM42002.2020.9322206
https://doi.org/10.1109/JIOT.2022.3199921
https://doi.org/10.1155/2018/7068349
https://www.ncbi.nlm.nih.gov/pubmed/29487619
https://doi.org/10.1109/TIP.2022.3227503
https://www.ncbi.nlm.nih.gov/pubmed/37015362
https://openaccess.thecvf.com/content/ICCV2021/html/Stergiou_Refining_Activation_Downsampling_With_SoftPool_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Stergiou_Refining_Activation_Downsampling_With_SoftPool_ICCV_2021_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Zhai_S3Pool_Pooling_With_CVPR_2017_paper.html

Appl. Sci. 2023, 13, 11657 17 of 19

14. Akhtar, N.; Ragavendran, U. Interpretation of intelligence in CNN-pooling processes: A methodological survey. Neural Comput.
Appl. 2020, 32, 879–898. [CrossRef]

15. Ajani, T.S.; Imoize, A.L.; Atayero, A.A. An Overview of Machine Learning within Embedded and Mobile Devices–Optimizations
and Applications. Sensors 2021, 21, 4412. [CrossRef]

16. Ayachi, R.; Afif, M.; Said, Y.; Atri, M. Strided Convolution Instead of Max Pooling for Memory Efficiency of Convolutional
Neural Networks. In Proceedings of the 8th International Conference on Sciences of Electronics, Technologies of Information
and Telecommunications (SETIT’18), Genoa, Italy, 18–20 December 2018; Bouhlel, M., Rovetta, S., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; Volume 1, pp. 234–243. [CrossRef]

17. Devi, N.; Borah, B. Cascaded pooling for Convolutional Neural Networks. In Proceedings of the 2018 Fourteenth International
Conference on Information Processing (ICINPRO), Bangalore, India, 21–23 December 2018; pp. 1–5.

18. Kuen, J.; Kong, X.; Lin, Z.; Wang, G.; Yin, J.; See, S.; Tan, Y.-P. Stochastic Downsampling for Cost-Adjustable Inference and
Improved Regularization in Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7929–7938. Available online: https://openaccess.thecvf.com/content_
cvpr_2018/html/Kuen_Stochastic_Downsampling_for_CVPR_2018_paper.html (accessed on 20 October 2023).

19. Saeedan, F.; Weber, N.; Goesele, M.; Roth, S. Detail-Preserving Pooling in Deep Networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9108–9116. Available online: https:
//openaccess.thecvf.com/content_cvpr_2018/html/Saeedan_Detail-Preserving_Pooling_in_CVPR_2018_paper.html (accessed
on 20 October 2023).

20. Yan, Y.; Liu, C.; Chen, C.; Sun, X.; Jin, L.; Peng, X.; Zhou, X. Fine-Grained Attention and Feature-Sharing Generative Adversarial
Networks for Single Image Super-Resolution. IEEE Trans. Multimed. 2022, 24, 1473–1487. [CrossRef]

21. Lin, G.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 5168–5177. [CrossRef]

22. Gragnaniello, D.; Cozzolino, D.; Marra, F.; Poggi, G.; Verdoliva, L. Are GAN Generated Images Easy to Detect? A Critical Analysis
of the State-Of-The-Art. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen,
China, 5–9 July 2021; pp. 1–6. [CrossRef]

23. Li, Y.; Cai, W.; Gao, Y.; Li, C.; Hu, X. More than Encoder: Introducing Transformer Decoder to Upsample. In Proceedings of the
2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6–8 December 2022; pp.
1597–1602. [CrossRef]

24. Fadnavis, S. Image Interpolation Techniques in Digital Image Processing: An Overview. Int. J. Eng. Res. Appl. 2014, 4, 2248–962270.
25. Zeiler, M.D.; Taylor, G.W.; Fergus, R. Adaptive deconvolutional networks for mid and high level feature learning. In Proceedings

of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2018–2025. [CrossRef]
26. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video

Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. Available online: https://www.
cv-foundation.org/openaccess/content_cvpr_2016/html/Shi_Real-Time_Single_Image_CVPR_2016_paper.html (accessed on 20
October 2023).

27. Olivier, R.; Hanqiang, C. Nearest Neighbor Value Interpolation. Int. J. Adv. Comput. Sci. Appl. 2012, 3, 25–30. [CrossRef]
28. Hwang, J.W.; Lee, H.S. Adaptive Image Interpolation Based on Local Gradient Features. IEEE Signal Process. Lett. 2004, 11,

359–362. [CrossRef]
29. Zhong, F.; Li, M.; Zhang, K.; Hu, J.; Liu, L. DSPNet: A low computational-cost network for human pose estimation. Neurocomputing

2021, 423, 327–335. [CrossRef]
30. Zeiler, M.D.; Fergus, R. Stochastic Pooling for Regularization of Deep Convolutional Neural Networks. arXiv 2013, arXiv:1301.3557.

[CrossRef]
31. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929.
Available online: http://arxiv.org/abs/2010.11929 (accessed on 20 October 2023).

32. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using
Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada,
11–17 October 2021; pp. 10012–10022. Available online: https://openaccess.thecvf.com/content/ICCV2021/html/Liu_Swin_
Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.html (accessed on 20 October 2023).

33. Gao, Z.; Wang, L.; Wu, G. LIP: Local Importance-Based Pooling. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3355–3364. Available online: https://openaccess.
thecvf.com/content_ICCV_2019/html/Gao_LIP_Local_Importance-Based_Pooling_ICCV_2019_paper.html (accessed on 20
October 2023).

34. Yu, D.; Wang, H.; Chen, P.; Wei, Z. Mixed Pooling for Convolutional Neural Networks. In Rough Sets and Knowledge Technology;
Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R., Eds.; Springer International Publishing: Cham, Switzerland, 2014;
pp. 364–375. [CrossRef]

https://doi.org/10.1007/s00521-019-04296-5
https://doi.org/10.3390/s21134412
https://doi.org/10.1007/978-3-030-21005-2_23
https://openaccess.thecvf.com/content_cvpr_2018/html/Kuen_Stochastic_Downsampling_for_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Kuen_Stochastic_Downsampling_for_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Saeedan_Detail-Preserving_Pooling_in_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Saeedan_Detail-Preserving_Pooling_in_CVPR_2018_paper.html
https://doi.org/10.1109/TMM.2021.3065731
https://doi.org/10.1109/CVPR.2017.549
https://doi.org/10.1109/ICME51207.2021.9428429
https://doi.org/10.1109/BIBM55620.2022.9995378
https://doi.org/10.1109/iccv.2011.6126474
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Shi_Real-Time_Single_Image_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Shi_Real-Time_Single_Image_CVPR_2016_paper.html
https://doi.org/10.14569/IJACSA.2012.030405
https://doi.org/10.1109/LSP.2003.821718
https://doi.org/10.1016/j.neucom.2020.11.003
https://doi.org/10.48550/arXiv.1301.3557
http://arxiv.org/abs/2010.11929
https://openaccess.thecvf.com/content/ICCV2021/html/Liu_Swin_Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Liu_Swin_Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Gao_LIP_Local_Importance-Based_Pooling_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Gao_LIP_Local_Importance-Based_Pooling_ICCV_2019_paper.html
https://doi.org/10.1007/978-3-319-11740-9_34

Appl. Sci. 2023, 13, 11657 18 of 19

35. Wu, Y.-H.; Liu, Y.; Zhan, X.; Cheng, M.-M. P2T: Pyramid Pooling Transformer for Scene Understanding. IEEE Trans. Pattern Anal.
Mach. Intell. 2022, 45, 12760–12771. [CrossRef]

36. Graham, B. Fractional Max-Pooling. arXiv 2015. [CrossRef]
37. Sun, M.; Song, Z.; Jiang, X.; Pan, J.; Pang, Y. Learning Pooling for Convolutional Neural Network. Neurocomputing 2017, 224,

96–104. [CrossRef]
38. Montavon, G.; Lapuschkin, S.; Binder, A.; Samek, W.; Müller, K.-R. Explaining nonlinear classification decisions with deep Taylor

decomposition. Pattern Recognit. 2017, 65, 211–222. [CrossRef]
39. Liu, Y.; Gross, L.; Li, Z.; Li, X.; Fan, X.; Qi, W. Automatic Building Extraction on High-Resolution Remote Sensing Imagery Using

Deep Convolutional Encoder-Decoder with Spatial Pyramid Pooling. IEEE Access 2019, 7, 128774–128786. [CrossRef]
40. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. arXiv 2016, arXiv:1612.08242. Available online: http://arxiv.org/abs/

1612.08242 (accessed on 20 October 2023).
41. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in Vision: A Survey. ACM Comput. Surv. 2022, 54,

1–41. [CrossRef]
42. Li, Y.; Liu, Z.; Wang, H.; Song, L. A Down-sampling Method Based on The Discrete Wavelet Transform for CNN Classification. In

Proceedings of the 2023 2nd International Conference on Big Data, Information and Computer Network (BDICN), Xishuangbanna,
China, 6–8 January 2023; pp. 126–129.

43. Lu, W.; Chen, S.-B.; Tang, J.; Ding, C.H.Q.; Luo, B. A Robust Feature Downsampling Module for Remote-Sensing Visual Tasks.
IEEE Trans. Geosci. Remote. Sens. 2023, 61, 1–12. [CrossRef]

44. Ma, J.; Gu, X. Scene image retrieval with siamese spatial attention pooling. Neurocomputing 2020, 412, 252–261. [CrossRef]
45. Hesse, R.; Schaub-Meyer, S.; Roth, S. Content-Adaptive Downsampling in Convolutional Neural Networks. In Proceedings of the

2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, 17–24
June 2023; pp. 4544–4553.

46. Zhao, J.; Snoek, C.G.M. LiftPool: Bidirectional ConvNet Pooling. arXiv 2021, arXiv:2104.00996. [CrossRef]
47. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. Available online: https:
//openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html (accessed on 20
October 2023).

