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Abstract: Traditional laboratory methods for estimating soil compaction parameters, such as the
Proctor test, have been recognized as time-consuming and labor-intensive. Given the increasing
need for the rapid and accurate estimation of soil compaction parameters for a range of geotechnical
applications, the application of machine learning models offers a promising alternative. This study
focuses on employing the multivariate adaptive regression splines (MARS) model algorithm, a
machine learning method that presents a significant advantage over other models through generating
human-understandable piecewise linear equations. The MARS model was trained and tested on a
comprehensive dataset to predict essential soil compaction parameters, including optimum water
content (wopt) and maximum dry density (ρdmax). The performance of the model was evaluated
using coefficient of determination (R2) and root mean square error (RMSE) values. Remarkably,
the MARS models showed excellent predictive ability with high R2 and low RMSE, MAE, and
relative error values, indicating its robustness and reliability in predicting soil compaction parameters.
Through rigorous five-fold cross-validation, the model’s predictions for wopt returned an RMSE
of 1.948%, an R2 of 0.893, and an MAE of 1.498%. For ρdmax, the results showcased an RMSE of
0.064 Mg/m3, an R2 of 0.899, and an MAE of 0.050 Mg/m3. When evaluated on unseen data, the
model’s performance for wopt prediction was marked with an MAE of 1.276%, RMSE of 1.577%, and
R2 of 0.948. Similarly, for ρdmax, the predictions were characterized by an MAE of 0.047 Mg/m3,
RMSE of 0.062 Mg/m3, and R2 of 0.919. The results also indicated that the MARS model outperformed
previously developed machine learning models, suggesting its potential to replace conventional
testing methods. The successful application of the MARS model could revolutionize the geotechnical
field through providing quick and reliable predictions of soil compaction parameters, improving
efficiency for construction projects. Lastly, a variable importance analysis was performed on the
model to assess how input variables affect its outcomes. It was found that fine content (Cf) and plastic
limit (PL) have the greatest impact on compaction parameters.

Keywords: multivariate adaptive regression splines; soil compaction; optimum water content;
maximum dry density; machine learning

1. Introduction

Soil compaction, a foundational process in geotechnical engineering, refers to the
method of tightening soil particles and reducing air voids, thereby increasing density
while maintaining the existing water content [1]. This technique not only enhances soil’s
mechanical behavior but also provides a stable base for various infrastructures, solidifying
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its significance in the field of civil engineering. Initially suggested by Proctor in 1933 [2],
soil compaction involves applying specified compactive effort in a controlled laboratory
setting, allowing for various water contents. This process enables engineers to pinpoint the
optimal moisture content and maximum dry density—two essential parameters obtained
from the compaction curve [3–5]. In field compaction, the key parameters are the optimum
water content (wopt) and maximum dry density (ρdmax). These are crucial in determining
the maximum dry density of soil, which indicates an enhanced soil bearing capacity. The
optimum water content is the specific moisture level at which soil can attain its highest dry
density following a certain compaction effort. It is the minimum water necessary to form a
thin film on soil particles, aiding their sliding movement for compaction. Compressing soil
to its greatest theoretical density involves eliminating gases within the soil via expelling
them through voids in the soil matrix. This process of gas expulsion is fundamental
to soil densification, allowing soil to reach its maximum potential density. Hence, wopt
and ρdmax are vital in achieving the desired soil densification and stability [6]. These
parameters form the backbone of long-term performance for a myriad of geotechnical
structures, such as landfill liners, highway embankments, railway track-beds, earth dams,
nuclear waste disposal facilities, and airfield pavements [7–17]. For example, study [7]
found that wopt and ρdmax are crucial factors affecting the compression of compacted
Oklahoma soils, influencing collapse potential in embankments. Another study [8] used
wopt and ρdmax as critical parameters to understand the behavior and performance of MX80,
which is a versatile clay for nuclear waste barriers. Furthermore, study [14] investigated
the microstructure and hydraulic properties of high-speed railway subgrade soil using
different values of wopt and ρdmax to understand its behavior. Thus, accurately predicting
and understanding the compaction parameters of diverse soil types is paramount for the
successful construction and maintenance of these geotechnical structures.

To find compaction parameters, two main compaction approaches emerged: the stan-
dard Proctor compaction and the modified Proctor compaction [1]. The standard method
is typically adopted for regular traffic loading situations, while the modified approach is
used when dealing with heavy unit weights like those considered for airfield pavements.
Outcomes derived from laboratory tests conducted using either the standard Proctor com-
paction method (ASTM D698) [18] or the modified Proctor compaction method (ASTM
D1557) [19] are visually represented via an inverted ‘V’ curve. This graphical representation
illustrates the peak, known as ρdmax, and the corresponding moisture content, termed as
the wopt of the soil. Reaching the optimum moisture content and maximum dry density in a
laboratory setting, using both standard and modified compaction tests, demands significant
resources. It involves a considerable amount of time (typically 2–3 days), substantial effort,
and a large volume of soil (around 20 kg per individual test) [1]. Efforts have been made
to overcome this challenge through proposing several prediction models for determining
the soil compaction parameters more efficiently. Empirical equations, created via multi-
ple linear regression, can predict wopt and ρdmax of soil [20–25]. These models offer the
benefits of quick calculations and easy application, which speed up decision-making in
geotechnical projects. They are user-friendly, making them accessible to a variety of users,
not just experts. However, these models come with several limitations. One issue is the
existence of numerous equations for the same factors, leading to potential confusion and
inconsistency in results. This vast array of options makes the selection of the appropriate
model challenging, possibly affecting the reliability of predictions. Another significant
limitation is the assumption of linear behavior, which often does not reflect the complex,
often non-linear nature of soil behavior. These models, while providing an estimation,
might not fully encapsulate the range of outcomes in different conditions due to their
simplified assumptions.

The complex nature of soil compaction parameters, influenced by numerous interre-
lated parameters, necessitates the use of robust, data-driven methodologies such as artificial
intelligence. Traditional models struggle to capture these intricate relationships, but arti-
ficial intelligence and other data-driven methods have shown proficiency in navigating
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the inherent non-linearity and successfully estimating soil compaction parameters. Con-
tinued research should focus on employing precise and reliable techniques, like artificial
intelligence, that can effectively handle these complexities. In the area of predicting soil
compaction parameters, several studies have demonstrated noteworthy advancements.
The use of artificial neural networks (ANNs) has been successfully employed in various
models. For instance, one investigation applied an ANN to model wopt and ρdmax in soil
stabilized with nanomaterials. The model exhibited impressive prediction accuracy of over
97%, surpassing conventional statistical models [26]. Extending this approach to different
soil types, another study harnessed the potential of deep neural networks to predict soil
compaction parameters specific to Egyptian soil. The study achieved remarkable accuracy,
with R2 values of 0.864 for ρdmax and 0.924 for wopt, thereby surpassing the performance of
a simple artificial neural network with just one hidden layer [27]. In the context of highway
projects, a multi-layer perceptron neural network model was developed to predict modified
compaction parameters for both coarse and fine-grained soil samples. This model, similar
to its predecessors, delivered highly accurate results [28]. Stepping beyond traditional
ANNs, a novel hybrid intelligence paradigm known as the ANFIS-IGWO model was pro-
posed in a different study. This model demonstrated superior precision in predicting soil
compaction parameters, boasting correlation values of 0.9203 and 0.9050 for wopt and ρdmax,
respectively [29]. This accuracy was found to surpass other hybrid ANFIS models. In
yet another study, an ANN was utilized to develop predictive equations for the Proctor
compaction parameters of fine-grained soil [30]. The resulting ANN model demonstrated
high efficiency and accuracy, particularly in predicting unseen datasets, thus setting a new
standard compared to existing models in the literature. Moving towards the integration of
empirical correlations with machine learning algorithms, one paper investigated the use
of the support vector machine algorithm to predict soil compaction properties [31]. This
approach aimed at significantly reducing the time and effort required in the laboratory,
achieving R2 values of 0.86 and 0.91 for wopt and ρdmax, respectively. Lastly, in a significant
stride towards machine learning models, a novel model called “ComPara2021” was pro-
posed [17]. This model, based on machine learning, demonstrated superior performance in
predicting soil compaction parameters compared to its contemporaries, proving the value
of such models in saving both time and cost.

Another form of artificial intelligence is genetic programming approaches such as gene
expression programming (GEP) and multigene expression programming (MEP). GEP and
MEP are advantageous frameworks that integrate the benefits of both genetic programming
and genetic algorithms, enabling them to evaluate more complex functions that express
the relationship between input and output data [32,33]. The GEP and MEP models have
notably demonstrated their effectiveness in predicting a variety of parameters related to
compacted soil [15,34,35].

The multivariate adaptive regression splines (MARS) technique, a form of artificial
intelligence, offers potential benefits to geotechnical engineers. Besides being adept at
tackling prediction problems, MARS can identify key input parameters that significantly
influence output parameters. It also allows for the exploration of intricate nonlinear
relationships between a response variable and various predictive variables—a crucial
aspect in analyzing and designing soil compaction parameters. This technique has seen
successful implementations in diverse fields of geotechnical engineering, including ultimate
pile bearing capacity [36], the elastic modulus of rocks [37], Slope reliability analysis [38],
the compressive strength of soil [39], liquefaction [40], settlement prediction [41], and
penetration resistance in clay [42]. Yet, despite its proven effectiveness in these areas, its
application in compaction-related studies remains surprisingly limited.

In this research, MARS is utilized to estimate the optimal moisture content (wopt)
and maximum dry density (ρdmax) of compacted soil. MARS addresses the limitations of
the multiple linear regression (MLR) method, as it does not necessitate an a priori form
of equation between dependent and independent variables and can precisely capture
complex and nonlinear relationships between inputs and outputs [43]. Unlike techniques
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like the ANN, which often operate as a “black box,” MARS can provide an explicit equation
linking inputs and outputs [44–46]. This transparency has led to its frequent application
in modeling intricate engineering issues. Finally, MARS successfully mitigates one of the
key drawbacks of GEP and MEP, which tend to produce highly nonlinear mathematical
relations between input and output data [46].