48. Kaiser, L.; Gomez, A.N.; Chollet, F. Depthwise Separable Convolutions for Neural Machine Translation. arXiv 2017,
arXiv:1706.03059. [CrossRef]

49. Liu, B.; Zou, D.; Feng, L.; Feng, S.; Fu, P.; Li, J. An FPGA-Based CNN Accelerator Integrating Depthwise Separable Convolution.
Electronics 2019, 8, 281. [CrossRef]

50. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [CrossRef]

51. Drossos, K.; Mimilakis, S.I.; Gharib, S.; Li, Y.; Virtanen, T. Sound Event Detection with Depthwise Separable and Dilated
Convolutions. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July
2020; pp. 1–7.

52. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856. Available online: https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_
CVPR_2018_paper.html (accessed on 20 October 2023).

53. Liu, F.; Xu, H.; Qi, M.; Liu, D.; Wang, J.; Kong, J. Depth-Wise Separable Convolution Attention Module for Garbage Image
Classification. Sustainability 2022, 14, 3099. [CrossRef]

54. Pilipovic, R.; Bulic, P.; Risojevic, V. Compression of convolutional neural networks: A short survey. In Proceedings of the 2018
17th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 21–23 March 2018;
pp. 1–6.

55. Winoto, A.S.; Kristianus, M.; Premachandra, C. Small and Slim Deep Convolutional Neural Network for Mobile Device. IEEE
Access 2020, 8, 125210–125222. [CrossRef]

56. Elordi, U.; Unzueta, L.; Arganda-Carreras, I.; Otaegui, O. How Can Deep Neural Networks Be Generated Efficiently for Devices
with Limited Resources? In Articulated Motion and Deformable Objects; Perales, F., Kittler, J., Eds.; Springer International Publishing:
Cham, Switzerland, 2018; pp. 24–33. [CrossRef]

57. Sun, X.; Wang, P.; Yan, Z.; Xu, F.; Wang, R.; Diao, W.; Chen, J.; Li, J.; Feng, Y.; Xu, T.; et al. FAIR1M: A benchmark dataset for
fine-grained object recognition in high-resolution remote sensing imagery. ISPRS J. Photogramm. Remote. Sens. 2022, 184, 116–130.
[CrossRef]

58. ultralytics/yolov5: v5.0—YOLOv5-P6 1280 Models, AWS, Supervise.ly and YouTube Integrations. Available online: https:
//zenodo.org/record/4679653 (accessed on 11 April 2021).

59. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

https://doi.org/10.1109/TPAMI.2022.3202765
https://doi.org/10.48550/arXiv.1412.6071
https://doi.org/10.1016/j.neucom.2016.10.049
https://doi.org/10.1016/j.patcog.2016.11.008
https://doi.org/10.1109/ACCESS.2019.2940527
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
https://doi.org/10.1145/3505244
https://doi.org/10.1109/TGRS.2023.3317140
https://doi.org/10.1016/j.neucom.2020.05.090
https://doi.org/10.48550/arXiv.2104.00996
https://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html
https://doi.org/10.48550/arXiv.1706.03059
https://doi.org/10.3390/electronics8030281
https://doi.org/10.48550/arXiv.1704.04861
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
https://doi.org/10.3390/su14053099
https://doi.org/10.1109/ACCESS.2020.3005161
https://doi.org/10.1007/978-3-319-94544-6_3
https://doi.org/10.1016/j.isprsjprs.2021.12.004
https://zenodo.org/record/4679653
https://zenodo.org/record/4679653
https://doi.org/10.1007/s11263-015-0816-y

Appl. Sci. 2023, 13, 11657 19 of 19

60. Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common
Objects in Context. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International
Publishing: Cham, Switzerland, 2014; pp. 740–755. [CrossRef]

61. Everingham, M.; Eslami, S.M.A.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes Challenge:
A Retrospective. Int. J. Comput. Vis. 2014, 111, 98–136. [CrossRef]

62. Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic Understanding of Scenes Through the ADE20K
Dataset. Int. J. Comput. Vis. 2018, 127, 302–321. [CrossRef]

63. MMSegmentation Contributors. OpenMMLab Semantic Segmentation Toolbox and Benchmark. Available online: https:
//github.com/open-mmlab/mmsegmentation (accessed on 11 April 2023).

64. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-018-1140-0
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
https://doi.org/10.1007/s11263-019-01228-7

	Introduction
	Related Works
	Downsampling in Neural Networks
	Depthwise Separable Convolution

	Methods
	SliceSamp: The Downsampling Component
	SliceUpsamp: The Upsampling Component

	Experiments
	Image Classification on ImageNet-1K
	Image Classification Datasets
	Experiment Setup
	Results and Discussion

	Object Detection on COCO and VOC
	Object Detection Datasets
	Experiment Setup
	Results and Discussion

	Semantic Segmentation on ADE20K
	Semantic Segmentation Datasets
	Experiment Setup
	Results and Discussion

	Ablation Studies
	Experiment Setup
	Results and Discussion
	Visual Comparison

	Discussion
	Conclusions
	References