2. Research Significance

This research carries significant implications in the field of soil engineering and ar-
tificial intelligence applications. It provides a robust foundation for understanding and
predicting soil compaction parameters across a variety of soil classifications. Firstly, this
study is rooted in comprehensive literature-based data collection, which has amassed an
extensive database of different soil types, including gravel, sand, silt, and clay. This broad
spectrum of data offers a detailed and diverse basis for analysis and prediction. Secondly,
we employed the MARS model to predict soil compaction parameters. To enhance the ac-
curacy and reliability of predictions, we further fine-tuned the MARS model’s performance
via hyperparameter tuning. Thirdly, we conducted a comparative study to evaluate the
performance of the MARS model against other existing empirical and artificial intelligence
models. This comparison seeks to identify the most effective and accurate model for pre-
dicting soil compaction parameters, contributing to the optimization of methodologies in
this area of research. Lastly, we carried out a sensitivity analysis to determine the relative
influence of each input variable on the scour depth. Through identifying the most impact-
ful variables, this study aids in refining the prediction model and enhances the overall
understanding of the relationships between different factors.

3. Materials and Methods
3.1. Research Methodology

The comprehensive research approach employed in this study is depicted in Figure 1,
encompassing five fundamental phases: gathering and assimilating data, visualizing and
statistically assessing the data, carrying out data modeling and analysis, evaluating the
performance of machine learning (ML) models, and comparing the findings with earlier
research. The data modeling and analysis are conducted using R-project, a programming
framework extensively used for data mining and ML applications [47].

3.2. Multivariate Adaptive Regression Splines (MARS)

In the year 1991, the concept of multivariate adaptive regression splines (MARS), a
method for non-parametric regression, was proposed by Friedman [48]. This approach aims
to model a relationship between a set of predictor variables, represented as X (n × p), and a
target variable, denoted as y (n × 1). Where n is the number of observations or samples, p
is the number of predictor variables or features, X is the matrix of predictor variables with
size n × p, and y is the column vector of the target variable with size n × 1. The MARS
model’s mathematical representation can be expressed through the equation below:

y = f (X) + e (1)

The term f (X) represents the prediction or approximation of the target variable y
given the predictor variables X by the MARS model. The equation also gives us a residual
vector, e (n × 1), which forms an integral part of this model. MARS can be considered as a
sophisticated extension of the Classification and Regression Trees (CART) [49] technique,
but it stands apart from conventional parametric methods. While parametric methods
necessitate a predefined functional correlation between predictor and target variables,
MARS refrains from such presumptions. Instead, MARS utilizes the predictor variables
present in the specified dataset to produce a set of coefficients and piece-wise polynomials
that carry the power ‘q’. These polynomials are specifically generated to encapsulate the
relationship among variables, which may exhibit either a linear or a non-linear nature.
These polynomials, referred to as ‘splines’, are seamlessly connected to assemble the
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complete MARS model. Moreover, the process of fitting these splines involves segmenting
the data points of the independent variables into discrete regions, with the knot locations
symbolized by ‘t’. The power ‘q’ of these splines essentially determines their linearity
or non-linearity. For any variable ‘x’, the MARS model calculates these splines through
applying the particular equations below:

[−(x − t)]q+ =

{
(t − x)q, if x < t
0, otherwise

(2)

[+(x − t)]q+ =

{
(t − x)q, if x ≥ t
0, otherwise

(3)

In the given equations, ‘q’ is not less than zero, and it is a key factor in shaping the
smoothness of the ultimate MARS model. In this particular investigation, ‘q’ is set to
1, signifying the analysis of linear splines. Figure 2 illustrates two splines related to an
individual variable ‘x’, having ‘q’ set to 1 and a defined knot ‘t’. The left spline provides
positive outcomes, while the right spline produces zero for ‘x’ values on the left side of
the knot. On the flip side, when ‘x’ values lie on the right side of the knot, the right spline
gives positive results, and the left spline is zero. These splines, also called as the foundation
functions for ‘x’, play a significant role in the MARS technique. The MARS model related to
the aim variable ‘y’ is formed via including a series of ‘M’ basis functions, as demonstrated
in the following equation:

ŷ = f̂M(x) = ao + ∑M
m=1 amBm(x) (4)

Equation (4) depicts ŷ as the target variable, which the MARS model predicts. The
term ‘ao’ signifies the intercept term, which is a fixed constant. ‘Bm(x)’ denotes the mth
basis function, which could be an individual basis function or a combination of multiple
basis functions, while ‘am’ symbolizes the coefficient that corresponds to the mth basis
function. The estimation of these coefficients is achieved via the least squares method.

The MARS model, as represented by Equation (4), is formulated using a biphasic
methodology that encompasses a forward pass and a backward pass. The initial phase,
known as the forward pass, involves integrating the predictor variables into the model
and fine-tuning the positions of their corresponding knots. This process gives rise to the
creation of double-sided basis functions, one for each predictor. In the context of an X
matrix, composed of ‘n’ samples and ‘p’ predictors, ‘n × p’ pairs of basis functions emerge,
as exhibited in Equations (2) and (3). These functions are associated with knots, denoted by
xij, where ‘i’ ranges from 1 to ‘n’ and ‘j’ spans from 1 to ‘p’. Every single data point affiliated
with a predictor variable is taken into account as a possible knot for that variable’s pair of
basis functions. However, the forward pass process often results in the formulation of a
convoluted model that tends to overfit, hence reducing its predictive capability. To address
this issue, the second phase, or the backward pass, is implemented. During this phase, the
model is systematically simplified through sequentially eliminating the least contributing,
and therefore redundant, basis functions. The backward pass continues until an optimized
sub-model is achieved, characterized by its lowest Generalized Cross Validation (GCV).
This enhancement substantially boosts the predictive prowess of the MARS model. The
computation for determining the GCV follows the formula provided below:

GCV(M) =
1
n ∑n

i=1 (yi− fM(x̂i))
2(

1− M+d×(M−1)/2
n

)2 (5)
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Figure 1. Research methodology.
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Figure 2. Graph representing two splines associated with the variable x: the left spline, represented
by a dashed line (for x less than t, the formula is −(x − t)), and the right spline, represented by a solid
black line (for x greater than t, the formula is +(x − t)).

3.3. Hyperparameter Tuning Procedure

In this research, we utilized a combination of hyperparameter tuning, taking advan-
tage of the grid search approach [50], along with cross-validation (CV) strategies. The grid
search methodology essentially provides an ideal setting for parameters through arranging
all variable grids within the space of the parameters. Each grid’s axis corresponds to a
parameter of the algorithm, with a unique set of parameters at each grid point that requires
optimization. The primary benefit of combining grid search with CV is to pinpoint the
most suitable hyperparameters for the model based on the selected evaluation metric.
Furthermore, this integration guarantees that the model’s performance is evaluated across
various data subsets, resulting in a more robust and dependable assessment of its efficacy.
A potential drawback of this methodology is that it is computationally intensive. The model
needs to be trained ‘k’ times, which can be time-consuming for large datasets or complex
models. However, since our data only has 226 points, the computational demand in our
specific case is considerably reduced, making the method more manageable and feasible
for our dataset size. To ensure the unbiased selection of data, we employed a prevalent val-
idation method known as k-fold CV [51–55] during the tuning process of hyperparameters
for MARS models. K-fold CV, a standard type of CV, is extensively used in machine learn-
ing. Although there is no definitive rule for choosing the value of K, in practical machine
learning scenarios, K is commonly set at 5 or 10. According to Rodriguez [56], the bias in an
accurate estimation is likely to be reduced when the fold count is either 5 or 10. Based on
this and the suggestions of Kohavi [57] and Wong [58], we chose 5 for K. This decision also
took into consideration the trade-off between computational efficiency and bias. As a result,
five different sets of training and validation runs were performed, with the outcomes being
averaged to depict the overall performance of the MARS models on the training dataset.
All the data-related operations in this study were handled using R software 4.1.3 (R Core
Team, Vienna, Austria) [47]. The approach for hyperparameter tuning used in this research
for training the model and selecting hyperparameters is depicted in Figure 3, as illustrated
in reference [59].
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Figure 3. Tuning of hyperparameters using five-fold cross-validation.

Our research made use of the R package “earth” to perform MARS modeling. This
implementation called for the user’s careful consideration of two particular tuning param-
eters: “degree” and “nprune”. The “degree” parameter indicates the highest degree of
interaction allowed in the model. By default, this value is set to 1, leading to the creation
of a MARS model that is additive and lacks interaction terms. However, it is noteworthy
that MARS is capable of building models that encompass interactions of a degree of two or
even higher. Despite this capability, a guideline suggested by Hastie et al. [60] recommends
maintaining an upper limit on the degree of interaction. The benefit of keeping a lower
degree of interaction lies in its ability to assist in interpreting the final model in a more
straightforward manner. On the other hand, a higher degree of interaction could poten-
tially cause occasional volatility in the model’s predictive capabilities, possibly causing
predictions to deviate significantly from actual values. Hence, to evaluate the impact of
varying degrees of interaction, we experimented with three different values: 1, 2, and 3.
The second parameter, “nprune”, signifies the maximum number of terms (inclusive of
the intercept) that can be present in the model. The “nprune” value should be equal to or
greater than 2 and less than “nk”. Here, “nk” stands for the maximum number of terms
in the model before any pruning activity is initiated. This value of “nk” is determined by
the formula nk = min (200, max (20, 2 × ncol(x))) + 1, where ncol(x) is the total number of
predictive variables. For our specific study, which involved a total of 6 predictive variables,
we looked into 20 potential values for nprune, ranging from 2 to 20. The process of con-
structing and evaluating these 57 MARS models, featuring degrees of 1, 2, 3 and nprune
values ranging from 2 to 20, was accomplished through the implementation of a five-fold
cross-validation procedure.

3.4. Performance Metrics

Three error evaluation metrics, namely root mean squared error (RMSE), mean ab-
solute error (MAE), and the coefficient of determination (R2), are chosen to assess the
accuracy of MARS model predictions. The R2 metric represents the linear relationship
between the predicted and actual values, with its value ranging from zero to one. A value
of R2 nearing one signifies a more accurate model prediction. RMSE provides insight into
the dispersion between predicted and real data and is sensitive due to its relation to the
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Euclidean distance. Meanwhile, MAE is a measure of the average magnitude of errors
between predicted and observed values. Lower values of RMSE and MAE suggest superior
prediction performance by the algorithm. The three metrics are outlined as follows:

Root mean squared error (RMSE):

RMSE =

√
∑n

i=1
(
Gpi − GTi

)2

n
(6)

Correlation of determination (R2):

R2 = 1 −
∑n

i=1
(
Gpi − GTi

)2

∑n
i=1(ḠTi − GTi)

2 (7)

Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

∣∣Gpi − GTi
∣∣ (8)

where GTi and Gpi are the true and predicted values for the observation, respectively. ḠTi
is the mean of all the true values. n is the number of samples.

4. Database Used

In the current research, we utilized data (comprising 226 entries) sourced from the
study by [61], which span various soil categories such as fat clay (CH), silty clay (CL-ML),
lean clay (CL), clayey gravel (GC), silty gravel (GM), elastic silt (MH), well-graded sand
with clay (SW-SC), poorly graded sand with clay (SP-SC), silt (ML), clayey sand (SC),
silty sand (SM), poorly graded gravel with clay (GP-GC), and well-graded gravel with
clay (GW-GC). The physical attributes of these soil samples are presented in Table 1. This
dataset encompasses a diverse array of soils, highlighted by the extensive variety of index
properties. Within this dataset, it is posited that the compaction metrics are influenced by
factors like liquid limit (LL), plastic limit (PL), compaction energy (E), sand content (CS),
fines content (CF), gravel content (CG), optimum water content wopt, and maximum dry
density ρdmax, all of which are detailed in Table 1. Figure 4 presents frequency histograms
for each variable, inclusive of soil classification. Analyzing Figure 4 reveals that within this
database, a significant portion of soils possess gravel and sand contents ranging from 0%
to 20% (as seen in Figure 4a,b). Conversely, the content of fines in the soils predominantly
falls within 80% to 100% (illustrated in Figure 4c). A large portion of soils register a liquid
limit between 0 and 50 (as displayed in Figure 4g), and 32 soils exhibit a liquid limit
exceeding 300, indicative of high plasticity. The plastic limit is chiefly found between 10
and 30 (Figure 4d). Notably, this dataset features a comparably larger quantity of clayey
sand, fat clay, lean clay, and clayey gravel in contrast to other soil types (depicted in
Figure 4f). A significant number of compaction tests were executed under standard Proctor
conditions or with diminished compaction energy (not surpassing 600 kJ/m3 as shown in
Figure 4e). Around 30 modified Proctor compaction tests are also part of the study. In terms
of maximum dry density and optimum water content, peak frequencies are predominantly
within 1.6 Mg/m3 to 1.8 Mg/m3 and 10% to 20%, respectively (as captured in Figure 4h,i).
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Table 1. Model variable descriptive statistics.

Statistics CG (%) CS (%) CF (%) LL (%) PL (%) E (kJ/m3) wopt (%) ρdmax
(Mg/m3)

Standard
deviation 14.566 23.388 30.016 164.218 7.405 735.435 5.964 0.199

Mean 7.468 29.448 63.088 108.727 22.005 894.066 17.512 1.751
Median 0.000 27.000 70.000 40.650 20.150 593.000 17.000 1.750

Maximum 67.100 89.000 100.000 608.000 48.300 2755.000 43.700 2.330
Minimum 0.000 0.000 8.600 16.000 6.100 155.000 5.300 1.090
Kurtosis 3.482 −0.471 −1.250 3.264 0.748 2.266 2.862 0.977

Figure 4. Relative frequency distribution of input and output variables.

5. Model Results
5.1. Hyperparameter Tuning Results for Optimal Model

The hyperparameter tuning procedure, which combined a grid search and k-fold
cross-validation, was employed to determine the optimal model parameters for the MARS
models, aiming for the lowest RMSE. According to Figure 5, the performance of the
MARS model was more sensitive to the ‘nprune’ parameter than the interaction degree,
highlighting the crucial role of ‘nprune’ in achieving top-tier model accuracy.
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Figure 5. Optimization results of hyperparameter tuning for the MARS models: (a) ρdmax and
(b) wopt.

As detailed in Figure 5, a rigorous five-fold cross-validation process pinpointed ‘de-
gree = 2’ and ‘nprune = 13’ as the prime settings for the wopt MARS model. Leveraging
these parameters, the model showcased exemplary performance across the 131 training
datasets, registering an average RMSE. On the other hand, for the ρdmax MARS model, the
most suitable hyperparameters were ‘nprune = 11’ and ‘degree = 2’. With these settings,
the model attained an optimal predictive capacity, reflected by an average RMSE of 0.064
and an R2 of 0.889, specifically for predicting the maximum dry density in compacted soil.

5.2. Cross-Validation Results after Hyperparameter Tuning

Post tuning, the performance of the final MARS models was assessed using a five-fold
cross-validation procedure. The RMSE, R2, and MAE were computed for each fold to
estimate the prediction performance. The results for both models are presented below.

For the wopt model, the five-fold cross-validation results are presented in Table 2:

Table 2. Results derived from a five-fold cross-validation for the wopt model.

Folds
Performance Measures

RMSE (%) R2 MAE (%)

Fold 1 1.513 0.929 1.182
Fold 2 2.368 0.870 1.867
Fold 3 1.827 0.886 1.351
Fold 4 1.710 0.889 1.361
Fold 5 2.323 0.895 1.728

Average 1.948 0.893 1.498
SD 0.380 0.023 0.287

CoV (%) 0.195 0.026 0.192

Notably, the RMSE, R2, and MAE values indicate the high predictive performance
of the MARS model for the wopt parameter, with high R2 values over 0.87 for all folds
in both cases. This highlights the models’ ability to capture a significant portion of the
variance in the target variables. The RMSE values were relatively low across all folds for
both models, underscoring the models’ robustness and their ability to minimize errors
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in prediction. Moreover, the MAE values were reasonably low, revealing the models’
capability to produce accurate predictions with small deviations from the actual values.

The ρdmax model’s cross-validation results are presented in Table 3.

Table 3. Results derived from a five-fold cross-validation for the ρdmax model.

Folds
Performance Measures

RMSE (Mg/m3) R2 MAE (Mg/m3)

Fold 1 0.068 0.860 0.051
Fold 2 0.067 0.908 0.050
Fold 3 0.048 0.948 0.040
Fold 4 0.071 0.870 0.057
Fold 5 0.065 0.909 0.049

Average 0.064 0.899 0.050
SD 0.009 0.035 0.006

CoV (%) 0.141 0.039 0.120

Once again, the RMSE, R2, and MAE values for each fold reflect the high predictive
performance of the model. The average values highlight the overall accuracy of the model,
while the standard deviations suggest that the model’s performance is consistent across
different folds.

One potential reason some folds perform better than others is due to imbalanced
data distribution. If the data are not evenly distributed and one fold ends up with a
disproportionate number of certain classes or types of data, the model may perform poorly
on that fold. For instance, if one fold contains many outliers or rare events, the model might
struggle to generalize. Despite this, the consistently high R2 values, low RMSE and MAE
values, and the low standard deviations for both models across all folds underscore the
effectiveness of the MARS models and their robustness in predicting the wopt and ρdmax
parameters of compacted soil.

5.3. Evaluation of MARS Models on Unseen Dataset

The following two equations were derived from the final optimal models after hyper-
parameter tuning for wopt and ρdmax. The equations are as follows:

wopt = 19.3773983
−0.0639987 × max(97 − CF, 0)
−5.1538333 × max(CF − 97, 0)
−0.0898632 × max(64 − LL, 0)
−0.6415284 × max(21 − PL, 0)
+0.4288445 × max(PL − 21, 0)
+0.0025993 × max

(
1347 − EkJ/m3, 0

)
+0.2425873 × max(CF − 97, 0)× PL
−0.0000061 × LL × max

(
EkJ/m3 − 1347, 0

)
+0.0578447 × max(7.6 − CG, 0)× max(21 − PL, 0)
−0.0093695 × max(70 − CF, 0)× max(PL − 21, 0).

(9)
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ρdmax = 1.39385529
+0.00261487 × max(33.1 − CS, 0)
+0.00621111 × max(98 − CF, 0)
+0.00505340 × max(LL − 64, 0)
+0.00337354 × max(130 − LL, 0)
−0.00526625 × max(LL − 130, 0)
−0.01028165 × max(PL − 11, 0)
−0.00019175 × max

(
1347 − EkJ/m3, 0

)
−0.00188667 × max(CF − 98, 0)× PL
−0.00005026 × max(CS − 53, 0)× max(98 − CF, 0)
+0.00002616 × max(CF − 30, 0)× max(130 − LL, 0).

(10)

The cross plots presented in the subplots (a) and (b) of Figure 6 portray the application
of two previous MARS-based models in predicting two crucial parameters for compacted
soil: the optimum water content (wopt) and maximum dry density (ρdmax). These subplots
showcase the comparison between the models’ predictions and the actual values of wopt and
ρdmax for the testing datasets. The plots illustrate that a significant accumulation of data
points clustering near the Y = X line signifies the strength and reliability of the established
models. Clearly, the implemented models yield predictions that align remarkably well
with the unit slope line. As a result, the proposed models can confidently be considered
highly reliable for estimating the wopt and ρdmax of compacted soil throughout the testing
and training phases.

Figure 6. Actual vs. predicted values using the MARS model for the testing dataset: (a) ρdmax and
(b) wopt.

Figure 7 showcases the relative error of the MARS-based models compared to the
actual measurements of wopt and ρdmax. The subplots in Figure 7 demonstrate that the
outputs of the proposed MARS-based models exhibit an acceptable deviation from the real
measured data. A significant portion of the data falls within the range of −10% to +10% for
wopt and −5% to 5% for ρdmax.

Additionally, the statistical evaluation of the proposed models is presented in Table 4,
providing a comprehensive summary of the assessment. The table includes the MAE, R2,
and RMSE values for the training, testing, and overall datasets. The statistical evaluation
clearly indicates that both MARS-based models exhibit outstanding prediction performance.
The overall RMSE values for wopt and ρdmax are 1.428 and 0.052, respectively, highlighting
the models’ accuracy. The combined findings from Figures 6 and 7, along with the statistical
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results in Table 4, demonstrate the effectiveness of our newly proposed correlations. They
are capable of reliably estimating wopt and ρdmax for compacted soil across various soil
properties and operational conditions, showcasing high integrity and efficiency.

Figure 7. Comparison of relative errors vs. real value: (a) MARS-based model for wopt; (b) MARS-
based model for ρdmax.

Table 4. Performance metrics of the MARS models for training, testing, and overall datasets.

Training Testing Overall

wopt MAE (%) 1.12 1.276 1.15
RMSE (%) 1.392 1.577 1.428

R2 0.942 0.948 0.943
ρdmax MAE (Mg/m3) 0.04 0.047 0.041

RMSE (Mg/m3) 0.05 0.062 0.052
R2 0.936 0.919 0.931

5.4. Comparison between MARS Model with Previously Developed Models

In order to thoroughly assess the reliability of our newly proposed models, we ex-
tended the statistical evaluation to compare them with one of the best predictive corre-
lations, namely Multi Expression Programming (MEP) [61]. The comparison is based on
various statistical criteria and prediction performance, as presented in Table 5 and visually
represented in the bar plots of Figure 8. Analyzing Table 5 and Figure 8 reveals that, despite
the satisfactory prediction performance of MEP, our suggested models outperform it in
accurately estimating the values of wopt and ρdmax for compacted soil. Furthermore, MEP
frequently creates intricate nonlinear empirical models that can be difficult to handle [62].
In turn, the MARS algorithm offers some distinct benefits. Notably, it effectively captures
the intricate interactions between independent and dependent variables. Moreover, it
eliminates the need to exert extra effort to confirm any preliminary assumptions regarding
their relationship. This advantage becomes increasingly vital as the complexity of the
problem grows [63].
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Table 5. Performance metrics of the MEP models for training, testing, and overall datasets.

Compaction Parameters Performance Measures Overall

wopt MAE (%) 1.3
RMSE (%) 1.68

R2 0.921
ρdmax MAE (Mg/m3) 0.054

RMSE (Mg/m3) 0.073
R2 0.867

Figure 8. Comparative performance of MARS vs. MEP models: (a) RMSE; (b) R2.

5.5. Variable Importance Analysis

A primary strength of the MARS model is its capability to discern if a particular input
factor is vital for predicting output values or if it merely offers a slight enhancement to the
model’s precision.

The varImp function in the caret package [64] produces a matrix that displays the
relative importance of features within the model, utilizing two distinct methods to assess
feature significance:

• The raw residual sum-of-squares (RSS) method proceeds in two phases. Initially, it
assesses the RSS decrease for each subset, contrasting it with the preceding subset’s
value. Subsequently, for every relevant feature, it accumulates these reductions across
all subsets that incorporate that feature. Finally, the overall sum of these reductions is
analyzed. Features leading to substantial RSS declines hold greater importance.

• The generalized cross-validation (GCV) method operates analogously to the RSS method,
but it employs GCV in place of RSS. GCV assesses feature performance in subsets,
pinpointing the most pivotal subset (with smaller GCV values being preferable).
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Figure 9 displays the outcomes of the contributions and the selections made by differ-
ent independent variables on the prediction performance of wopt and ρdmax.

Figure 9. Influence of different independent variables on MARS model: (a) for ρdmax; (b) for wopt.

Figure 9a displays the impact of various independent variables on the ρdmax MARS
model. The figure is sorted based on the decreasing influence of these variables. The top
two influential factors are PL (%) and CF (%), with RSS values of 100 and 55.01, and GCV
values of 100 and 75, respectively. These statistics suggest that PL (%) holds the most
significant influence on the ρdmax MARS model, followed closely by CF (%). Other factors
listed in decreasing order of influence are E (kJ/m3), LL (%), and CS (%).

Figure 9b showcases the influence of different independent variables on the wopt MARS
model. The two most impactful factors in this table are CF (%) and PL (%). CF (%) takes the
lead with RSS and GCV values of 100, indicating its paramount significance in the model.
PL (%) follows next with RSS at 63.49 and GCV at 85.71. These results allow us to state
that CF (%) has the most considerable influence on the wopt MARS model, but PL (%) also
retains significant sway. Other listed factors, in order of influence, include E (kJ/m3), LL
(%), and CS (%).

To more deeply assess the reliability of the MARS models, a parametric analysis can be
undertaken. This type of analysis examines the alignment of the model’s predictions with
existing geotechnical knowledge, experimental data, and anticipated outcomes. This study
scrutinized how the predicted soil parameters from the suggested models responded to
hypothetical data, spanning the lower and upper bounds of the data used in model training.
This approach entailed modifying a single input variable while maintaining others at their
average. Synthetic data for this individual parameter were produced via raising it step by
step. These inputs were then used in the prediction equation to determine soil parameters.
This method was iteratively applied for different variables to gauge the model’s reaction to
each input change.

Figure 10 illustrates how the predicted wopt changes in relation to the CF (%), the LL
(%), the PL (%), and the E (kJ/m3). Notably, as the CF (%), the LL (%), and the PL (%)
rise, the forecasted wopt also goes up. In contrast, when the E (kJ/m3) grows, the predicted
value goes down. These consistent changes align with the patterns observed for the wopt
in relation to each soil property as seen in the figure, indicating that the proposed model
is accurate.

Figure 11 displays the parametric analysis of the anticipated ρdmax in relation to each
input variable. Contrary to the wopt, the forecasted ρdmax goes down as the CF (%), LL
(%), or PL (%) rises and as the E (kJ/m3) reduces. This trend mirrors the monotonic
observations from the actual database illustrated in the figure. Such a parallel between the
parametric study and the database in predicting the ρdmax further confirms the accuracy of
the model introduced.
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Figure 10. Parametric analysis of the predicted wopt versus: (a) CF (%); (b) PL (%); (c) LL (%);
(d) E (kJ/m3).

Figure 11. Parametric analysis of the predicted wopt versus: (a) CF (%); (b) PL (%); (c) LL (%);
(d) E (kJ/m3).

The findings from the variable importance analysis are consistent with previously
published literature. A respected study explored the influence of CF on the mechanical
response of CDG (completely decomposed granite) subjected to dynamic compaction
grouting [65]. Through integrating varying proportions of kaolin clay with CDG, this study
aimed to understand the implications of fines concentrations on its compactive behavior.
The findings indicated that an increment in CF correspondingly results in a diminished
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ρdmax, while concurrently elevating the wopt. In another study, sand–kaolin blends were
compressed to investigate the connection between ρdmax, CF, and specific gravity (Gs)
across different moisture levels, with CF ranging from 20% to 70% [66]. A prominent
linear correlation (R2 = 0.99) was found between ρdmax and the CF/Gs2 ratio. For PL, a
respected paper investigates which index properties best correlate with compaction traits.
Incorporating both the study’s findings and the existing literature, it was determined that
the plastic limit correlates strongly with compaction features, such as optimum moisture
content and maximum dry unit weight, more effectively than either the liquid limit or
plasticity index. For the plastic limit (PL), a notable study examined which index properties
have the strongest correlation with compaction characteristics [23]. Through integrating the
study’s results with the established literature, it was ascertained that the plastic limit shows
a significant correlation with compaction attributes, particularly wopt and ρdmax, surpassing
the correlations seen with either the liquid limit or the plasticity index.

6. Conclusions

Determining compacted parameters in geotechnical projects is vital for ensuring soil
stability, optimizing foundation designs, mitigating settlement issues, and guaranteeing
the safety and longevity of structures built on or within the ground. For this reason,
the prediction of those parameters is imperative for proactive planning, cost-effective
execution, and minimizing project risks. This research aims to predict those parameters
via employing the MARS (multivariate adaptive regression splines) model. Compared
to other black-box machine learning models, the MARS model offers advantages such as
flexibility in capturing non-linear relationships, automated interaction detection, fewer
tuning parameters, and the capability to produce more interpretable results, making it
particularly suitable for geotechnical applications where understanding the underlying
behavior is as crucial as prediction accuracy.

The results obtained through this research indicate the following:

• Hyperparameter tuning of the MARS model significantly enhanced its predictive
performance, reducing the error rate and refining the model’s adaptability to complex
geotechnical data.

• The final optimal models for parameters wopt and ρdmax were evaluated using five-
fold cross-validation. The findings showed consistency and high accuracy across
all folds, demonstrating the model’s robustness and reliability in estimating these
critical parameters.

• Testing the models on unseen data (testing dataset) revealed that they maintained
a commendable level of precision and generalization, further substantiating their
efficacy for real-world applications in geotechnical projects.

• Comparing the MARS model with other state-of-the-art models, such as Multi Expres-
sion Programming (MEP), indicated that while both models exhibit strong predictive
capabilities, MARS demonstrated faster convergence and better handling of non-
linear relationships, offering a more efficient and robust alternative for geotechnical
parameter prediction.

• Finally, the variable importance analysis revealed that the fine content (CF) and plas-
ticity limit (PL) are the most influential factors driving the predictive accuracy of
the model, highlighting their pivotal role in determining the geotechnical properties
under study.

It is worth mentioning that ML research often presents inherent challenges and lim-
itations. In this study, a notable limitation is the data sample size of 226 points. The
model formulated in this research delivers the anticipated accuracy when analogous input
parameters are subsequently applied. However, errors may arise in the analysis if the same
parameters are used but lie outside our established range. Gathering more experimental
data in the future is essential to enhance the model’s generalization capabilities. Upcoming
studies will explore the potential of advanced ML techniques, such as deep learning, in
predicting wopt and ρdmax values.
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